A characterization of $(\alpha, s + 1)$ -geometries, $1 < \alpha < s + 1$, satisfying the axiom of Pasch

Sara Cauchie

Abstract. In this paper, a characterization of two classes of (q,q+1)-geometries, that are fully embedded in a projective space PG(n,q), is obtained. The first class is the one of the (q,q+1)-geometry $H_q^{n,m}$, having points the points of PG(n,q) that are not contained in an m-dimensional subspace $\Pi[m]$ of PG(n,q), for $0 \le m \le n-3$, and lines the lines of PG(n,q) skew to $\Pi[m]$. The second class is the one of the (q,q+1)-geometry $SH_q^{n,m}$ having the same point set as $H_q^{n,m}$, but with $-1 \le m \le n-3$, and lines the lines skew to $\Pi[m]$ that are not contained in a certain partition of the point set of $SH_q^{n,m}$. Our characterization uses the axiom of Pasch, which is also known as axiom of Veblen-Young. It is a generalization of the characterization for partial geometries satisfying the axiom of Pasch by J. A. Thas and F. De Clerck. A characterization for $H_q^{n,m}$ was already proved by H. Cuypers. His result however does not include $SH_q^{n,m}$.

Keywords: (α, β) -geometries, characterization, projective embedding

AMS subject classification: 51E30, 51A45

1 Introduction

A partial linear space of order (s,t) is a connected incidence structure $\mathcal{S}=(\mathcal{P},\mathcal{L},I)$, with \mathcal{P} a finite non-empty set of elements called points, \mathcal{L} a family of subsets of \mathcal{P} called lines and I a symmetric incidence relation satisfying the following axioms. (i) Any two distinct points are incident with at most one line. (ii) Each line is incident with exactly s+1 points, $s\geq 1$. (iii) Each point is incident with exactly t+1 lines, t>1.

An antiflag of a partial linear space S is a pair (x,L), with x a point of S, L a line of S and such that x is not incident with L. Two points p_1 and p_2 are collinear if there is a line L of S such that p_1 I L I p_2 ; we denote $p_1 \sim p_2$. Two lines L_1 and L_2 are concurrent if there is a point p of S such that L_1 I p I L_2 ; we denote $L_1 \sim L_2$. The incidence number of an antiflag (x,L) of S is the number, denoted by i(x,L), of points collinear with the point $x \in \mathcal{P}$ and incident with the line $L \in \mathcal{L}$.

An (α, β) -geometry is a partial linear space $S = (\mathcal{P}, \mathcal{L}, I)$ of order (s, t), for some s and t, such that for each antiflag (x, L) of S, $i(x, L) = \alpha$ or $i(x, L) = \beta$.

An (α, β) -geometry $\mathcal{S} = (\mathcal{P}, \mathcal{L}, I)$ is fully embedded in a projective space PG(n,q) if \mathcal{P} is a subset of the point set of PG(n,q), \mathcal{L} is a subset of the line set of PG(n,q), I is the incidence inherited from PG(n,q) and s=q. In what follows, we always assume that the points of \mathcal{S} span PG(n,q).

An (α, β) -geometry that satisfies $\alpha = \beta$, is called a partial geometry, and it is denoted by $\operatorname{pg}(s,t,\alpha)$. Partial geometries fully embedded in a projective space $\operatorname{PG}(n,q)$ have been studied by F. De Clerck and J. A. Thas [4]. They have proved that the only partial geometry fully embeddable in $\operatorname{PG}(n,q)$, for which $1 < \alpha < q+1$ and $\alpha < t+1$, is the partial geometry H_q^n , defined as follows. Let H be an (n-2)-dimensional subspace of $\operatorname{PG}(n,q)$. Points of H_q^n are the points of $\operatorname{PG}(n,q) \setminus \operatorname{H}_q$, lines of H_q^n are the lines of $\operatorname{PG}(n,q)$ that have no point in common with H, incidence is the incidence of $\operatorname{PG}(n,q)$ restricted to the points and lines of H_q^n . It is easy to prove that H_q^n is indeed a partial geometry and that it has parameters s=q, $t=q^{n-1}-1$ and $\alpha=q$.

In [1, 2] we have introduced the (q, q + 1)-geometries $H_q^{n,m}$ and $SH_q^{n,m}$. Both of them are fully embeddable in PG(n,q). $H_q^{n,m}$ has points the points of $PG(n,q) \setminus \Pi[m]$, where $\Pi[m]$ is an m-dimensional subspace of PG(n,q), $0 \le m \le n-3$, and lines the lines of PG(n,q) skew to $\Pi[m]$. Note that for m=n-2, this construction gives the partial geometry H_q^n defined in the previous paragraph. For m=-1, it gives the partial geometry of points and lines of the projective space PG(n,q). $SH_q^{n,m}$ has the same point set as $H_q^{n,m}$, but now with $-1 \le m \le n-3$, and its lines are defined as follows. Let $\Sigma = \{\sigma_1, \ldots, \sigma_l\}$ be a partition of the points of $PG(n,q) \setminus \Pi[m]$, where $l = (q^{n-m}-1)/(q^{m'-m}-1)$, such that for $i=1,\ldots,l$, $\sigma_i=\Omega_i[m'] \setminus \Pi[m]$, with $\Omega_i[m']$ an m'-dimensional subspace of PG(n,q) that contains $\Pi[m]$, and with $m+2 \le m' \le n-2$. The lines of S are the lines that intersect q+1 distinct elements of Σ in a point. A necessary and sufficient condition for this partition and the (q,q+1)-geometry to exist is that $(m'-m) \mid (n-m)$.

In this paper a characterization of the (q,q+1)-geometries $H_q^{n,m}$ and $SH_q^{n,m}$ will be obtained. This characterization is an extension of the existing characterization for the partial geometry H_q^n , which we will shortly describe in the next section. In section 3 we will generalize the definitions of section 2 to (α,β) -geometries. In section 4 an important lemma will be proved, while in section 5 some new terminology will be defined. In section 6 a characterization for $H_q^{n,m}$ obtained in 1995 by H. Cuypers [3] is recalled. In section 7 our characterization theorem is stated and proved.

2 A characterization of the partial geometry H_a^n

In [5], J. A. Thas and F. De Clerck characterized the partial geometry H_q^n . Before stating their characterization theorem, we will explain the terminology that is used.

An (α, β) -geometry $S = (\mathcal{P}, \mathcal{L}, I)$ satisfies the axiom of Pasch (also called axiom of Veblen or axiom of Veblen-Young) if $\forall L_1, L_2, M_1, M_2 \in \mathcal{L}, L_1 \neq L_2, L_1 \ I \ x \ I \ L_2, \ x \notin M_1, \ x \notin M_2, \ L_i \sim M_j \ \text{for all } i, j \in \{1, 2\} \Rightarrow M_1 \sim M_2.$ Note that for $\alpha = \beta = 1$ and for $\alpha = \beta = t + 1$, the axiom of Pasch is trivially satisfied.

Let $S=(\mathcal{P},\mathcal{L},I)$ be a partial geometry, for which $\alpha\notin\{1,s+1,t+1\}$, that satisfies the axiom of Pasch. Let L and $M,L\neq M$, be two concurrent lines of S with intersection point x. Then the substructure $S(L,M)=(\mathcal{P}^*,\mathcal{L}^*,I^*)$ of S is defined as follows: \mathcal{L}^* is the set of the $s(\alpha-1)$ lines N, such that $x\notin N$ and $L\sim N\sim M$, together with the set of the α lines through x that are concurrent with at least one of these $s(\alpha-1)$ lines; \mathcal{P}^* is the set of points of S that lie on the lines of L^* and $L^*=L^*=(\mathcal{P}^*,\mathcal{L}^*,\mathcal{L}^*)\cup(\mathcal{L}^*\times\mathcal{P}^*)$. As S satisfies the axiom of Pasch, $S(L,M)=(\mathcal{P}^*,\mathcal{L}^*,\mathcal{L}^*)$ is a $pg(s,\alpha-1,\alpha)$. Note that for $N_1,N_2\in\mathcal{L}^*$, $N_1\neq N_2$, the substructures $S(N_1,N_2)$ and S(L,M) coincide. Moreover for each antiflag (x,N) of S, there is exactly one substructure S(L,M) that contains both x and N. This substructure we will denote by S(x,N).

Let x and y be two non-collinear points of S. There are $(t+1)/\alpha$ subgeometries S(L,M) of S that contain both x and y. We denote these subgeometries by $S_i^* = (\mathcal{P}_i^*, \mathcal{L}_i^*, I_i^*)$, $i = 1, \ldots, (t+1)/\alpha$. The line of the second type $\langle x,y \rangle$ is defined to be the set $\mathcal{P}_1^* \cap \ldots \cap \mathcal{P}_{(t+1)/\alpha}^*$. It follows immediately that no two distinct points of the line $\langle x,y \rangle$ are collinear in S (for more explanation see [5]), and that for $z_1, z_2 \in \langle x,y \rangle$, $z_1 \neq z_2$, the lines $\langle z_1, z_2 \rangle$ and $\langle x,y \rangle$ coincide. As $\langle x,y \rangle$ is a set of two by two non-collinear points of the partial geometry S_i^* , $i \in \{1,\ldots,(t+1)/\alpha\}$, it follows that $|\langle x,y \rangle| \leq s+1-s/\alpha$. If $|\langle x,y \rangle| = s+1-s/\alpha$ for all $x,y \in \mathcal{P}$, x not collinear with y, then the partial geometry S is called regular.

Theorem 2.1 ([5]) The partial geometry $S = pg(s, t, \alpha)$, $\alpha \notin \{1, s + 1, t + 1\}$, is isomorphic to an H_n^n if and only if

- 1. S satisfies the axiom of Pasch;
- 2. S is regular;
- 3. $2s > s^4 \alpha s^3 + \alpha^2 s^2 + \alpha^3 s 2\alpha^4$

Remark. The third assumption of the theorem is derived from a necessary condition for a graph to be the point graph of a partial geometry. This necessary condition is commonly known as the *Bose condition for a graph*. Note that the

third assumption of theorem 2.1 turns out to be a very strong condition, as for $\alpha \neq s$, this condition is almost never satisfied.

3 (α, β) -geometries that satisfy the axiom of Pasch

In this section we will generalize the concepts defined in section 2 for partial geometries to similar concepts for (α, β) -geometries. The terminology given in this section will be the one used in the rest of this paper.

Let $S = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ be a proper (α, β) -geometry of order (s, t), satisfying the axiom of Pasch, with $1 < \alpha < \beta < t+1$. Let L and M be two distinct concurrent lines of S, with $L \cap M = \{x\}$. A substructure S(L, M) of S can be defined in the same way as is done for a partial geometry in section 2. However, as S is an (α, β) -geometry, for each antiflag (p, L_p) of S(L, M), we have $i(p, L_p) = \alpha$ or $i(p, L_p) = \beta$. Hence it is possible that S(L, M) contains a point z_1 through which there are α lines of S(L, M) and a point z_2 through which there are β lines of S(L, M). In this case S(L, M) is clearly not an (α, β) -geometry, as by definition the number of lines through a point in an (α, β) -geometry has to be a constant. If the number of lines of S(L, M) through a point of S(L, M) is a constant, then S(L, M) is a $pg(s, \alpha - 1, \alpha)$ or a $pg(s, \beta - 1, \beta)$. This is easy to prove, as S satisfies the axiom of Pasch. A substructure S(L, M) that is a $pg(s, \alpha - 1, \alpha)$ we call an α -substructure. A substructure S(L, M) that is a $pg(s, \beta - 1, \beta)$ we call a β -substructure. A substructure S(L, M) that is not a partial geometry, we call a mixed substructure. In what follows, we will denote a substructure S(L, M)sometimes as π , ρ or σ .

The number of substructures through two distinct non-collinear points of S is not necessarily a constant, as the number of lines through a point in a substructure is not a constant. This number is however a constant if $\beta = s + 1$. Indeed, assume that $\beta = s + 1$ and let x and y be distinct non-collinear points of S. Let L be any line of S through x. As $x \neq y$, exactly α points of L are collinear with y. Hence there are exactly $(t+1)/\alpha$ substructures S(L,M) that contain both x and y. As x and y were arbitrarily chosen distinct non-collinear points of S, it follows that the number of substructures through any two distinct non-collinear points of S is a constant and equal to $(t+1)/\alpha$.

We define a line of the second type $\langle x,y\rangle$ through two distinct non-collinear points x and y of S as the intersection of all substructures S(L,M) containing both x and y. Note that there are at least two distinct substructures through x and y, as by assumption $t+1>\alpha$. From the definition, it follows that each two distinct points of the line $\langle x,y\rangle$ are non-collinear in S. Note that the notation $\langle x,y\rangle$ is also used for a line of S through x and y, the context makes clear whether it is a line of S or a line of the second type.

An $(\alpha, s+1)$ -geometry S of order (s, t), with $1 < \alpha < s+1 < t+1$, that satisfies the axiom of Pasch, is called regular with respect to non-collinear

points if and only if each line of the second type and each line of S that are both contained in a substructure S(L,M), intersect in at least one point. Note that this implies that they intersect in exactly one point, as a line of the second type cannot contain two distinct collinear points of S.

4 An important lemma

We will prove that for a proper $(\alpha, s+1)$ -geometry S of order (s,t), $1<\alpha< s+1< t+1$, that satisfies the axiom of Pasch, that is regular with respect to non-collinear points, and such that there is at least one α -substructure, it follows that $\alpha=s$.

First we make the following observation. Let $\mathcal S$ be an $(\alpha,s+1)$ -geometry that satisfies the axiom of Pasch and such that $\mathcal S$ is regular with respect to non-collinear points. Assume that $\mathcal S$ contains an α -substructure S(L,M). The points and lines of S(L,M) form a $\operatorname{pg}(s,\alpha-1,\alpha)$. As $\alpha< s+1$, S(L,M) contains two non-collinear points x and y. As $\mathcal S$ is regular with respect to non-collinear points, each line of S(L,M) contains exactly one point of $\langle x,y\rangle$. So $|\langle x,y\rangle|=s+1-s/\alpha$, and hence $\alpha|s$.

Lemma 4.1 Let S be a proper $(\alpha, s+1)$ -geometry of order (s,t), $1 < \alpha < s+1 < t+1$, that satisfies the axiom of Pasch, that is regular with respect to non-collinear points and such that there is at least one α -substructure. Then $\alpha = s$.

Proof. Assume first that there is no mixed substructure S(L, M). Then both an α -substructure and an (s + 1)-substructure exist. Note that in an (s + 1)-substructure, any two distinct points of S are collinear in S.

Let x and y be two non-collinear points of \mathcal{S} . Each substructure through $\langle x,y\rangle$ is an α -substructure. As $\alpha < t+1$, there are at least two distinct substructures π_1 and π_2 through $\langle x,y\rangle$. Let p be a point of \mathcal{S} in $\pi_1,p\notin \langle x,y\rangle$. Let N be a line of \mathcal{S} contained in π_2 . There are α or s+1 lines through p intersecting N in a point. As $\alpha>1$, there exists a line L_1 of \mathcal{S} through p intersecting N in a point, such that $L_1\not\subset\pi_1$. Let L_2 be a line of \mathcal{S} contained in π_1 and not incident with p. The line L_2 intersects $\langle x,y\rangle$ (and hence also π_2) in a point. Let $x_1=p,x_2,\ldots,x_{s+1}$ be the points of L_1 . Define \mathcal{P}' as the set of points contained in the s+1 substructures $S(x_i,L_2)$, for $i=1,\ldots,s+1$. As $\pi_1=S(p,L_2)$, all points of π_1 belong to \mathcal{P}' . In particular the points of $\langle x,y\rangle$ belong to \mathcal{P}' .

We will prove that each line of S that contains at least two points of \mathcal{P}' , contains s+1 points of \mathcal{P}' . Let z and z' be points of \mathcal{P}' , $z\neq z'$. Suppose that $z\sim z'$. We denote the line of S containing z and z' by M. We need to show that all points of M are points of \mathcal{P}' . If z I L_2 , if $M=L_1$, or if $z'\in S(z,L_2)$, then the result follows immediately. So we may suppose that $z'\notin S(z,L_2)$, $M\neq L_1$ and that z I L_2 . We distinguish two cases.

Case 1: $L_1 \sim M$. Let w be the point of L_1 that is contained in the substructure $S(z', L_2)$. Let $z'' \in M$, $z \neq z'' \neq z'$. We have to prove that $z'' \in \mathcal{P}'$. If $z'' \in L_1$, then clearly $z'' \in \mathcal{P}'$. So suppose that $z'' \not L_1$. As $w, z' \in S(z', L_2)$, the line $\langle w, z' \rangle$ (which can be either a line of S or a line of the second type) has a point u in common with L_2 . The line $\langle u, z'' \rangle$ (which can be either a line of S or a line of the second type) has a point w' in common with L_1 , as both $\langle u, z'' \rangle$ and L_1 belong to the substructure $S(L_1, M)$. All the points of this line $\langle u, z'' \rangle = \langle u, w' \rangle$ are elements of $S(w', L_2)$. Hence z'' is a point of $S(w', L_2)$, $w' \in L_1$, and so $z'' \in \mathcal{P}'$.

Case 2: $L_1 \not\sim M$. Let M' be a line that does not belong to π_1 , such that $z ext{ I } M'$, $L_1 \sim M'$ and M' skew to L_2 . Note that M' exists, as there are at least $\alpha > 1$ lines through z intersecting L_1 and at most one of these lines contains a point of L_2 . From case 1 it follows that the s+1 points of M' are contained in \mathcal{P}' . Moreover, the s+1 substructures $S(x_i, L_2)$, for $x_i ext{ I } L_1$ $(i=1,\ldots,s+1)$, coincide with the s+1 substructures $S(x_i', L_2)$, for $x_i' ext{ I } M'$ $(i=1,\ldots,s+1)$. By construction M and M' intersect. Applying again case 1 gives us that each point of the line M is contained in one of the substructures $S(x_i', L_2)$, for $x_i' ext{ I } M'$ $(i=1,\ldots,s+1)$. Hence each point of M is contained in \mathcal{P}' .

So we have proved that if a line contains two points of \mathcal{P}' , then each point of this line belongs to \mathcal{P}' . Define \mathcal{L}' as the set of lines of \mathcal{S} containing at least two distinct points of \mathcal{P}' . Let $\mathcal{S}' = (\mathcal{P}', \mathcal{L}', I')$, with I' the restriction of I to $(\mathcal{P}' \times \mathcal{L}') \cup (\mathcal{L}' \times \mathcal{P}')$. Now we distinguish two cases.

Assume that there is an (s+1)-substructure ρ through L_1 in S'. Let u be a point of ρ not incident with L_1 . The point u is contained in S', hence $u \in S(x', L_2)$ for a point x' I L_1 . As u and x' belong to ρ , the line $\langle x', u \rangle$ is a line of S contained in $S(x', L_2)$. Every two lines of S in a substructure of S intersect, hence $\langle x', u \rangle$ intersects L_2 in a point v. So ρ contains the point v of L_2 . As $L_2 \subset \pi_1, v \in \pi_1$. Moreover ρ contains the point v that is the intersection point of L_1 and $L_2 \subset \pi_1$, $L_2 \subset \pi_2$ intersects $L_2 \subset \pi_2$ in the line $L_2 \subset \pi_2$ in a point $L_2 \subset \pi_2$ intersects the line $L_2 \subset \pi_2$ in a point $L_2 \subset \pi_2$ in the line $L_2 \subset \pi_2$ in the line $L_2 \subset \pi_2$ in a point $L_2 \subset \pi_2$ in the line $L_2 \subset \pi_2$ in the line $L_2 \subset \pi_2$ in a point $L_2 \subset \pi_2$ in the line $L_2 \subset \pi_2$ in the line $L_2 \subset \pi_2$ in a point $L_2 \subset \pi_2$ in the line $L_2 \subset \pi_2$ in the line $L_2 \subset \pi_2$ in a point $L_2 \subset \pi_2$ in the line $L_2 \subset \pi$

Now we count the lines of S through w in S' in another way. Let N_w be a line of S through w in π_1 , $N_w \neq \langle p, v \rangle$. In each substructure through N_w in S' there are α or s+1 lines of S through w. From the previous paragraph, we know that ρ intersects π_1 in the line $\langle p, v \rangle$. As $w \in \langle p, v \rangle$, the line N_w intersects ρ in the point w. The s+1 lines L_i^w ($i=1,\ldots,s+1$) through w in ρ give s+1 substructures $S(N_w, L_i^v)$ through N_w in S'. Counting the lines of S through w

in these substructures, we get that there are $cs+(s+1-c)(\alpha-1)+1$ lines of S through w in S', for $c\in\mathbb{N}$, $0\leq c\leq s+1$. It follows that $(s+1)\alpha=cs+(s+1-c)(\alpha-1)+1$, or $c=s/(s+1-\alpha)$. So $(s+1-\alpha)|s$, and as $\alpha\neq 1$, it follows that $s/2+1\leq \alpha$. We noted in the beginning of this section that $\alpha|s$. Hence $\alpha=s$.

Assume next that there is no (s+1)-substructure through L_1 in S'. Then either S' contains an (s+1)-substructure not through L_1 , or S' contains no (s+1)-substructure.

Assume that there is an (s+1)-substructure contained in S'. This (s+1)-substructure in S' cannot contain the line (x,y). So it contains a line N of S that is skew to (x,y). The line N is not contained in π_1 . If N is contained in one of the substructures $S(x_i,L_2)$, with x_i I L_1 $(i\in\{1,\ldots,s+1\})$, then clearly N intersects L_2 and hence also π_1 in a point. If N is not contained in any of the substructures $S(x_i,L_2)$, x_i I L_1 $(i\in\{1,\ldots s+1\})$, then it contains at most one point of each such substructure $S(x_i,L_2)$. Hence each point of N is contained in a distinct substructure $S(x_i,L_2)$, for x_i I L_1 $(i=1,\ldots,s+1)$. As $\pi_1=S(p,L_2)$, with p a point of the line L_1 , it follows that also in this case N intersects π_1 in a point. Let N' be a line of S in π_1 , such that N' is skew to N. The s+1 substructures $S(x_i,L_2)$, for x_i I L_1 $(i=1,\ldots,s+1)$, coincide with the s+1 substructures $S(x_i',N')$, for x_i' I N $(i=1,\ldots,s+1)$. So, replacing L_1 by N and L_2 by N' in the previous part of the proof, we get that $\alpha=s$.

Assume now that there is no (s + 1)-substructure contained in S'. As S is a proper $(\alpha, s+1)$ -geometry and there are no mixed substructures, S contains an (s+1)-substructure ρ' . Let $L_{w'}$ be a line of S through x intersecting ρ' in a point w'. The substructure $S(L_{w'},y)$ contains the line $\langle x,y \rangle$ of the second type, hence it is an lpha-substructure. In $S(L_{w'},y)$ there are s+1-lpha lines of the second type through w'. Let $\langle w', u' \rangle$ be such a line of the second type through w'. Let M_1 and M_2 be two lines of S through w' in ρ' . Then $S(u', M_1)$ and $S(u', M_2)$ are both α -substructures intersecting ρ' in the lines M_1 and M_2 of S. Let p' be a point of $S(u', M_2)$, $p' \notin \langle u', w' \rangle$. Let $L_{p'}$ be a line of S through p' intersecting M_1 in a point different from w'. Let M_3 be a line of S in $S(u', M_2)$, $p' \notin M_3$. Let \mathcal{P}^* be the set of all the points of \mathcal{S} contained in the substructures $S(x_i, M_3)$, for $x_i \in L_{p'}$ (i = 1, ..., s+1). Let \mathcal{L}^* be the set of all lines intersecting \mathcal{P}^* in at least two points. As before, it follows that all points of S on the lines that are element of \mathcal{L}^* , are elements of \mathcal{P}^* . Let I* be the restriction of I to $(\mathcal{P}^* \times \mathcal{L}^*) \cup (\mathcal{L}^* \times \mathcal{P}^*)$. Then, replacing $S' = (\mathcal{P}', \mathcal{L}', I')$ by $S^* = (\mathcal{P}^*, \mathcal{L}^*, I^*)$, the result follows in the same way as in the above.

We conclude that if there is no mixed substructure, then $\alpha = s$. Now assume that there is a mixed substructure σ in S. Let p be a point of σ through which there are α lines of S in σ . As $\alpha < s+1$, there is a line $\langle p,p'\rangle$ of the second type through p in σ .

Let u be a point of σ through which there are s+1 lines of S. As S is regular with respect to non-collinear points, there cannot be a line of the second type

through u in σ . In particular $u \notin \langle p, p' \rangle$, and hence $\langle p, p' \rangle$ contains exactly one point of each of the s+1 lines through u in σ . It follows that $|\langle p, p' \rangle| = s+1$.

Counting the lines of S in σ that intersect $\langle p,p'\rangle$, we get that there are $\alpha(s+1)$ such lines. These lines are all the lines of S in σ , because of regularity with respect to non-collinear points. Counting the lines of S in σ intersecting a line of S in σ in a point, it follows that there are $c(\alpha-1)+(s+1-c)s+1$ such lines, for a $c\in \mathbb{N}$, $0\leq c\leq s+1$. As S satisfies the Pasch axiom, these are all the lines of S in σ . Hence $\alpha(s+1)=c(\alpha-1)+(s+1-c)s+1$, and hence $c=s+1-s/(s+1-\alpha)$. It follows that $(s+1-\alpha)|s$. So $s+1-\alpha=s$ or $s+1-\alpha\leq s/2$. If $s+1-\alpha=s$, then $\alpha=1$, a contradiction with the assumption. So $s+1-\alpha\leq s/2$, and hence $s/2+1\leq \alpha$.

We noted in the above that $\alpha|s$. From $s/2+1 \le \alpha$, it now follows that $\alpha=s$.

5 The different types of substructures

Let S be a proper $(\alpha, s+1)$ -geometry of order (s,t), $1<\alpha< s+1< t+1$, that satisfies the axiom of Pasch, that is regular with respect to non-collinear points and such that there is at least one α -substructure. From lemma 4.1 it follows that $\alpha=s$. We will now count the number of points and lines of S in an (s+1)-substructure, an s-substructure and a mixed substructure, assuming that such substructures exist.

By definition, the points and lines of S in an (s+1)-substructure form a partial geometry pg(s, s, s+1). Therefore we will use from now on the term *projective* plane instead of (s+1)-substructure. In a projective plane there are $s^2 + s + 1$ points of S and $s^2 + s + 1$ lines of S, and every two points are collinear.

The points and lines of S in an s-substructure are the points and lines of a partial geometry pg(s, s-1, s). Hence we will use the term *dual affine plane* instead of s-substructure. In a dual affine plane π , there are $s^2 + s$ points of S and s^2 lines of S. Through each point p of S in π there is exactly one line of the second type. From the regularity with respect to non-collinear points, it follows that a line of the second type in π contains s points of S.

A mixed substructure contains exactly one line of the second type. Indeed, let σ be a mixed substructure and let y be a point of $\mathcal S$ in σ through which there are s lines of $\mathcal S$ in σ . Then σ contains a line $\langle y,z\rangle$ of the second type through y. Let p be a point of σ through which there are s+1 lines of $\mathcal S$. As $\mathcal S$ is regular with respect to non-collinear points, $\langle y,z\rangle$ has exactly one point in common with each of the s+1 lines of $\mathcal S$ through p in σ . Hence $|\langle y,z\rangle|=s+1$.

Let L be a line of S in σ . Counting the lines of S in σ that intersect L, we get that there are $1+cs+(s+1-c)(s-1)=s^2+c$ such lines, where c is the number of points of L through which there are s+1 lines of S in σ . Now we count the number of lines of S in σ in another way. Through each point of $\langle y,z\rangle$ there are s

lines of S in σ . Each line of S in σ intersects $\langle y,z\rangle$, so there are (s+1)s lines of S in σ . It follows that c=s or thus L contains exactly one point through which there are s lines of S in σ . As S is regular with respect to non-collinear points, this proves that σ contains exactly one line of the second type. Hence σ contains s^2+s+1 points of S and s^2+s lines of S. From now on we will speak of a punctured affine plane instead of a mixed substructure.

6 The characterization of $H_q^{n,m}$ by H. Cuypers

In [3] H. Cuypers characterized the (q, q + 1)-geometry $\mathbf{H}_q^{n,m}$. His characterization theorem is in a certain sense more general than ours, but in another sense it is more restrictive. We will explain this more in detail, after a short description of his result.

A delta space \mathcal{D} is a partial linear space (that has not necessarily an order), that satisfies the following axiom: for each antiflag (p, L) of \mathcal{D} , p is collinear with no, all but one or all points of L. To exclude some degenerate cases, it is assumed that each line has at least three points.

A subset X of the pointset of a delta space $\mathcal D$ is called a *subspace* if each line that contains two points of X, is completely contained in X. A subspace together with all the lines intersecting it in at least two points is again a partial linear space. Subspaces are usually identified with these partial linear spaces. The intersection of a set of subspaces is again a subspace. For a subset X of the point set of a delta space $\mathcal D$, we define $\langle X \rangle$ as the intersection of all the subspaces of $\mathcal D$ containing X, and call it the subspace of $\mathcal D$ generated by X. A plane is a subspace generated by two intersecting lines.

If a delta space is embeddable in a projective space, then it satisfies the axiom of Pasch and its planes can be embedded in a projective plane. It follows easily from the previous section that a delta space embedded in a projective plane is isomorphic to a projective plane, a dual affine plane or a projective plane from which a line is removed.

Theorem 6.1 ([3]) Let S be a connected partial linear space (which has not necessarily an order). Suppose that all planes of S are projective or dual affine and that S contains at least two planes one of them isomorphic to a projective plane. Then S is isomorphic to $H_n^{n,m}$.

This theorem is stronger than our characterization theorem in the sense that the partial linear space $\mathcal S$ is not assumed to have an order. By connectedness it follows immediately that the number of points on a line is a constant and equal to q+1, where q is the order of the projective plane (which exists by assumption). The number of lines through a point is however not assumed to be constant. In our theorem, we start from an $(\alpha, s+1)$ -geometry, which by definition has an order (s,t).

Moreover a priori it is possible in theorem 6.1 that for some antiflag (p, L), i(p, L) = 0. For an $(\alpha, s + 1)$ -geometry this cannot occur.

On the other hand, in theorem 6.1 the existence of mixed substructures is excluded, and for this reason the (q, q+1)-geometry $\mathrm{SH}_q^{n,m}$ is not characterized by theorem 6.1. Also, our theorem is for $(\alpha, s+1)$ -geometries, we do not assume from the start that $\alpha = s$.

Our characterization theorem can therefore be seen as a certain extension to theorem 6.1, although in some sense theorem 6.1 is more general than ours.

7 A characterization of $H_q^{n,m}$ and $SH_q^{n,m}$

In this section we prove our main characterization theorem.

Theorem 7.1 Let S be a proper $(\alpha, s+1)$ -geometry of order (s,t), $1 < \alpha < s+1 < t+1$, that satisfies the axiom of Pasch, that is regular with respect to non-collinear points, and such that there is at least one α -subgeometry. Then S is isomorphic to $H_q^{n,m}$ or $SH_q^{n,m}$.

Proof. From lemma 4.1 it follows that $\alpha = s$.

Step 1. Let $\langle x, y \rangle$ and $\langle x, z \rangle$ be two distinct lines of the second type. We will construct a projective plane, an affine plane or a dual affine plane through the lines $\langle x, y \rangle$ and $\langle x, z \rangle$, such that the points in this plane are two by two non-collinear in S.

Note that $y \not\sim z$ in S. Indeed, if $y \sim z$ then on the line $\langle y, z \rangle$ of S there are at most s-1 points collinear with x. This is a contradiction as S is an (s, s+1)-geometry. In other words, non-collinearity is transitive.

Let L_x be a line of S through x. The plane $\langle L_x, y \rangle$ is a dual affine plane or a punctured affine plane. As $\langle x, y \rangle$ is contained in $\langle L_x, y \rangle$, it follows that $|\langle x, y \rangle| = s$ or s + 1. In the same way it follows that $|\langle x, z \rangle| = s$ or s + 1. We consider each possibility separately.

The case
$$|\langle x,y\rangle|=s$$
 and $|\langle x,z\rangle|=s$

Let L be a line of S through x. Then S(y,L) and S(z,L) are dual affine planes. As a dual affine plane contains exactly one line of the second type through x, S(y, L) and S(z, L) are distinct. Let M be a line of S through y in S(y, L). Let N be a line of S through z intersecting M in a point, such that $N \not\subset S(z, L)$. Let P' be the set of points of the substructures $S(z_i, L)$, for $z_i \in N$ (i = 1, ..., s+1). As in lemma 4.1 it follows that each line that contains at least two elements of P', contains s+1 elements of P'. Let L' be the set of lines of S intersecting P' in at least two points. Let S' = (P', L', I'), with I' the restriction of I to $(P' \times L') \cup (L' \times P')$.

We will prove that all substructures $S(L, z_i)$, for $z_i \in N$ (i = 1, ..., s + 1), are dual affine planes. To do so, we first prove that each contain a line of the second type.

By construction y and z belong to S', and $S(y,L) \neq S(z,L)$. This implies that no two points of the line $\langle y,z\rangle$ belong to the same substructure $S(z_j,L)$, for $z_i \in N$.

Let w be a point of the line $\langle y,z\rangle$ of the second type. If $w\sim x$, then $i(y,\langle w,x\rangle)\leq s-1$, a contradiction as $\mathcal S$ is an (s,s+1)-geometry. Hence w is not collinear with x in $\mathcal S$. As w was arbitrarily chosen, no point of $\langle y,z\rangle$ is collinear with x in $\mathcal S$.

If $|\langle y, z \rangle| = s + 1$, then each of the substructures $S(L, z_i)$, for $z_i \in N$ (i = 1, ..., s + 1), contains a line of the second type through x and a point of the line $\langle y, z \rangle$.

Assume now that $|\langle y,z\rangle|=s$. Each of the s substructures $S(L,z_i),\,z_i\in N$, that contains a point of $\langle y,z\rangle$, contains a line of the second type through x. Let $S(L,z_k)$ be the remaining substructure through L and a point z_k of N. Denote the intersection point of M and L by u. Then $y,z,u\in S(M,N)$. Clearly $u\notin \langle y,z\rangle$, as $u\sim y$ and $\langle y,z\rangle$ is a line of the second type. Moreover S(M,N) is a dual affine plane, as by assumption $|\langle y,z\rangle|=s$. As S is regular with respect to noncollinear points, each of the lines of S through u in S(M,N) intersects the line $\langle y,z\rangle$. Hence $S(L,z_k)$ intersects S(M,N) in the unique line of the second type through u in S(M,N).

We conclude that each substructure $S(L, z_i)$, for $z_i \in N$ (i = 1, ..., s + 1), contains a line of the second type, where s of these lines are incident with x and one of them is incident with x or u.

Assume first that $s \neq 2$. We will prove that each substructure $S(L,z_i)$, for $z_i \in N$ $(i=1,\ldots,s+1)$, contains at least two lines of the second type. Let $x' \in L$, $x \neq x' \neq u$. In the dual affine planes S(y,L) and S(z,L), there is a line of the second type through x'. We denote these lines by $\langle x',y'\rangle$ and $\langle x',z'\rangle$ respectively. As non-collinearity is transitive, the line $\langle y',z'\rangle$ is also a line of the second type. Let M' be a line of S through y' in S(y,L) such that $u,x\notin M'$. Let N' be a line through z' intersecting M' in a point, such that N' is skew to L. Then in the same way as we did above (replace x,M,N,y,z by $x',M',N',y',z'\rangle$, it follows that either all $S(z_i,L)$, for $z_i\in N$ $(i=1,\ldots,s+1)$, contain a line of the second type through x' and the remaining one contains a line of the second type through x' and the remaining one contains a line of the second type through x' where $\{u'\} = L \cap M'$. From the construction it follows that $u' \in \{x, x', u\}$. In either case, all $S(z_i, L)$, for $z_i \in N$ $(i=1,\ldots,s+1)$, contain at least two distinct lines of the second type and hence it are all dual affine planes.

Assume next that s=2. By assumption S(y,L) and S(z,L) are dual affine planes. Let S(p,L), for $p \in N$, be the remaining substructure through L in S'.

Assume that there are three lines L, L' and L'' of S through x in S(p, L). Then S(y, L), S(y, L') and S(y, L'') contain the line $\langle x, y \rangle$ of the second type, and

hence it are dual affine planes. A dual affine plane contains $s^2 + s = 6$ points, so we get that $|\mathcal{P}'| = 14$. However S(y, L) and S(z, L) contain together 9 different points of \mathcal{P}' . So S(p, L) has to contain 8 points of \mathcal{S} . This is a contradiction, as a substructure S(L, M) contains at most $s^2 + s + 1 = 7$ points of \mathcal{S} . So S(p, L) contains a line of the second type through x.

Let x' be a point of L, $x' \neq x$. In the same way as above we prove that there is a line of the second type through x' in S(p, L). Hence S(p, L) contains at least two lines of the second type. This proves that S(p, L) is a dual affine plane. So each substructure $S(L, z_i)$, for $z_i \in N$ (i = 1, 2, 3), is a dual affine plane.

Now we will prove that all the substructures contained in \mathcal{S}' are dual affine planes.

Assume first that there would be a projective plane ρ contained in S'. From the above, it follows that ρ does not contain the line L. By definition of S', each point of ρ is contained in one of the substructures $S(L,z_i)$, for $z_i \in N$ $(i=1,\ldots,s+1)$. Clearly ρ contains at least two points of a $S(L,z_j)$, for $z_j \in N$, as the s^2+s+1 points of S in ρ are contained in the s+1 substructures $S(L,z_i)$, for $z_i \in N$ $(i=1,\ldots,s+1)$. The line through these two points intersects L in a point r. So $\rho \cap L = \{r\}$ and ρ intersects each $S(L,z_i)$, for $z_i \in N$ $(i=1,\ldots,s+1)$ in a line of S.

Let w be a point of L, $w \neq r$. Each substructure $S(L, z_i)$, for $z_i \in N$ (i = 1, ..., s+1), is a dual affine plane, and hence it contains s lines of S' through w. Counting the lines of S' through w, we get that there are $(s+1)(s-1)+1=s^2$ such lines.

A line through w and a point of ρ contains two points of \mathcal{S}' , hence it is a line of \mathcal{S}' . Conversely each line L_w of \mathcal{S}' through w intersects ρ . Indeed, L_w is contained in a substructure $S(L,z_j)$, for $z_j \in N$. We proved above that ρ intersects $S(L,z_j)$ in a line of \mathcal{S} , and that in $S(L,z_j)$ each two lines of \mathcal{S} intersect. It follows that the s^2 lines of \mathcal{S} through w in \mathcal{S}' intersect ρ in a point.

The projective plane ρ contains s^2+s+1 lines of S. Assume that c of these lines contain s points collinear with w. Counting the flags (p,L_p) , for $p\in\rho$ a point of S collinear with w and L_p a line of S in ρ , we get that $cs+(s^2+s+1-c)(s+1)=(s+1)s^2$, or thus $c=s^2+2s+1$. This is a contradiction, as by definition $c\leq s^2+s+1$. This proves that there is no projective plane contained in S'.

Assume next that there is a punctured affine plane σ contained in S'. Then σ contains exactly one line $\langle w_1, w_2 \rangle$ of the second type, with $|\langle w_1, w_2 \rangle| = s+1$. From the above we know that L is not contained in σ . As in the case of a projective plane, one proves that σ contains a point r' of L. Let u be a point of L, $u \neq r'$. Through u there are s^2 lines of S contained in S', being the s lines through u in each dual affine plane $S(L, z_i)$, for $z_i \in N$ $(i = 1, \ldots, s+1)$. Clearly there are s+1 lines through r' in σ , as $\langle w_1, w_2 \rangle$ cannot be contained in a dual affine plane. Each of these lines is contained in a different $S(L, z_i)$, for $z_i \in N$ $(i = 1, \ldots, s+1)$. Now all lines through u in S' are contained in the $S(L, z_i)$, for

 $z_i \in N \ (i = 1, ..., s + 1)$, and so they intersect a line of σ through r' in a point. Hence all lines through u intersect σ .

There are $s^2 + s$ lines of S in σ . Let c be the number of lines of σ on which there are s points collinear with u. Let a be the number of points of σ , collinear with u, through which there are s lines of S in σ . Counting the flags (p, L_p) , for $p \in \sigma$ a point of S collinear with u and L_p a line of S in σ , we get that $cs + (s^2 + s - c)(s + 1) = as + (s^2 - a)(s + 1)$, or thus $c = s^2 + s + a$. By definition $c \le s^2 + s$, and hence a = 0. This implies that no point of the line $\langle w_1, w_2 \rangle$ of the second type is collinear with u.

Let u' be a point of L, $r' \neq u' \neq u$. In the same way as above we get that no point of $\langle w_1, w_2 \rangle$ is collinear with u'. As $\langle w_1, w_2 \rangle$ is contained in S', it follows that $w_1 \in \mathcal{P}'$. So $w_1 \in S(L, z_k)$, for a $z_k \in N$. Hence the dual affine plane $S(L, z_k)$ contains two lines of the second type through w_1 , namely $\langle w_1, u \rangle$ and $\langle w_1, u' \rangle$. This is a contradiction. Hence there cannot be a punctured affine plane contained in S'.

We conclude that each substructure contained in S' is a dual affine plane. There are s+1 dual affine planes through L in S'. In each of them there is one line of the second type through x containing s points, so in total there are $(s+1)(s-1) = s^2 - 1$ points of S' that are not collinear with x. Now let \mathcal{P}^* be the set of these s^2-1 points of \mathcal{S}' , together with x. As non-collinearity is transitive, every two elements of \mathcal{P}^* are non-collinear in S. As S' contains only dual affine planes, each line (of the second type) containing two elements of \mathcal{P}^* , contains s elements of \mathcal{P}^* . Let \mathcal{L}^* be the set of lines of the second type containing at least two elements of \mathcal{P}^* . Let I^* be the natural incidence relation. Then $S^* = (\mathcal{P}^*, \mathcal{L}^*, I^*)$ is a $2 - (s^2, s, 1)$ design, i.e. an affine plane of order s. As an affine plane is generated by any of its triangles, S^* is independent of the choice of S'.

The case $|\langle x,y\rangle|=s+1$ and $|\langle x,z\rangle|=s+1$ Let L be a line of S through x. Then S(y,L) and S(z,L) are punctured affine planes. Let M be a line of S through y in S(L, y), with $M \cap L = \{u\}$. Let N be a line of S through z intersecting M in $y', y' \neq u$. Let S' = (P', L', I')be the incidence structure defined as follows: \mathcal{P}' is the set of points of \mathcal{S} in the substructures $S(L, z_i)$, for $z_i \in N$ (i = 1, ..., s + 1), \mathcal{L}' is the set of lines of \mathcal{S} containing at least two elements of \mathcal{P}' , and I' is the restriction of I to $(\mathcal{P}' \times \mathcal{L}') \cup$ $(\mathcal{L}' \times \mathcal{P}').$

Each point of the line (y, z) is contained in a distinct substructure $S(L, z_i)$, for a $z_i \in N$ $(i \in \{1, ..., s+1\})$. Because of the transitivity of non-collinearity, each point of the line (y, z) is not collinear with x. Hence at least s substructures $S(L,z_i)$, for $z_i \in N$ $(i=1,\ldots,s+1)$, contain a line of the second type through

If at least two substructures $S(L, z_i)$ and $S(L, z_k)$, for $z_i, z_k \in N$, $z_i \neq z_k$, are dual affine planes, then from the previous case it follows that each substructure in S' is a dual affine plane. This is a contradiction, as S(L,z) is a punctured affine plane.

Hence at most one of the $S(z_i, L)$, for $z_i \in N$ (i = 1, ..., s + 1), is a dual affine plane, at least s - 1 of these substructures are punctured affine planes, and at most one of these substructures is a projective plane. We deal with each of the possibilities separately.

Assume that exactly one of the substructures $S(z_i, L)$, for $z_i \in N$ (i = 1, ..., s + 1), is a dual affine plane and exactly one of them is a projective plane. In a dual affine plane there are $s^2 + s$ points of S, in a projective plane and a punctured affine plane there are $s^2 + s + 1$ points of S. So $|\mathcal{P}'| = s^3 + s^2 + s$.

The line $\langle x,y\rangle$ is a line of the second type contained in a punctured affine plane through L. Let $M_1,\ldots,M_{s+1}=L$ be the s+1 lines of S through x in the projective plane through L in S'. Then each $S(y,M_i)$ $(i=1,\ldots,s+1)$ is a punctured affine plane, as $|\langle x,y\rangle|=s+1$. Clearly each point of $S(y,M_i)$ $(i=1,\ldots,s+1)$, is contained in S'. Counting again the points of S', we get that $|\mathcal{P}'| \geq s^3 + s^2 + s + 1$, a contradiction.

Assume that exactly one of the substructures $S(z_i, L)$, for $z_i \in N$ ($i = 1, \ldots, s+1$), is a projective plane and none of them is a dual affine plane. The existence of a projective plane $S(\tilde{z}, L)$, $\tilde{z} \in N$, shows that $|\langle y, z \rangle| = s$. Now let M_z be a line of S through z in S(z, L), with $M_z \cap L = \{u\}$. Then $S(y, M_z)$ is a dual affine plane. So through u there are s lines of S in $S(y, M_z)$ and each of these lines contains a point of $\langle y, z \rangle$. The line of the second type through u in $S(y, M_z)$ therefore has to be contained in $S(\tilde{z}, L)$. This is a contradiction, as a projective plane contains no lines of the second type.

Assume that all the substructures $S(z_i, L)$, for $z_i \in N$ (i = 1, ..., s + 1), are punctured affine planes. Counting the points of S' we get that $|\mathcal{P}'| = s^3 + s^2 + s + 1$.

Let $L_1=L,\ldots L_s$ be the s lines of S through x in S(L,z). Then $S(y,L_i)$ are s punctured affine planes. Together they contain s^3+s+1 points of S'. Hence exactly s^2 points of S' are not contained in a punctured affine plane $S(y,L_i)$ $(i=1,\ldots,s)$. Let \mathcal{P}^* be the set of these s^2 points and the s+1 points of the line $\langle x,y\rangle$.

We will prove that the points of \mathcal{P}^* are two by two non-collinear. Let therefore p be a point of \mathcal{P}^* and assume that $p \sim y$. Clearly $p \notin \langle x,y \rangle$. By definition of \mathcal{P}^* , the line $\langle y,p \rangle$ intersects S(z,L) in a point of the line $\langle x,z \rangle$ of the second type. However, this implies that $i(x,\langle y,p \rangle) \leq s-1$, a contradiction as S is an (s,s+1)-geometry. Hence all points of \mathcal{P}^* are non-collinear with y. By transitivity of the non-collinearity, it follows that every two points of \mathcal{P}^* are non-collinear in S. This implies that \mathcal{P}^* is the set of all points of S' not collinear with x, union $\{x\}$. As $|\mathcal{P}^*| = s^2 + s + 1$, in each $S(L, z_i)$, for $z_i \in N$ $(i = 1, \ldots, s + 1)$, exactly s points are not collinear with x.

We will now prove that S' contains no dual affine planes. Assume therefore that S' contains a dual affine plane π . By definition of S', the $s^2 + s$ points of S'

in π are contained in the substructures $S(L,z_i)$, for $z_i \in N$ $(i=1,\ldots,s+1)$. So there is a substructure $S(L,z_k)$, for $z_k \in N$, that contains two points of π . The line through these two points intersects L in a point u. Hence $\pi \cap L = \{u\}$. As π is a dual affine plane, we know that there is a line $\langle u,w\rangle$ of the second type through u, with $|\langle u,w\rangle|=s$. But $u\in L$, so $\langle u,w\rangle$ is contained in an $S(L,z_j)$, for a $z_j\in N$. This is in contradiction with the assumption. So S' cannot contain a dual affine plane. It follows that each line of the second type contained in S', contains s+1 points of S'.

We define $S^* = (\mathcal{P}^*, \mathcal{L}^*, I^*)$ as follows: \mathcal{P}^* is as above, \mathcal{L}^* is the set of lines (of the second type) containing at least two points of \mathcal{P}^* , and I^* is the natural incidence relation. Note that \mathcal{L}^* is well defined because of the transtivity of non-collinearity. It is easy to see that S^* is a $2 - (s^2 + s + 1, s + 1, 1)$ -design, i.e. a projective plane. As a projective plane is defined by any three of its points, S^* does not depend on the choice of S'.

Assume that exactly one of the substructures $S(z_i, L)$, for $z_i \in N$ $(i = 1, \ldots, s+1)$ is a dual affine plane and none of them is a projective plane. We will prove that through each point of S' there is a line of the second type on which there are s points of S'. Let π be the dual affine plane through L. Through each point of π there is a line of the second type in π that contains s points of S. Now let $p \in S'$, $p \notin \pi$. By definition of S', p belongs to a punctured affine plane $S(z_j, L)$, for $z_j \in N$. So there is a line L_p through p intersecting L in a point p. Let p the line of the second type through p in p. Then p through p on which there are p points of p. This shows that through each point of p there is a line of the second type containing p points of p.

Now assume that there would be two lines of the second type containing s points of S through a point $w \in S'$. Let L_w be a line of S' through w. Then through L_w there are two dual affine planes contained in S'. From the first part of the proof, it follows that all substructures contained in S' are dual affine planes, a contradiction. Hence through each point of S' there is exactly one line of the second type that contains s points of S'.

Note that the line of the second type in each of the punctured affine planes through L in S' is incident with x. For the punctured affine planes containing a point of $\langle y,z\rangle$, this follows from transitivity of non-collinearity. Moreover if $|\langle y,z\rangle|=s$ and there would be a punctured affine plane $S(L,z_i)$, for $z_i\in N$, that contains no point of $\langle y,z\rangle$, then π would contain a point y' of $\langle y,z\rangle$. So the lines $\langle y',x\rangle$ and $\langle y',z\rangle$ are two lines of the second type through y' containing s points of S', a contradiction with what we proved above.

Let \mathcal{P}^* be the set of points of \mathcal{S}' that are not collinear with x, union the point x. As there are s punctured affine planes and one dual affine plane through L, it follows that there are s lines of the second type through x containing s+1 points of \mathcal{S} , while the remaining line of the second type through x contains s points of \mathcal{S} . Hence $|\mathcal{P}^*| = s^2 + s$. By transitivity of non-collinearity, we know that every

two points of \mathcal{P}^* are non-collinear.

Now we define an incidence structure $S^* = (\mathcal{P}^*, \mathcal{L}^*, I^*)$ as follows: \mathcal{P}^* is the set points of S' defined above, \mathcal{L}^* is the set of all lines (of the second type) containing at least two points of \mathcal{P}^* , and I^* is the natural incidence relation. As through each point of S' there is at most one line of the second type containing s points of S, $|\mathcal{P}^*| = s^2 + s$. It follows that through each point of \mathcal{P}^* there is exactly one line of \mathcal{L}^* on which there are s points of S. Now we add a new point \tilde{w} to \mathcal{P}^* , and we define \tilde{w} to be incident with each line of \mathcal{L}^* that contains s points of S. Then clearly this new incidence structure is a $2 - (s^2 + s + 1, s + 1, 1)$ design, i.e. a projective plane. As \tilde{w} was not a point of S, it follows that $S^* = (\mathcal{P}^*, \mathcal{L}^*, I^*)$ is a dual affine plane. A projective plane is uniquely defined by any three of its points, hence S^* is independent of the choice of S'.

The case
$$|\langle x,y\rangle|=s$$
 and $|\langle x,z\rangle|=s+1$

Let L be a line of S through x. Then S(L,y) is a dual affine plane, and S(L,z) is a punctured affine plane. As is done in the previous two cases, we can construct a line N of S that intersects both S(L,y) and S(L,z) in a point not on L. Let \mathcal{P}' be the set of all the points contained in the substructures $S(L,z_i)$, for $z_i \in N$ $(i=1,\ldots,s+1)$.

If there are two dual affine planes or two punctured affine planes $S(L,z_i)$ and $S(L,z_j)$, for $z_i,z_j\in N, z_i\neq z_j$, then we can apply one of the previous cases. So we may assume that all the substructures through L and a point of N, except for S(L,y) and S(L,z), are projective planes. However we proved above that at most one substructure $S(L,\tilde{z})$, for $\tilde{z}\in N$, is a projective plane. Hence s=2.

Let $L_1=L$, L_2 and L_3 be the three lines of S through x in $S(L,\tilde{z})$. The substructures $\langle y,L_i\rangle$, (i=1,2,3), contain the line $\langle x,y\rangle$ of the second type, with $|\langle x,y\rangle|=2$, hence it are all dual affine planes. It follows that $|\mathcal{P}'|=14$. The substructures $S(z,L_i)$ (i=1,2,3) contain the line $\langle x,z\rangle$ of the second type, with $|\langle x,z\rangle|=3$, hence it are all punctured affine planes. So $|\mathcal{P}'|=15$. This is a contradiction. Hence this case does not occur.

We now studied all the possibilities. The incidence structures $\mathcal{S}^* = (\mathcal{P}^*, \mathcal{L}^*, I^*)$, with \mathcal{P}^* as defined above, will be called planes of type IV, V and VI, when \mathcal{S}^* is respectively a projective plane, an affine plane and a dual affine plane.

Step 2. We define parallelism among the lines of the second type containing s points of S as follows. Two lines of the second type containing s points of S are parallel if they coincide or if they are disjoint subsets of a dual affine plane or a plane of type V or VI.

Clearly the parallelism defined in this way is reflexive and symmetric. It remains to prove that it is also transitive. Let therefore $\langle x,y\rangle, \langle u,v\rangle$ and $\langle p,w\rangle$ be three lines of the second type containing s points of S. Suppose that $\langle x,y\rangle$ is parallel to $\langle u,v\rangle$, that $\langle x,y\rangle$ is parallel to $\langle p,w\rangle$. If two of these lines coincide, then it follows immediately that $\langle u,v\rangle$ is parallel to $\langle p,w\rangle$. So we may assume that no two of them coincide.

From the definition of parallelism, it follows that the lines $\langle x,y\rangle$ and $\langle u,v\rangle$ are both contained in a dual affine plane, a plane of type V or a plane of type VI. Similarly, the lines $\langle x,y\rangle$ and $\langle p,w\rangle$ are both contained in a dual affine plane, a plane of type V or a plane of type VI. We have to consider three cases.

Assume that both the plane containing $\langle x,y\rangle$ and $\langle u,v\rangle$ and the one containing $\langle x,y\rangle$ and $\langle p,w\rangle$ are dual affine planes. Let π_1 (respectively π_2) be the dual affine plane containing $\langle x,y\rangle$ and $\langle u,v\rangle$ (respectively $\langle x,y\rangle$ and $\langle p,w\rangle$). If $\pi_1=\pi_2$, then $\langle u,v\rangle$ and $\langle p,w\rangle$ are contained in the dual affine plane π_1 . By definition of parallelism it follows that $\langle u,v\rangle$ and $\langle p,w\rangle$ are parallel. So we may assume that $\pi_1\neq\pi_2$. In this case the lines $\langle u,v\rangle$ and $\langle p,w\rangle$ are clearly disjoint.

Let M be a line of S in π_1 and let N be a line of S in π_2 skew to M. We define an incidence structure $S' = (\mathcal{P}', \mathcal{L}', I')$ as follows: \mathcal{P}' is the set of points contained in the substructures $S(M, z_i)$, with $z_i \in N$ $(i = 1, \ldots, s+1)$; \mathcal{L}' is the set of lines containing at least two (and hence s+1) points of \mathcal{P}' , I' is the restriction of I to $(\mathcal{P}' \times \mathcal{L}') \cup (\mathcal{L}' \times \mathcal{P}')$. By construction π_1 and π_2 are contained in S'.

Let L_p be a line of S through p in π_2 . Then L_p intersects $\langle x,y\rangle$ in a point w'. Let $L_{w'}$ be a line of S in π_1 through w'. The substructure $S(L_p,L_{w'})$ is a dual affine plane, a projective plane or a punctured affine plane. So it contains s or s+1 lines of S through p and at most one line of the second type. We denote these lines by $N_1=L_p,\ldots,N_{s+1}$, where N_{s+1} can be a line of S or a line of the second type. The substructures $S(w,N_i)$ ($i=1,\ldots,s$) are s dual affine planes, as each of them contains the line $\langle p,w\rangle$. The substructure $S(w,N_{s+1})$, is a dual affine plane, a plane of type V or VI.

Clearly $S(w, N_i)$ $(i = 1, \ldots, s + 1)$ intersect π_1 in a line. Assume that $S(w, N_j)$, $j \in \{1, \ldots, s + 1\}$ intersects π_1 in a line L of S. Then L intersects $\langle x, y \rangle$ in a point u'. As $\langle p, w \rangle$ has to intersect each line of S in $S(w, N_j)$, $\langle p, w \rangle$ intersects L and hence $\langle x, y \rangle$ in the point u'. This is a contradiction as $\langle p, w \rangle$ and $\langle x, y \rangle$ are parallel. The plane π_1 contains exactly s + 1 lines of the second type. Hence $\langle u, v \rangle$ is one of the lines of the second type contained in either $S(w, N_k)$, for a $k \in \{1, \ldots, s\}$, or in the plane $S(w, N_{s+1})$, which can be a dual affine plane, or a plane of type V or VI. By definition of parallelism, it follows in each case that $\langle p, w \rangle$ is parallel to $\langle u, v \rangle$.

Assume that the plane containing $\langle x,y\rangle$ and $\langle u,v\rangle$ is a dual affine plane but the plane containing $\langle x,y\rangle$ and $\langle p,w\rangle$ is not a dual affine plane. Then $\langle x,y\rangle$ and $\langle p,w\rangle$ are contained in a plane of type V or type VI. We call this plane of type V or VI the plane ω , while we call the dual affine plane through $\langle x,y\rangle$ and $\langle u,v\rangle$ the plane π . Let N be a line of S in π . Let M be a line of S through the point $p\in\omega$ that intersects N in a point. Let M' be a line of S intersecting both S(M,x) and S(M,y) in a point not on M. Let $S'=(\mathcal{P}',\mathcal{L}',I')$ be the incidence structure defined as follows: \mathcal{P}' is the set of points of S contained in the substructures $S(M,x_i)$, for $x_i\in M'$ $(i=1,\ldots,s+1)$, \mathcal{L}' is the set of lines of S containing at least two points of \mathcal{P}' and I' is the restriction of I to $(\mathcal{P}'\times\mathcal{L}')\cup(\mathcal{L}'\times\mathcal{P}')$. Then

S' contains both π and ω , as it contains three points of each of them.

The line $\langle x,p\rangle$ is a line of the second type through x in ω . Let N_x be a line of S through x in π . Then $S(p,N_x)$ is a dual affine plane or a punctured affine plane. So p is collinear with the s points of N_x different from x. Let $M_1,\ldots M_s$ be the s lines of S through p and a point of N_x . Then each $S(w,M_i)$ ($i=1,\ldots,s$) is a dual affine plane containing the line $\langle p,w\rangle$, and as in the previous case one proves that each such substructure intersects π in a line of the second type different from $\langle x,y\rangle$. Now in the dual affine plane π there are exactly s+1 lines of the second type. So $\langle u,v\rangle$ has to be one of the lines contained in a dual affine plane $S(w,M_i)$, for a $i\in\{1,\ldots,s\}$. So $\langle w,p\rangle$ is parallel to $\langle u,v\rangle$.

Assume that none of the two planes containing $\langle x,y\rangle$ and $\langle u,v\rangle$ respectively containing $\langle x,y\rangle$ and $\langle p,w\rangle$ is a dual affine plane. In this case the points of the lines $\langle x,y\rangle$, $\langle p,w\rangle$ and $\langle u,v\rangle$ belong to an equivalence class C of non-collinear points of S. Suppose that $z\notin C$. Then z is collinear with each point of C. In particular z is collinear with x. The plane $S(\langle z,x\rangle,y)$ is a dual affine plane. It contains a line of the second type through z that is parallel to $\langle x,y\rangle$. We denote this line by $\langle z,z'\rangle$. From the preceding case it follows that $\langle z,z'\rangle$ is parallel to both $\langle u,v\rangle$ and $\langle p,w\rangle$, and these lines are two by two disjoint.

As by assumption the plane containing $\langle x,y\rangle$ and $\langle p,w\rangle$ is not a dual affine plane, the line $\langle x,p\rangle$ is a line of the second type. So $S(\langle z,x\rangle,p)$ is a dual affine plane or a punctured affine plane. Let L_p be a line of S through p in $S(\langle z,x\rangle,p)$. Let L_y be a line of S through p in $S(\langle z,x\rangle,p)$, such that L_y is skew to L_p . Then we can again define an incidence structure $S'=(\mathcal{P}',\mathcal{L}',I')$ as follows: \mathcal{P}' is the set of points contained in the $S(L_p,z_i)$, with $z_i\in L_y$ $(i=1,\ldots,s+1)$; \mathcal{L}' is the restriction of I to $(\mathcal{P}'\times\mathcal{L}')\cup(\mathcal{L}'\times\mathcal{P}')$. As the plane containing $\langle x,y\rangle$ and $\langle p,w\rangle$ is a plane of type V or VI, and as from the above we know that there is exactly one plane of type V or VI in S' through the point p, it follows that the plane containing $\langle z,z'\rangle$ and $\langle p,w\rangle$ is a dual affine plane. In the same way one proves that $\langle z,z'\rangle$ and $\langle u,v\rangle$ are contained in a dual affine plane. From a preceding case it now follows that $\langle p,w\rangle$ and $\langle u,v\rangle$ are parallel.

So we proved that the parallelism defined above is an equivalence relation. Note that each parallel class is a partition of the point set of S. The parallel classes, which we denote by $[\langle u, v \rangle]$, are called points of the second type, and the set of these classes is denoted by \mathcal{P}^* .

Step 3. We will define parallelism among the planes of type V.

Suppose that ω is a plane of type V. Let x be a point of S, $x \notin \omega$. As the parallel classes of the lines of the second type containing s points of S, partition the points of S, there are s+1 lines $\langle x, y_1 \rangle, \ldots, \langle x, y_{s+1} \rangle$ that are parallel to lines of ω . We will prove that the lines $\langle x, y_1 \rangle, \ldots, \langle x, y_{s+1} \rangle$ are contained in a plane of type V.

Assume first that there is a line L of S containing x and a point u of ω . Let $\langle u, u' \rangle$ and $\langle u, u'' \rangle$ be two lines through u in ω . Then $|\langle u, u' \rangle| = s$ and

 $|\langle u,u''\rangle|=s$. Hence S(L,u') and S(L,u'') are dual affine planes. Let N be a line of S intersecting S(L,u') and S(L,u'') in a point not on L. We define an incidence structure $S'=(\mathcal{P}',\mathcal{L}',I')$ as follows: \mathcal{P}' is the set of points of S contained in $S(L,z_i)$, for $z_i\in N$ $(i=1,\ldots,s+1)$, \mathcal{L}' is the set of lines of S containing at least two (and hence s+1) points of \mathcal{P}' and I' is the restriction of I to $(\mathcal{P}'\times\mathcal{L}')\cup(\mathcal{L}'\times\mathcal{P}')$.

It is clear that x belongs to S'. Also S(L, u') and S(L, u'') belong to S' and hence S' contains three distinct points u, u' and u'' of ω . This shows that ω is contained in S'.

From the previous part of the proof, it follows that each substructure $S(L,z_i)$, for $z_i \in N$ $(i=1,\ldots,s+1)$, is a dual affine plane. As ω is contained in S', each $S(L,z_i)$ intersects ω in a line $\langle u,p_i\rangle$ of the second type through u. Hence each dual affine plane $S(L,z_i)$ contains a line of the second type through x parallel to $\langle u,p_i\rangle$. As $\langle x,y_i\rangle$ is the unique line through x parallel to $\langle u,p_i\rangle$, $\langle x,y_i\rangle$ is contained in $S(L,z_i)$. Hence the lines $\langle x,y_1\rangle,\ldots,\langle x,y_{s+1}\rangle$ are each contained in a distinct dual affine plane $S(L,z_i)$, for $z_i \in N$.

Let \mathcal{P}'' be the set of points of \mathcal{S}' that are not collinear with x, union $\{x\}$. Then \mathcal{P}'' is the set of points of the lines $\langle x, y_1 \rangle, \ldots \langle x, y_{s+1} \rangle$. Let \mathcal{L}'' be the set of lines of the second type containing at least two points of \mathcal{P}'' . Let I'' be the restriction of I' to $(\mathcal{P}'' \times \mathcal{L}'') \cup (\mathcal{L}'' \times \mathcal{P}'')$. Then \mathcal{S}'' is a plane of type V. So we have proved that there is a plane of type V through x, with point set the points of the lines $\langle x, y_1 \rangle, \ldots, \langle x, y_{s+1} \rangle$.

Next we assume that there is no line of S through x and a point of ω . In this case x and the points of ω belong to an equivalence class C of non-collinear points in S. Suppose that $v \notin C$. Then v is collinear with x and with each point of ω . Let $\langle v, z_1 \rangle, \ldots, \langle v, z_{s+1} \rangle$ be the lines containing v and parallel to $\langle x, y_1 \rangle, \ldots, \langle x, y_{s+1} \rangle$. From the preceding case it follows that the points on these lines are the points of a plane of type V. Indeed, $\langle v, z_1 \rangle, \ldots, \langle v, z_{s+1} \rangle$ are parallel to lines of ω and v is collinear in S with each point of ω . As $\langle v, x \rangle$ is a line of S, the same argument shows that the points on $\langle x, y_1 \rangle, \ldots, \langle x, y_{s+1} \rangle$ are the points of a plane of type V.

So we have proved that the points of the lines $\langle x, y_1 \rangle, \ldots, \langle x, y_{s+1} \rangle$ are the points of a plane of type V. We define parallelism among planes of type V as follows: two planes ω and ω' of type V are parallel if some line of the second type in ω is parallel to a line of the second type in ω' . From the definition of parallelism for lines of the second type containing s points of S, it follows that the new defined parallelism is an equivalence relation. Each parallel class of planes of type V partitions the point set of S. The parallel classes, which we denote by $[\omega]$, are called lines of the third type, and the set of these classes is denoted by \mathcal{L}^* .

Step 4. We introduce a new incidence structure $\overline{S} = (\overline{P}, \overline{L}, \overline{I})$, with $\overline{P} = P \cup P^*$, with \overline{L} the set of all lines of S, all lines of the second type and all lines of the third type and with incidence relation \overline{I} defined as follows.

- 1. for $x \in \mathcal{P}$ and $L \in \mathcal{L}$: $x \bar{1} L \iff x \bar{1} L$:
- 2. for $x \in \mathcal{P}$ and $\langle y, z \rangle$ a line of the second type $x \bar{I} \langle y, x \rangle \iff x \in \langle y, z \rangle$;
- 3. for $x \in \mathcal{P}$ and $[\omega] \in \mathcal{L}^*$: x is not incident with $[\omega]$;
- 4. for $[\langle y, z \rangle] \in \mathcal{P}^*$ and $L \in \mathcal{L}$: $[\langle y, z \rangle]$ is not incident with L;
- 5. for $[\langle y, z \rangle] \in \mathcal{P}^*$ and $\langle u, v \rangle$ a line of the second type:
 - * If $|\langle u, v \rangle| = s$: $[\langle y, z \rangle] \overline{I} \langle u, v \rangle \iff \langle u, v \rangle \in [\langle y, z \rangle]$;
 - * If $|\langle u, v \rangle| = s + 1$: $[\langle y, z \rangle]$ is not incident with $\langle u, v \rangle$;
- 6. $[\langle y,z\rangle] \in \mathcal{P}^*$ and $[\omega] \in \mathcal{L}^*$: $[\langle y,z\rangle] \bar{\mathbf{I}} [\omega] \iff \langle y,z\rangle$ is parallel to a line in ω .

Step 5. We prove that \overline{S} is the design of points and lines of a projective space. We first prove that each two distinct points of \overline{S} are incident with exactly one line of \overline{S} .

Assume that $p_1, p_2 \in \mathcal{P}$, $p_1 \neq p_2$. Then either p_1 is collinear in S with p_2 , in which case the line of S through p_1 and p_2 is the unique line of \overline{S} through p_1 and p_2 ; or p_1 and p_2 are not collinear in S, in which case the line of the second type containing them is the unique line of \overline{S} through p_1 and p_2 .

Assume that $p_1 \in \mathcal{P}$, $[\langle x, y \rangle] \in \mathcal{P}^*$. In this case the unique line of $\overline{\mathcal{S}}$ through p_1 and $[\langle x, y \rangle]$ is the line of the second type through p_1 that belongs to the parallel class of $\langle x, y \rangle$.

Assume that $[\langle x,y\rangle], [\langle u,v\rangle] \in \mathcal{P}^*, [\langle x,y\rangle] \neq [\langle u,v\rangle]$. If $\langle x,y\rangle$ and $\langle u,v\rangle$ have a point in common, then x,y,u,v are contained in a plane ω of type V. Note that ω cannot be a plane of type VI, because in a plane of type VI all lines of the second type containing s points of \mathcal{S} belong to the same parallel class. So $[\langle x,y\rangle]$ and $[\langle u,v\rangle]$ are two points of the line $[\omega]$ and there is no other line in $\overline{\mathcal{S}}$ containing both these points. If $\langle x,y\rangle$ and $\langle u,v\rangle$ have no point in common, then we can choose a line in $[\langle x,y\rangle]$ that does have a point in common with $\langle u,v\rangle$ (namely the line through u and $[\langle x,y\rangle]$). So the same argument as before shows that $[\langle x,y\rangle]$ and $[\langle u,v\rangle]$ are on exactly one line of $\overline{\mathcal{S}}$.

Next we prove that every three distinct points of \overline{S} , that are not incident with a common element of \overline{L} , generate a projective plane. From the definition of \overline{S} it follows that a dual affine plane and a punctured affine plane induce projective planes. Also planes of type IV, V and VI are projective planes, containing no lines of S but lines of the second type and lines of L^* . We have to consider the following cases.

Assume that $p_1, p_2, p_3 \in \mathcal{P}$. Then clearly there is either a dual affine plane, a projective plane, a punctured affine plane or a plane of type IV, V or VI containing p_1, p_2 and p_3 . Hence in any case p_1, p_2 and p_3 are in a projective plane.

Assume that $p_1, p_2 \in \mathcal{P}$ and $[\langle x, y \rangle] \in \mathcal{P}^*$. The lines $\langle p_1, [\langle x, y \rangle] \rangle$ and $\langle p_2, [\langle x, y \rangle] \rangle$ are lines of the second type containing s points of S.

If $\langle p_1, p_2 \rangle$ is a line of S, then the points of S in $S(\langle p_1, p_2 \rangle, [\langle x, y \rangle])$ are the points of a dual affine plane, and hence in \overline{S} it is a projective plane.

If $\langle p_1,p_2\rangle$ is a line of the second type containing s points of \mathcal{S} , then let L_{p_1} be a line of \mathcal{S} through p_1 . The substructures $S(L_{p_1},p_2)$ and $S(L_{p_1},[\langle x,y\rangle])$ are both dual affine planes. Let M be a line of \mathcal{S} intersecting $S(L_{p_1},p_2)$ and $S(L_{p_1},[\langle x,y\rangle])$ in a point not on L_{p_1} . We define an incidence structure $\mathcal{S}'=(\mathcal{P}',\mathcal{L}',I')$ as follows. Let \mathcal{P}' be the set of points of \mathcal{S} contained in $S(L_{p_1},z_i)$, for z_i a point of M, let \mathcal{L}' be the set of lines of \mathcal{S} containing at least two points of \mathcal{P}' and let I' be the restriction of I to $(\mathcal{P}'\times\mathcal{L}')\cup(\mathcal{L}'\times\mathcal{P}')$. As \mathcal{S}' contains the dual affine planes $S(L_{p_1},p_2)$ and $S(L_{p_1},[\langle x,y\rangle])$, one proves as in the first part of the proof that there is a plane of type V through p_1,p_2 and $[\langle x,y\rangle]$.

If $\langle p_1, p_2 \rangle$ is a line of the second type containing s+1 points of S, then as in the previous case we can define an incidence structure S'. It then follows that there is a plane of type VI through p_1 , p_2 and $[\langle x, y \rangle]$.

Assume that $p \in \mathcal{P}$ and $[\langle x,y \rangle]$, $[\langle u,v \rangle] \in \mathcal{P}^*$. The lines $\langle p, [\langle x,y \rangle] \rangle$ and $\langle p, [\langle u,v \rangle] \rangle$ are lines of the second type that contain s points of \mathcal{S} . We have proved above that there is a line $[\omega]$ of the third type, that contains both $[\langle x,y \rangle]$ and $[\langle u,v \rangle]$. We have also proved that each point of \mathcal{S} belongs to a plane ω' of type V with parallel class $[\omega]$. Hence there is a plane ω_p of type V through p with parallel class $[\omega]$. The plane ω_p is a projective plane containing the points p, $[\langle x,y \rangle]$ and $[\langle u,v \rangle]$.

Assume that $[\langle x,y\rangle]$, $[\langle u,v\rangle]$, $[\langle p,q\rangle]\in\mathcal{P}^*$. Let w be a point of \mathcal{P} . The line through w and $[\langle x,y\rangle]$ (respectively $[\langle p,q\rangle]$ and $[\langle u,v\rangle]$) is a line of the second type that contains s points of \mathcal{S} . Let r_1 (respectively r_2 and r_3) be a point of \mathcal{S} on this line, that is distinct from w. Let L be a line of \mathcal{S} through w. The substructures $S(L,r_1)$ and $S(L,r_2)$ are both dual affine planes. As before, we can prove that the points w, r_1 and r_2 are contained in a plane w of type v. Hence $\langle r_1,r_2\rangle$ is a line of the second type containing s points of \mathcal{S} , while $[\langle x,y\rangle]$ and $[\langle p,q\rangle]$ are both contained in the line [w] that is an element of \mathcal{L}^* . Moreover for each point z of the line $\langle r_1,r_2\rangle$, $z\in\mathcal{P}$, the line $\langle w,z\rangle$ is a line of the second type containing s points of \mathcal{S} and the point $[\langle w,z\rangle]$ belongs to the line [w]. Analougously, the substructures $S(L,r_1)$ and $S(L,r_3)$ are both dual affine planes, and hence it follows that the plane through w, r_1 and r_3 is a plane w' of type v. The line [w'] is an element of \mathcal{L}^* , and it intersects [w] in the point $[\langle w,r_1\rangle]$.

Let $\rho = (\mathcal{P}_w, \mathcal{L}_w, I_w)$ be the incidence structure defined as follows. The point set \mathcal{P}_w is the set of points of \mathcal{P}^* that lie on a line of \mathcal{L}^* that intersects both $[\omega]$ and $[\omega']$ in a point, together with the points of the lines of \mathcal{L}^* through $[\langle x,y\rangle]$ that intersect a line $[\omega'']$ in a point, $[\omega'']$ being a line of \mathcal{L}^* that intersects $[\omega]$ and $[\omega']$ in a distinct point. The line set \mathcal{L}_w is the set of all lines of \mathcal{L}^* containing two points of \mathcal{P}^* . Note that from the definition of \mathcal{P}_w it follows that each point of such a line belongs to \mathcal{P}_w . Finally I_w is the restriction of I^* to $(\mathcal{P}_w \times \mathcal{L}_w) \cup (\mathcal{L}_w \times \mathcal{P}_w)$.

We will now prove that ρ is a projective plane. Let π be the projective plane through r_1 , r_2 and r_3 . Note that we proved in a previous case that π exists. Let z'

be an arbitrary point of S in the plane π .

If z' is a point of $\langle r_1, r_2 \rangle$, then we know that the line $\langle w, z' \rangle$ contains a point of the line $[\omega]$, which is a point of \mathcal{P}_w . Assume now that $z' \notin \langle r_1, r_2 \rangle$. The line $\langle z', r_3 \rangle$ either intersects $\langle r_1, r_2 \rangle$ in a point of \mathcal{S} , or it is parallel to $\langle r_1, r_2 \rangle$, in which case it is a line of the second type containing s points of \mathcal{S} .

Assume first that $\langle z', r_3 \rangle$ intersects $\langle r_1, r_2 \rangle$ in a point z'' of \mathcal{S} . Then z'' is a point of the plane ω of type V, hence $\langle w, z'' \rangle$ is a line of the second type containing s points of \mathcal{S} . Also $\langle w, r_3 \rangle$ is a line of the second type containing s points of \mathcal{S} . Hence the substructures S(L, z'') and $S(L, r_3)$ are both dual affine planes. As we did before, we can prove that the plane through w, z'' and r_3 is a plane ω^* of type V. It follows that $\langle w, z' \rangle$ is a line of the second type containing s points of \mathcal{S} . The line $[\omega^*]$ intersects $[\omega]$ in the point $[\langle w, z'' \rangle]$, and it intersects $[\omega']$ in the point $[\langle w, r_3 \rangle]$. Hence $[\omega^*]$ is a line of \mathcal{L}_w . The point $[\langle w, z' \rangle]$ lies on this line, hence it is a point of \mathcal{P}_w .

Assume next that $\langle z', r_3 \rangle$ and $\langle r_1, r_2 \rangle$ are parallel. Then these two lines both contain the point $[\langle z', r_3 \rangle]$ of \mathcal{P}^* . The line through w and $[\langle z', r_3 \rangle]$ is a line of the second type containing s points of \mathcal{S} . Let \tilde{z} be a point of \mathcal{S} on this line, $\tilde{z} \neq w$. The substructures $S(L, \tilde{z})$ and $S(L, r_3)$ are both dual affine planes. It follows that the plane containing w, r_3 and \tilde{z} is a plane $\tilde{\omega}$ of type V. The line $[\tilde{\omega}]$ is an element of \mathcal{L}^* . This line intersects $[\omega]$ in the point $[\langle z', r_3 \rangle]$, while it intersects $[\omega']$ in the point $[\langle w, r_3 \rangle]$. Hence $[\tilde{\omega}]$ is an element of \mathcal{L}_w , and the point $[\langle w, z' \rangle]$ is an element of \mathcal{P}_w .

So with each point z of the plane $\langle r_1, r_2, r_3 \rangle$ there corresponds a point $[\langle w, z \rangle]$ of ρ , and this point is unique. This proves that ρ is isomorphic to the projective plane $\langle r_1, r_2, r_3 \rangle$. It follows also that ρ is a projective plane, and hence $[\langle x, y \rangle]$, $[\langle p, q \rangle]$ and $[\langle u, v \rangle]$ generate a projective plane.

We conclude that \overline{S} is the design of points and lines of a projective space PG(n,s). As each two distinct points of S^* generate a line of S^* , it follows that $S^* = (\mathcal{P}^*, \mathcal{L}^*, I^*)$ is the design of points and lines of a projective subspace $\Psi[m]$ of PG(n,s). As not every line of \overline{S} contains a point of S^* , it is clear that $m \le n-2$.

Assume that there is no punctured affine plane. The lines of $\overline{\mathcal{S}}$ are the lines of \mathcal{S} , the lines of the second type containing s points of \mathcal{S} and a point of \mathcal{S}^* , and the lines of the form $[\omega]$, with ω a plane of type V. So \mathcal{P} is the set of all points of $\operatorname{PG}(n,s)\setminus \Psi[m]$, \mathcal{L} is the set of all lines skew to $\Psi[m]$ and I is the incidence of $\operatorname{PG}(n,s)$. This proves that \mathcal{S} is isomorphic to $\operatorname{H}_n^{n,m}$, 0< m< n-2.

Assume next that there is a punctured affine plane. Then $\overline{\mathcal{S}}$ contains lines on which there are s+1 points of \mathcal{S} , that are not lines of \mathcal{S} . Let \mathcal{B} be the set of all these lines. As the points of \mathcal{S}^* are the points of the subspace $\Psi[m]$, the number of lines of \mathcal{S} through a point of \mathcal{S} that contain a point of \mathcal{S}^* , is a constant. As there are t+1 lines of \mathcal{S} through each point of \mathcal{S} , the number of lines of \mathcal{B} through a point of \mathcal{S} is also a constant.

A punctured affine plane contains exactly one line of \mathcal{B} . Neither a dual affine plane, nor a projective plane can contain a line of \mathcal{B} . Hence a plane that contains two lines of \mathcal{B} , cannot contain a line of \mathcal{S} . This proves that the lines of \mathcal{B} through a point x of \mathcal{S} are the lines through x in an x-dimensional subspace $\Pi_x[r]$ of $\operatorname{PG}(n,s)$, and this subspace contains no lines of \mathcal{S} through x. It immediately follows that the subspace $\Pi_x[r]$ can not contain lines of \mathcal{S} , as otherwise on such a line L of \mathcal{S} there would be no points that are collinear with x, a contradiction as \mathcal{S} is an (s,s+1)-geometry.

Let y be a point of $\Pi_x[r]$, y different from x. Then the subspace $\Pi_y[r']$ coincides with $\Pi_x[r]$. Indeed, all lines through y in $\Pi_x[r]$ are lines that do not belong to $\mathcal S$, so surely $\Pi_x[r] \subset \Pi_y[r']$. Now assume that $\Pi_y[r']$ is not a subspace of $\Pi_x[r]$. Then $\Pi_y[r]$ would contain a line L of $\mathcal S$ through x. By definition of $\Pi_y[r']$, it follows that no point of L is collinear with y in $\mathcal S$, again a contradiction. This proves that $\Pi_y[r'] = \Pi_x[r]$. Hence for every point z of $\mathcal S$, the dimension of $\Pi_z[r'']$ is r. We will prove that $\Psi[m] \subset \Pi_z[r]$, for each point z of $\mathcal S$. Indeed, if $\Psi[m]$ would not be contained in $\Pi_z[r]$, then there would be a line N of $\mathcal B$ through z and a line $\langle z, u \rangle$, with u a point of $\Psi[m]$, such that the plane through u and u contains a line of u through u. This is a contradiction, as such a plane cannot exist. Hence u in u in u is a contradiction, as such a plane cannot exist. Hence u in u in

References

- [1] S. Cauchie. Full embeddings of (α, β) -geometries in projective spaces. Part II. *Discrete Mathematics*, 266(1-3):153–183, 2003. In Proceedings of the 18th British Combinatorial Conference.
- [2] S. Cauchie, F. De Clerck, and N. Hamilton. Full embeddings of (α, β) -geometries in projective spaces. *Europ. J. Comb.*, 23(6):635–646, 2002.
- [3] Hans Cuypers. On delta spaces satisfying Pasch's axiom. J. Geom., 53(1-2):67-75, 1995.
- [4] F. De Clerck and J. A. Thas. Partial geometries in finite projective spaces. *Arch. Math.*, 30:537-540, 1978.
- [5] J. A. Thas and F. De Clerck. Partial geometries satisfying the axiom of Pasch. Simon Stevin, 51(3):123–137, 1977/78.