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Abstract

This paper discusses the covering property and the Uniqueness
Property of Minima (UPM) for linear forms in an arbitrary number
of variables, with emphasis on the case of three variables (triple loop
graph). It also studies the diameter of some families of undirected
chordal ring graphs. We focus upon maximizing the number of ver-
tices in the graph for given diameter and degree. We study the re-
sult in (2], we find that the family of triple loop graphs of the form
G(4k2 + 2k + 1; 1; 2k + 1;2k2) has a larger number of nodes for diam-
eter k than the family G(3k% + 3k + 1;1; 3k + 1; 3k + 2) given in [2].
Moreover we show that both families have the Uniqueness Property of
Minima.

Keywords: Chordal Ring , Linear Congruences, Shortest Path

1 Introduction

The communication performance between computing nodes of a parallel
system is of essential importance because data exchange may become a bot-
tleneck in parallel computation. The communication performance depends
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on the underlying network topology, the chosen routing model, the commu-
nication pattern, the quality criteria, and the routing algorithm.

The topology is the physical interconnection structure of the network. It
has an impact on several properties of the network, such as diameter, node
degrees, bisection bandwidth, connectivity, and scalability. Since each of
these properties bears an importance of its own, many theoretical and prac-
tical studies produced near optimal topologies in a global sense rather than
optimized for a particular property.

Some of these topologies are mesh, hypercube, butterfly, shuffie-exchange,
etc. . There is a common consensus that networks with simpler topologies
will offer practical solutions to the problem of interconnecting a very large
number of computing nodes. In addition to various kinds of meshes etc.
as above, these topologies include k—loop networks (called triple-loop net-
works when k = 3). Informally, a k—loop network contains k interleaved
rings. Among the properties of k—loop networks are scalability, fixed node
degree, node symmetry (i.e., vertex transitivity), regularity,reasonable di-
ameter, and reliability. For these reasons, lcop networks have been studied
in papers such as [2],(3],[4),[5],(6], where researchers studied loop-graphs in-
tensively. In the present paper we feature on some triple loop networks.

2 The Uniqueness Property for Minima of Linear
Diophantine Equations
Chordal rings are related to a distributed loop graph G(n;ci;cp;--+ ;Cd)
which is a graph with a vertex set equal to 0,--- ,n —1, and the edge set
equal to (u,u£1) where 0 < u < n—1,i € {c1;02;--- ;ca}. We denote
by G(n;c1;c2), the chordal ring defined by n as the number of nodes and
by 1, ¢z the length of the chords. Assume that c1,,02,. . ., ¢4 are d positive
integers, with ged(cy, ¢z, - . - ,¢4) = 1. Let 21, %3,..., 74 be d variables taking
integer values, and let n be a fixed modulus. We consider the linear form
f=azi+cze+-+ +ca%a - 1)

(We also note as {c1,¢2,...,¢4)) Now let 0 < w < n be any integer. We
inquire about the solutions of the linear congruence

azr1+cTe+-+citg = w modn 2
and we ask whether among all such solutions the minimum of the L!—norm

v= |z|+|z2|+ -+ ]|zal (3)
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is unique. If this is the case for all the residues modulo n, that is for all w
with 0 < w <n — 1, then we say that f in (1) has the uniqueness property
for minima (UPM) with respect to the modulus n.

In terms of multiple loop graphs, we may reinterpret UPM as the uniqueness
of the shortest path between any two nodes in a topological sense.

We note that a necessary condition for the UPM is that all the ¢; are distinct.
Hence we may assume without loss of generality that 1 < ¢; <cp <--- < ¢g
holds. The UPM for binary linear forms c;z; + cpz2 has been discussed
in (1], and there it was shown that for given positive integers c;,c; with
ged(cr,ca) = 1 there are only finitely many moduli n with UPM if ¢; =
¢z mod 2, while there are infinitely many moduli n with UPM if ¢; # ¢
mod n.

For the case of general d we first give an example that shows that for any
d, there exist positive integers ¢; < ¢z < -+ < ¢g which have the UPM for
some modulus n.

Example 1 Consider the values ¢y = k for k = 1,2,...,d. The associated
linear form

f=z1+2z2+3z3+---+dzg 4)
has the UPM for the modulus n = 2d + 1.

This is easy since for the residue 0 we have that v in (3) is v = 0, and the
residues +1,+2,...,+d are the only values for which we have v = 1.

This example is a trivial one in the sense that it only involves residues w
with the property » < 1. From [2] we get examples in d = 3 variables of a
less trivial kind.

Example 2 The linear form
f =4z, 4+ 622 + 923 (5)
has the UPM for the modulus n = 19.

In order to verify examples of this kind it is convenient to use the following
lemmas. It is trivial that the minimum is always unique for the residue
w=0.
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Lemma 1 Assume that ¢, ¢z, . . . ¢4 (not necessarily distinct) and n is fixed.
The residue w mod n has r distinct d—tuples attaining the minimum v iff
the residue —w mod n has r distinct d—tuples attaining the minimum v.

This is clear by replacing each such d—tuple (21,3, ...,4) by its negative
(—3:1, =2y« —-xd).

Lemma 2 Assume that ¢;, ¢z, . . . ¢4 is given, and that n is even. The residue

-’21 mod 7 has at least two distinct d—tuples attaining the minimum v.

This is clear since for any solution (z1,Z2,...,%q) attaining the minimum v
the d—tuple (—z1, —z3,...,—Zq) is another distinct solution.

We now give the verification of example 2. By lemma 1 we -only need to
verify that the minimum is unique for 1 < w < 232, Note that by lemma
2 n is necessarily an odd integer. We let p(w) be the number of distinct
representations, which in this case is always equal to 1, and we use the other
parameters as above.

(zl 122y :53)
(0,0,-2)
(‘1,1,0)
(0,-1,1)
(1,0,0)
(-1,0,1)
(0,1,0)
(07‘2’0)
(2,0,0)
(0,0,1)

We can then recast the general construction of (2] in terms of the UPM as
follows.

p(w)
1

=N N =] =i N]| @

o] | ~a| o] en| nfesf o] =il &
[uy [ Ry U Y N PR

Proposition 1 For each positive integer k the following 3—variable linear
form

f = Kay + k(k + 1)z2 + (k+ 1)%z3 (6)
has the UPM for the modulus n = 3k% + 3k + 1.

The proof depends on a particular property of invariant subsets S in cubical
lattices.
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Lemma 8 Assume that S C Z° is a non empty set that satisfies
(z,p,2) €S (z+1,y+1,2+1) €S . (7)

The function v = |z| + |y| + |2| takes its minimum on the set S in a point
that has at least one coordinate equal to zero.

Consider a point (z,y,2) € S with all three coordinates not equal to zero.
Then either at least two coordinates are positive, or two coordinates are
negative. In the first case we have that (x — 1,y — 1,z — 1) € § with

lz=1+ly—1+]z-1| < =] + |yl + ]2 - 1,
and in the second case we have that (:c+1,y-l:1,z+l) € § with
Z+1+ly+1+|z+1] < |a| + [y] + |2| - L.

In either case the minimum of v = |z|+|y|+|2| is not taken on at (z,y,2) € S.
This proves lemma 3.

Lemma 4 Assume that S C Z2 is a non empty set that satisfies
(z,9,2) €S (z+1,y+1,z+1) €S . (8)

If the function v = |z| + |y| + |2| takes its minimum on the set S in a
point that has precisely one coordinate equal to zero, then the two non zero
coordinates of that point have an opposite sign.

Without loss of generality we may consider a point (z,y,0) € S with z,y # 0.
If both z,y > 0 are positive, then we have (z—1,y—1,~1) € S withz=0
so that

|z =1+ |y -1+ |z =1 = |=| + |y] + 2| - 1,

and if both z,y < 0 are negative, then we have that (z+ 1,y +1,1) € S so
that (with z = 0)

lz+ 1 +ly+ 1+ ]z +1] = =] + |yl + || - L.

In either case the minimum of v = |z|+|y|+|2| is not taken on at (z,y,0) € S.
This proves lemma 4.

The minima of the linear form 6 decompose as follows:
First into 6 - k minima which are situated along the three coordinate axes,
which are of the form (z, 0,0), (0,z,0), (0,0, z) with 1 < |z| < k, and hence
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k2 -k

they are unique by lemma 4. Further they decompose into 6 -

minima which are situated in the three coordinate planes, of the f%
(z,9,0), (z,0,¥), (0, z, y) where z, y are non zero and of opposite signs. These
minima are also unique by lemma 4. This completes the proof of proposition
1.

3 Equivalence of Linear Forms

We say that two linear forms (¢, ¢z, ¢3) and (¢}, ch, c5) with respect to the
_ same modulus 7 are equivalent if there exists an integer ¢ with gcd(c,n) =1
such that the three congruences

aij=zxc-cq mod n, o=%*c-c; mod n, g=*c-c3 mod n

(9)

are true for some choice of plus and minus signs. Note that it is not assumed
that ¢j < & < ¢ < § should hold. After changing signs as necessary and
rearranging according to size we obtain another (equivalent) form (c], &, ¢§)
withcf <5 <5 < %

Example 3 The two forms (1,7, 8) and (4,6, 9) for the modulus n = 19 are
equivalent. Indeed we choose ¢ = 4 and we get
4=4.1,9=(4-7) mod 19, 6= —(4-8) mod 19

Similarly it follows that (1,3k + 1,3k + 2) and (k?, k(k + 1), (k + 1)?) are
equivalent modulo n = 3k? + 3k + 1, see [2]

It is known [4] and not difficult to prove that if the linear forms are equiva-
lent, then the corresponding triple loop graphs are isomorphic. In practice
we first refer to the modulus, and then check additionally if two different
forms are equivalent.

Lemma 5 The two 3—variable form

(1,2k +1,2k?) modulo n = 4k? + 2k + 1 (10)
(1,2k,2k% + k) modulo n = 4k* + 2k +1 (11)
are equivalent.
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This is easily seen by first observing that 2k is a unit modulo 4k2 + 2k + 1,
as (2k)(—2k—1) = 1 mod 4k? + 2k + 1. Thus we may multiply the form
(10) by 2k and obtain the equivalences modulo 4k2 + 2k + 1 as follows:

(L2k+1,2k%) = (2k,4k? + 2k, 4k3)
' (2k, -1, —2k? — k)
(-1, 2k, -2k — k)
(1,2k,2k% + k) . (12)

4 Proof of the Covering Property of the form
(1,2k + 1,2k?) modulo 4k® + 2k + 1

In this and the next section we consider the linear form
71 + (2k + 1)z2 + 2k?z3 modulo 4k? + 2k + 1.

We say that a form f = ¢;21 + c222 + caz3 hes a coveringproperty if for all
0 < w < n, w= 2 + az2 + c323 mod n, |21| + |£2| + |z3| < k. In other
words the chordal ring G(n; ¢1; c2; c3) has diamter k.

Proposition 2 For each positive integer k the following 3—variable linear
form f = 1 + (2k + 1)z + 2k?z3 has the covering property for the modulus
n = 4k? + 2k + 1. Hence for a fixed diameter k the chordal ring

G(4k? + 2k + 1;1; 2k + 1;2k?) has a larger number of nodes than the corre-
sponding chordal ring of proposition 1.

By using lemma 5 in order to prove the covering property we only have
to show that each residue w mod 4k + 2k +1 with 1 < w < 2k? + k is
represented in the form

w=x+32-2k+x3- (22 +k) mod 4k® +2k+1 (13)

under the condition |z;| + |z3| + |z3] < k. We first show that the multiples
of k are represented in this way, distiguishing even (part (a)) and odd (part
(b)) multiples in the following lemma.

Lemma 6 (a) The numbers 2ki with 1 < ¢ < k are represented with
(®1, %2, z3) = (0,4,0) so that |z;| + |za| + |z3] = 1.

(b) The numbers (25 + 1)k with 1 < j < k are represented with

(%1, 22,23) = (0,—k + j, 1) so that |z1| + |z2] + |z3| < k.
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Next we note that from part (a) of the lemma we get that each integer in
the integer interval

[2ik — (k —1),2ik + (k —9)] = [(21 — 1)k + 4, (2i — 1)k — 1] (14)
which is centered at 2ki is represented in the form w = z; + z2 - 2k modulo
4k? + 2k + 1 so that |z1| + |z2| < (k—9) +i=k.

Next we note that from part (b) of the lemma,with the substitution j' = k—j
we get that each integer in the interval

[2k® + k — 2kj' — (k — 5’ — 1),2K% + k — 2k5’ + (k — 5’ — 1)] (15)

which is centered at 2k2 + k — 2kj’ is also represented in the form w =
Ty +z2-2k+1- 2k2+kmodulo4k2+2k+l zy=j-1,23=—k+j and
z3 =1 so that

|z1] + |z2| + 23] S G-+ (k-JF)+1<k.

By considering the union of the intervals of the type (14) and (15) we see
that the only numbers not yet covered by a congruence of the required form
are the k — 1 integers (2¢ + 1)k +¢ with 1 < i < k— 1. They are represented
with z3 = —1 in the following way.

w=2i+Dk+i=(E-1)—(k—1)-2k— (2k* +k) (16)
i.e. with (21,2, 23) = (i —1,—(k — 1), 1) so that also |z1| + |z2| + |z3| =
G-1)+1+1=i+1<k

This completes the proof that each integer w with 1 < w < 2k + k is
represented in the required form

w=En +z2-2k+z3-(2k2+k),

satisfying |z1| + |z2| + |z3] < k, and indeed the representation can be ac-
complished with |z3] < 1. Using lemma 1 we then complete the proof of
proposition 2

5 The form (1,2k + 1,2k?) modulo 4k? + 2k + 1 has
UPM.

Proposition 8 For each positive integer k the following 3—variable linear
form f = z; + (2k + 1)z2 + 2k?z3 has the UPM for the modulus n =
4k + 2k + 1.
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Lemma 7 Each integer z in the interval [-2k? — k, +2k? + k] can be rep-
resented uniquely in the form

z=x+ 23 - (2k + 1) + z3 - 2k 17)
with

|z1|+|z2|+|23|<k and |2z3|<1 (18)
where for 23 = +1 we have z2 < 0 and for z3 = —1 we have z3 > 0.

We first note that there are 2k2 4 2k + 1 pairs of integers (z;, z2) with | 1 |
+ | z2 |< k. Hence there are 2k? — 2k + 1 integers with | z; | + | z2 |[< k1.
There are 2k — 1 integers z; with —k + 1 < z; < k — 1. Thus if we assume
(18) then we obtain a total of

P+ 2% +1+2%2 -2k +14+2k—-1=4k2+2k+1

integers, which is the total number of integers in the following integer inter-
val: [-2k? — k,+2k? + k].

On the other hand, from proposition 2 it follows that each of the 4k%+2k+1
residue classes can be represented by the form 17. Therefore none of the
4k? + 2k + 1 integers occurs more than once with any given residue class,
which means that the representation by these integers is unique. It is obvious
that each class is represented by its minimum, and therefore UPM holds.
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