CLASSIFICATION OF LARGE SETS BY TRADES

ZIBA ESLAMI

ABSTRACT. In this paper, an algorithm based on trades is presented to classify
two classes of large sets of t-designs, namely LS[14](2, 5, 10) and LS[6](3, 5, 12).

INTRODUCTION

A t-(v, k,A) design, or briefly a t-design, is a pair (X, .A) which satisfies the fol-
lowing properties:

e X is a set of v elements called points.
e Ais a family of subsets of X, each of cardinality k called blocks.
e every t-subset of distinct points occurs in exactly A blocks.

A t-(v, k, X) design is called simple if it contains no repeated blocks. By an elemen-
tary counting argument, it can be shown that if s < ¢, a t-(v, k, A) design is also an
s-(v, k, u) design, where g = A(Y2?)/(¥2°). Since i must be an integer, this relation
yields a necessary condition for the existence of ¢t-designs, for any s < ¢t. Given ¢,k
and v, there is a smallest positive integer A*(¢, k, v) such that these conditions are
satisfied for all 0 < s < ¢.

Let (%) denote the set of all k-subsets of a v-set X. Let A = A*(t, k,v). A large
set of t-(v, k, ) designs is a partition of ({ ) into ¢-(v, k, A) designs. The number of
designs in the partition is N = (z::) /A. We shall denote a large set of ¢-(v,k, A)
designs by LS[N](t, k, v). Note that all the designs in a large set are simple and we
use the term "large set” only when A = A*(t,k,v). A t-(v,k) trade T = {Th, Tz}
consists of two disjoint collections of blocks Ty and T such that for every 4 € (%),
the number of blocks containing A is the same in both T} and T». T is called simple
if there are no repeated blocks in T3 (72). The number of blocks in 71 (T3) is called
the volume of T and is denoted by vol(T). Clearly, two disjoint t-(v, k, ) designs
form a trade with vol(T) = A(})/ (':) Trades can be defined alternatively from
an algebraic point of view in which they constitute the kernel of some well-known
(inclusion) matrices. The standard basis [6] for trades has been used to classify and
construct some large sets and designs [1, 2, 3, 4]. Here, we exploit this structure to
enumerate some classes of large sets.

Let (X, .A) be a t-(v,k, ) design and let 7 be a permutation of X. If we let 7 act
on (X, A), then we obtain an isomorphic copy of the design, which we denote by
(X, A™), where A™ = {A™ : A€ A} and A™ = {z" : z € A} for all A € A). Suppose
A = {(X, A)}YL, is an LS[N](t, k,v). Then define A* = {(X, A7)}X,. It is clear
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that A™ is also an LS[N](t, k,v), and A™ is isomorphic to A. In order to define
the same concepts for trades and large sets, consider the set A = {(X, ADYY,,
where A; C (’,‘:) and A; N A; = 0 for all i # j. A permutation o € Sym(X), the
symmetric group on X, is said to be an automorphism of A if A% = A, that is,
if A7 € A for each A; € A. The set of all automorphisms of A is, of course, a
subgroup of Sym(X) denoted by AutA. If G is a subgroup of AutA, we say that G
is an automorphism group of A or that A is G-invariant. Note that a G-invariant
large set (trade) may contain designs which are not G-invariant themselves. Fur-
thermore, for an arbitrary permutation o of X, A is not, in general G-invariant.
However, if ¢ € N(G), i.e. the normalizer of G in Sym(X), then A” is G-invariant.
This observation is important in determining the isomorphism of G-invariant large
sets.

In [7], some classes of large sets of t-designs are considered. Certain classes
are completely enumerated, while in some cases only the existence question is
tackled. Here, we employ trades to complete the classification of two such pa-
rameter sets, namely G-invariant LS[14](2,5,10) and LS[6](3, 5, 12), where G =<
(1)(2)(3)(4, ...,10) > and G =< (1)(2)(3,...,7)(8,...,12) >, respectively.

LARGE SETS OF 2-(10, 5, 4) DESIGNS

There are exactly 21 non-isomorphic 2-(10, 5,4) designs [10]. For completeness,
we list the number of these designs:

#Designs [Aut|
4 1
5 2
1 4
2 6
3 8
2 9
3 16
1 72
total: 21

Let A = {(X, A:)}}4, be a G-invariant LS[14](2,5,10), where G =< ¢ >. Clearly,
we can take a suitable power of ¢ of prime order p. If o consists of m cycles of
length p and n fixed points, we say that o is of the type 1"p™. Furthermore,
if A7 # A; for some 1 < i < 14, then A contains also A{’,j =1..,(-1).
In what follows, we take o as 137!, The non-existence of a 2-(10,5,4) design
admitting an automorphism of order 7 shows that a large set is comprised of exactly
two orbits of designs under G. In [7], an instance of such a large set is provided
but it is noted that the complete classification would be quite time-consuming.
Hence, we propose the following algorithm to construct all large sets of the form
(AL AT, ..., AT’ )(Az, A5,..., A5") : take A; to be any of twenty-one 2-(10,5,4)
designs. Now determine all permutations = of type 137! such that A;, A],.. ..A’{°
are disjoint. Relabel the points so that the designs are disjoint under the action
of the same permutation, say . This procedure produces 9980 sets of 7 disjoint
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isomorphic designs. Rernoving orbits of these designs from consideration, we are left
with 126 blocks from among which we need to construct 7 more disjoint, isomorphic
under o, 2-(10,5,4) designs to complete the large set. To do so, we notice that A,
and AJ form a 2-(10,5) trade T = {T},T,} with vol(T) = 18 such that T} is a
design, T¥ = T5, and for each block A € T}, we have A"’,...,A"6 ¢ T. Hence,
we can implement backtracking on the standard basis of trades to produce such
trades. Implementing this procedure on a 2000MHz Pentium IV PC running a C
program, we produced (in a few hours) 3,022 large sets.

ISOMORPHISM TEST

The isomorphism test is carried out in two phases. In the first phase, we identify
isomorphism classes as follows. Let A = {(X,A;)}}4; and A’ = {(X, A))}}4, be
two of the above solutions with A;, Az and A{, Aj as starter designs, respectively.
If A, (Ag) is not isomorphic to either of A} and Aj, then A and A’ are in different
isomorphism classes and no further design in them should be checked. Implement-
ing this process using nauty (8], 109 isomorphism classes are obtained. Clearly,
having isomorphic starter designs does not guarantee isomorphism of two large sets
within each class and there might still be non-isomorphic copies present. Hence, in
the second phase, we employ backtracking to check for isomorphisms between large
sets of the same class. Let X; = {1,...,1}, for k <i < v. Let II be the set of all
one-one functions from X; to X, for all k < ¢ < v. We consider II to be lexico-
graphically ordered. If = € II is defined on X;, we write m; to show its domain. We
search II for possible permutation m, such that 7, A; = As: if there is a k-subset B
of X; containing i such that B € A; and 7B € A;, then in all subsequent extensions
of m;, the same relation should hold between this two designs of A and A’ or else
we backtrack and skip to the next element m,, of I with m < i. Note that the
same procedure can be applied to determine the number of automorphisms of the
final solutions.

Theorem 1. Let G =< (1)(2)(3)(456789A) >. Then there are ezactly 410 non-
isomorphic G-invariant LS[14)(2,5,10).

#Large Sets |Aut|

366 7
30 14
12 21
2 56
. Total: 410

The starter designs of the two large sets with 56 automorphisms can be obtained
as follows. For the first large set, take the following design as A;:

12369 12457 12468 1249A 13457 1356A
13589 1678A 1789A 2348A 2358A 23679
25678 2579A 3467A 34789 45689 4569A

239



Now let the permutation < (185476 A)(23) > act on its blocks to get A2. Applying
< (1968A47)(23) > and < (1A4)(23)(59768) > on the above design produce the
starter designs of the second large set.

LARGE SETS OF 3-(12,5,6) DESIGNS

In (7], an instance of an LS[6](3,5,12) is given, where one design is fixed by
p = (12345)(6789A)BC and the others cycle through an orbit of size five. The
starter design for this orbit is chosen to be invariant under ¢ = (1)(23456789ABC).
We can have total enumeration for this class of large sets as well. We first obtain
a catalogue of all 3-(12, 5, 6) designs invariant under the action of . For this, we
employ the algorithm in [5, 9] and get the following result.

Theorem 2. Up to isomorphism, the number of 3-(12,5, 6) designs, invariant un-
der G =< (1)(23456789ABC) > is as follows:

#Designs |Aut|
162 11
1 22
2 55
1 110
1 1320
1 7920

total: 168

Now, to construct the orbit of five designs in the large set, we take the starter design
A; to be any of these 168 designs and backtrack on the standard basis of trades to
produce all 3-(12, 5) trades of volume 132 having A; as one part and the other part
isomorphic to .4; under an isomorphism of order 5. There is also an alternative
approach which can be used to check the results. First, for each starter design A,
determine all permutations 7 of type 1252 such that A,, A7,... AT are disjoint.
Only three of the 168 designs accept such permutations. Relabel the points so that
the designs are disjoint under the action of o. This procedure produces 33 orbits of
designs. Clearly, the unused orbits form a design invariant under o. Furthermore,
the large sets arising from the three classes of starter designs can not be isomorphic.
Hence, we determine isomorphism within each class as in the previous section. The
results are as follows.

Theorem 3. Let G =< (1)(2)(34567)(89ABC) >. Then there are exactly 3 non-
isomorphic G-invariant LS[6)(3,5, 12) whose starter design is invariant under the
action of Zy1. The large sets admit 55 automorphisms each.

The orbit representatives of the starter designs of these large sets are listed
below. The point set is X = {1,...,9,4,...,C} and the automorphism group of
the designs is G =< (1)(2384769AC5B) >.
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10.

2.

Design #1

12348 1234A 1236C 1239C 12456 23459
2346A 2347B 234BC 23568 23569 23679

Design #2
12348 12379 1237A 1233C 1246A 23467
2346C 2347B 2348A 2349A 2356A 23579

Design #3
12348 12379 1237A 1239C 1246A 2345C
23467 2346C 2348A 2356A 2357A 2367B
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