A characterization of («, s + 1)-geometries,
1 < a < s+ 1, satisfying the axiom of Pasch

Sara Cauchie

Abstract. In this paper, a characterization of two classes of (g, g+ 1)-geometries,
that are fully embedded in a projective space PG(n, q), is obtained. The first
class is the one of the (g,q + 1)-geometry HZ+™, having points the points of
PG(n, g) that are not contained in an m-dimensional subspace I1[m)] of PG(n, q),
for 0 < m < n — 3, and lines the lines of PG(n, q) skew to II[m]. The second
class is the one of the (g, q + 1)-geometry SH}'™ having the same point set as
Hp™, but with —1 < m < n — 3, and lines the lines skew to II[m)] that are not
contained in a certain partition of the point set of SH*™. Our characterization
uses the axiom of Pasch, which is also known as axiom of Veblen-Young. It is a
generalization of the characterization for partial geometries satisfying the axiom
of Pasch by J. A. Thas and F. De Clerck. A characterization for H}'™ was already
proved by H. Cuypers. His result however does not include SHy"™.
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1 Introduction

A partial linear space of order (s,t) is a connected incidence structure S =
(P, L,I), with P a finite non-empty set of elements called points, £ a family
of subsets of P called lines and I a symmetric incidence relation satisfying the
following axioms. (i) Any two distinct points are incident with at most one line.
(ii) Each line is incident with exactly s + 1 points, s > 1. (iii) Each point is
incident with exactly ¢ + 1 lines, ¢ > 1.

An antiflag of a partial linear space S is a pair (z, L), with z a point of S,
L aline of S and such that z is not incident with L. Two points p, and p, are
collinear if there is a line L of S such that p; I L I p,; we denote p; ~ po. Two
lines L, and L, are concurrent if there is a point p of S such that L; Ip I Lj; we
denote Ly ~ Lj. The incidence number of an antiflag (z, L) of S is the number,
denoted by i(z, L), of points collinear with the point z € P and incident with the
lineL € L.
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An (a, B)-geometry is a partial linear space S = (P, £,I) of order (s, t), for
some s and £, such that for each antiflag (z, L) of S, i(z,L) = e ori(z, L) = f.

An (o, B)-geometry S = (P, L,]) is fully embedded in a projective space
PG(n, g) if P is a subset of the point set of PG(n, g), L is a subset of the line
set of PG(n, g), I is the incidence inherited from PG(n,¢) and s = ¢. In what
follows, we always assume that the points of S span PG(n, g).

An (o, §)-geometry that satisfies a = B, is called a partial geometry, and
it is denoted by pg(s,t,a). Partial geometries fully embedded in a projective
space PG(n, q) have been studied by F. De Clerck and J. A. Thas [4]. They have
proved that the only partial geometry fully embeddable in PG(n, ¢), for which
1< a < g+1landa < t+1,is the partial geometry H7, defined as follows.
Let H be an (n — 2)-dimensional subspace of PG(n,g). Points of Hy are the
points of PG(n, ) \ H, lines of H} are the lines of PG(n, g) that have no point
in common with H, incidence is the incidence of PG(n, ¢) restricted to the points
and lines of H7. It is easy to prove that Hy is indeed a partial geometry and that
it has parameters s = ¢, t = ¢! —landa = q.

In [1, 2] we have introduced the (g,q + 1)-geometries H3»™ and SH*™.
Both of them are fully embeddable in PG(n,q). Hp™ has points the points
of PG(n,q) \ I[m], where II[m] is an m-dimensional subspace of PG(n, g),
0 < m < n — 3, and lines the lines of PG(n, g) skew to II[m]. Note that for
m = n — 2, this construction gives the partial geometry Hy defined in the previ-
ous paragraph. For m = —1, it gives the partial geometry of points and lines of the
projective space PG(n, g). SHy"™ has the same point set as H7»™, but now with
—1 < m < n—3,and its lines are defined as follows. Let £ = {0},...,0;} bea
partition of the points of PG(n, ¢) \ II[m)], where ! = (g"~™ — 1) /(g™ ~™ - 1),
such that for i = 1,...,1, o; = Q;[m’] \ II[m], with Q;[m'] an m’-dimensional
subspace of PG(n, ¢) that contains II[m}, and withm + 2 < m' < n — 2. The
lines of S are the lines that intersect ¢ + 1 distinct elements of ¥ in a point. A
necessary and sufficient condition for this partition and the (g, ¢ + 1)-geometry to
exist is that (m' —m) | (n — m).

In this paper a characterization of the (g, ¢ + 1)-geometries Hj»™ and SH»™
will be obtained. This characterization is an extension of the existing character-
ization for the partial geometry Hy, which we will shortly describe in the next
section. In section 3 we will generalize the definitions of section 2 to (a, 8)-
geometries. In section 4 an important lemma will be proved, while in section §
some new terminology will be defined. In section 6 a characterization for H3»™
obtained in 1995 by H. Cuypers [3] is recalled. In section 7 our characterization
theorem is stated and proved.
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2 A characterization of the partial geometry Hy

In [5], J. A. Thas and F. De Clerck characterized the partial geometry H7. Be-
fore stating their characterization theorem, we will explain the terminology that is
used.

An (a, f)-geometry S = (P, L, 1) satisfies the axiom of Pasch (also called
axiom of Veblen or axiom of Veblen-Young) if VLy, Ly, My, Mz € L, L, # Lo,
LilzILy =z ¢ M,z ¢ M, L; ~ Mj foralli,j € {1,2} = M; ~ M,.
Note that for = 8 = 1 and for @ = § = ¢ + 1, the axiom of Pasch is trivially
satisfied.

Let S = (P, L, 1) be a partial geometry, for which o ¢ {1,s+ 1,¢ + 1}, that
satisfies the axiom of Pasch. Let L and M, L # M, be two concurrent lines of
S with intersection point z. Then the substructure S(L, M) = (P*,L*,I*) of S
is defined as follows: £* is the set of the s(a — 1) lines N, such that z ¢ N and
L ~ N ~ M, together with the set of the « lines through z that are concurrent
with at least one of these s(a — 1) lines; P* is the set of points of S that lie on
the lines of £* and I*=I N((P* x L*) U(L* x P*)). As S satisfies the axiom of
Pasch, S(L, M) = (P*, L*,1*) is a pg(s,a — 1,a). Note that for N1, N> € L*,
N; # N, the substructures S(Ny, N2) and S(L, M) coincide. Moreover for
each antiflag (z, N) of S, there is exactly one substructure S(L, M) that contains
both z and N. This substructure we will denote by S(z, N).

Let z and y be two non-collinear points of S. There are (¢ + 1)/a subge-
ometries S(L, M) of S that contain both z and y. We denote these subgeome-
tries by S} = (P, L:,I1),1 = 1,...,(¢t + 1)/a. The line of the second type
(z,y) is defined to be the set Pf N ... NP,y ,,- It follows immediately that
no two distinct points of the line (z,y) are collinear in S (for more explana-
tion see [5]), and that for z,, z2 € (z,y), 21 # 22, the lines {2, z2) and (z,y)
coincide. As (z,y) is a set of two by two non-collinear points of the partial ge-
ometry S7, i € {1,...,(t + 1)/a}, it follows that |(z,y)] < s+ 1 — s/a. If
{z,y)| = s+ 1 - s/aforall z,y € P, z not collinear with y, then the partial
geometry S is called regular.

Theorem 2.1 ([5]) The partial geometry S = pg(s,t,a), a ¢ {1,s+1,t +1},
is isomorphic to an Hy, if and only if

1. § satisfies the axiom of Pasch;
2. Sisregular;
3. 25> s* —as® +a?s? +a’s - 224

Remark. The third assumption of the theorem is derived from a necessary con-
dition for a graph to be the point graph of a partial geometry. This necessary
condition is commonly known as the Bose condition for a graph. Note that the
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third assumption of theorem 2.1 turns out to be a very strong condition, as for
a # s, this condition is almost never satisfied.

3 (o, B)-geometries that satisfy the axiom of Pasch

In this section we will generalize the concepts defined in section 2 for partial
geometries to similar concepts for (o, 3)-geometries. The terminology given in
this section will be the one used in the rest of this paper.

Let S = (P, L,I) be a proper (a, §)-geometry of order (s, t), satisfying the
axiom of Pasch, with 1 < a < # < t+1. Let L and M be two distinct concurrent
lines of S, with L N M = {z}. A substructure S(L, M) of S can be defined in
the same way as is done for a partial geometry in section 2. However, as S is an
(a, B)-geometry, for each antiflag (p, L,) of S(L, M), we have i(p, L,) = a or
i(p, Lp) = B. Hence itis possible that S(L, M) contains a point 2; through which
there are « lines of S(L, M) and a point 2, through which there are 3 lines of
S(L, M). In this case S(L, M) is clearly not an (o, 8)-geometry, as by definition
the number of lines through a point in an (a, 8)-geometry has to be a constant. If
the number of lines of S(L, M) through a point of S(L, M) is a constant, then
S(L, M) is a pg(s,a — 1,a) or a pg(s, 8 — 1,5). This is easy to prove, as S
satisfies the axiom of Pasch. A substructure S(L, M) that is a pg(s,a — 1, a) we
call an a-substructure. A substructure S(L, M) that is a pg(s, 8 — 1, 8) we call
a B-substructure. A substructure S(L, M) that is not a partial geometry, we call
a mixed substructure. In what follows, we will denote a substructure S(L, M)
sometimes as w, poOr g.

The number of substructures through two distinct non-collinear points of S is
not necessarily a constant, as the number of lines through a point in a substructure
is not a constant. This number is however a constant if 8 = s+ 1. Indeed, assume
that 8 = s + 1 and let z and y be distinct non-collinear points of S. Let L be any
line of S through z. As z £ y, exactly o points of L are collinear with y. Hence
there are exactly (¢ + 1)/« substructures S(L, M) that contain both z and y. As
z and y were arbitrarily chosen distinct non-collinear points of S, it follows that
the number of substructures through any two distinct non-collinear points of S is
aconstant and equal to (¢ + 1)/a.

We define a line of the second type (z,y) through two distinct non-collinear
points z and y of S as the intersection of all substructures S(L, M) containing
both = and y. Note that there are at least two distinct substructures through z
and y, as by assumption £ + 1 > «. From the definition, it follows that each
two distinct points of the line {z, y} are non-collinear in S. Note that the notation
(z, y) is also used for a line of S through z and y, the context makes clear whether
it is a line of S or a line of the second type.

An (a,s + 1)-geometry S of order (s,t), with 1 < o < s+1 < t+1,
that satisfies the axiom of Pasch, is called regular with respect to non-collinear
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points if and only if each line of the second type and each line of S that are both
contained in a substructure S(L, M), intersect in at least one point. Note that this
implies that they intersect in exactly one point, as a line of the second type cannot
contain two distinct collinear points of S.

4 An important lemma

We will prove that for a proper (o, s 4+ 1)-geometry S of order (s,t), 1 < a <
s+ 1 < t + 1, that satisfies the axiom of Pasch, that is regular with respect to
non-collinear points, and such that there is at least one a-substructure, it follows
that a = s.

First we make the following observation. Let S be an («a, s+ 1)-geometry that
satisfies the axiom of Pasch and such that S is regular with respect to non-collinear
points. Assume that S contains an a-substructure S(L, M). The points and lines
of S(L, M) form a pg(s,a — 1,a). As a < s+ 1, S(L, M) contains two non-
collinear points z and y. As § is regular with respect to non-collinear points, each
line of S(L, M) contains exactly one point of {z,y). So |(z,y})] = s+ 1 - s/a,
and hence a|s.

Lemma 4.1 Let S be a proper (o, s + 1)-geometry of order (s,t), 1 < a <
s +1 < t+ 1, that satisfies the axiom of Pasch, that is regular with respect
to non-collinear points and such that there is at least one a-substructure. Then
a=s.

Proof. Assume first that there is no mixed substructure S(L, M). Then both
an a-substructure and an (s + 1)-substructure exist. Note that in an (s + 1)-
substructure, any two distinct points of S are collinear in S.

Let z and y be two non-collinear points of S. Each substructure through {z, y)
is an a-substructure. As a < t+ 1, there are at least two distinct substructures m;
and 7, through (z,y). Let pbe a pointof S in my, p ¢ (z,y). Let N be a line of
& contained in 7o, There are « or s + 1 lines through p intersecting N in a point.
As a > 1, there exists a line L; of S through p intersecting IV in a point, such that
L, ¢ m. Let L, be aline of S contained in m; and not incident with p. The line
L, intersects {z, y) (and hence also 72) in a point. Let z; = p, z2,...,2s41 be
the points of L;. Define P’ as the set of points contained in the s+ 1 substructures
S(z;, Le), fori =1,...,8+ 1. As m = S(p, L), all points of m; belong to P’.
In particular the points of {z, y) belong to P’.

We will prove that each line of S that contains at least two points of P, con-
tains s + 1 points of P’. Let z and 2’ be points of P’, z # z'. Suppose that z ~ z'.
We denote the line of S containing z and z' by M. We need to show that all points
of M are points of P'. If z I Ly, if M = L,, orif 2’ € S(z, L), then the result
follows immediately. So we may suppose that z' ¢ S(z,Ls), M # L, and that
z X Lo. We distinguish two cases.
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Case 1: L, ~ M. Let w be the point of L, that is contained in the substructure
S(2',Ly). Let 2" € M, z # z" # z'. We have to prove that 2" € P'. If 2" € L,
then clearly z” € P’. So suppose that z"” X L;. As w, z' € S(2',L,), the line
{w, z') (which can be either a line of S or a line of the second type) has a point
u in common with L. The line (u, z"’) (which can be either a line of S or a line
of the second type) has a point w' in common with L,, as both {u, 2") and L,
belong to the substructure S(L,, M). All the points of this line {u, z") = {u,w')
are elements of S(w’, L2). Hence 2" is a point of S(w', L2), w' € L,, and so
2" eP.

Case 2: L; # M. Let M' be a line that does not belong to ;, such that
zI M', Ly ~ M’ and M’ skew to L,. Note that M’ exists, as there are at least
a > 1 lines through z intersecting L; and at most one of these lines contains a
point of L,. From case 1 it follows that the s + 1 points of M’ are contained in
P'. Moreover, the s + 1 substructures S(z;, L), forz; I Ly (i = 1,...,s+ 1),
coincide with the s + 1 substructures S(z}, L), forz; IM' (i =1,...,8 + 1).
By construction M and M' intersect. Applying again case 1 gives us that each
point of the line M is contained in one of the substructures S(z}, L,), for z; I M’
(¢=1,...,s+1). Hence each point of M is contained in P’.

So we have proved that if a line contains two points of P’, then each point
of this line belongs to P’'. Define £’ as the set of lines of S containing at least
two distinct points of P'. Let &' = (P',L',T'), with I the restriction of I to
(P' x LY U (L' x P’). Now we distinguish two cases.

Assume that there is an (s + 1)-substructure p through L, in S'. Let u be
a point of p not incident with L;. The point u is contained in &', hence u €
S(z', L.) for a point 2’ I L. As u and z’ belong to p, the line (z',u) is a line
of S contained in S(z’, L2 ). Every two lines of S in a substructure of S intersect,
hence {z’,u) intersects L, in a point v. So p contains the point v of La. As
L, C m, v € m. Moreover p contains the point p that is the intersection point of
L, and . It follows that p intersects m in the line (v, p). As (v, p) belongs to p,
itis a line of S. In m; the line (v, p) intersects the line (z,y) of the second type
in a point w (here we use the regularity of S with respect to non-collinear points).
Let LY = (v,p),..., LY, (i=1,...,5+ 1), be the s + 1 lines through w in p.
As z # y, we have that w # z or w # y. So we may assume that w # z. Each
substructure S(L¥,z) (i = 1,...,8 + 1) contains the line (z,y) of the second
type, and hence is an a-substructure. These substructures contain all points of S'.
Through w there are (s+1)a lines of S in S’, namely a lines in each substructure
Sz, L¥)(i=1,...,s+1).

Now we count the lines of S through w in &' in another way. Let N, be a
line of S through w in my, Ny, # (p,v). In each substructure through N,, in S’
there are « or s + 1 lines of S through w. From the previous paragraph, we know
that p intersects 7, in the line {p,v). As w € (p,v), the line N,, intersects p in
the point w. The s + 1 lines LY (i = 1,...,s + 1) through win p give s + 1
substructures S(Ny, LY) through N, in §'. Counting the lines of S through w

268



in these substructures, we get that there are cs + (s + 1 — ¢)(a — 1) + 1 lines
of S through win &', forc € N, 0 < ¢ < s+ 1. It follows that (s + 1)a =
es+(s+1—-c)la—-1)+1l,orc=3/(s+1—a). So(s+1—a)|s, and as
o # 1, it follows that s/2 + 1 < a. We noted in the beginning of this section that
als. Hence a = s.

Assume next that there is no (s+1)-substructure through L, in S’. Then either
&' contains an (s + 1)-substructure not through L,, or S’ contains no (s + 1)-
substructure.

Assume that there is an (s + 1)-substructure contained in S’. This (s + 1)-
substructure in S’ cannot contain the line (z, y). So it contains a line N of S that
is skew to (z,y). The line N is not contained in 7;. If N is contained in one of
the substructures S(x;, o), with z; I Ly (¢ € {1,...,s + 1}), then clearly N
intersects Lo and hence also m; in a point. If N is not contained in any of the
substructures S(z;, L2), z; I Ly (i € {1,...s + 1}), then it contains at most one
point of each such substructure S(z;, L2). Hence each point of N is contained in a
distinct substructure S(z;, Lo), forz; I Ly (i =1,...,s+1). Asm = S(p, L),
with p a point of the line L,, it follows that also in this case N intersects m; in
a point. Let N’ be a line of S in 7r;, such that N’ is skew to N. The s + 1
substructures S(z;, Ls), for z; I Ly (i = 1,...,s+ 1), coincide with the s + 1
substructures S(z}, N'), forz; I N (i = 1,...,8 + 1). So, replacing L; by N
and L, by N’ in the previous part of the proof, we get that o = s.

Assume now that there is no (s + 1)-substructure contained in S’. As S is a
proper (a, s + 1)-geometry and there are no mixed substructures, S contains an
(8 + 1)-substructure p'. Let L, be aline of S through z intersecting p' in a point
w'. The substructure S(L,y, y) contains the line {z, y) of the second type, hence
it is an a-substructure. In S(L,y,y) there are s + 1 — « lines of the second type
through w'. Let (w’, u') be such a line of the second type through w’. Let M, and
M; be two lines of S through w' in p'. Then S(v’, M;) and S(u', M>) are both
a-substructures intersecting p’ in the lines M; and M, of S. Let p' be a point
of S(u', M), p ¢ (u',w'). Let L,y be a line of S through p’ intersecting M,
in a point different from w'. Let Mj be a line of S in S(u', M), p' ¢ Ma. Let
P* be the set of all the points of S contained in the substructures S(z;, M3), for
z; € Ly (i =1,...,8+1). Let L* be the set of all lines intersecting P* in at least
two points. As before, it follows that all points of S on the lines that are element
of £*, are elements of P*. Let I* be the restriction of Ito (P* x L*)U(L* x P*).
Then, replacing S’ = (P', L’,T') by S* = (P*, L*,I*), the result follows in the
same way as in the above,

We conclude that if there is no mixed substructure, then o = s. Now assume
that there is a mixed substructure o in S. Let p be a point of ¢ through which
there are  lines of S in 0. As & < s+ 1, there is a line (p, p') of the second type
through p in .

Let u be a point of o through which there are s + 1 lines of S. As S is regular
with respect to non-collinear points, there cannot be a line of the second type
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through v in ¢. In particular u ¢ (p,p'), and hence (p, p') contains exactly one
point of each of the s + 1 lines through u in o. It follows that |(p,p')| = s + 1.

Counting the lines of S in ¢ that intersect (p, p'), we get that there are a(s+1)
such lines. These lines are all the lines of S in o, because of regularity with respect
to non-collinear points. Counting the lines of S in ¢ intersecting a line of S in
o in a point, it follows that there are ¢(a — 1) + (s + 1 — ¢)s + 1 such lines,
forac € N,0 < ¢ < s+ 1. As S satisfies the Pasch axiom, these are all the
lines of S in 0. Hence a(s + 1) = ¢(a — 1) + (s + 1 — ¢)s + 1, and hence
c=s8+1-3/(s+1—a) Itfollowsthat (s+1—a)ls. Sos+1—-a =3
ors+1—a <sf2. Ifs+1—a = s, then o = 1, a contradiction with the
assumption. So s + 1 — @ < 8/2,and hence 3/2+ 1 < a.

We noted in the above that a|s. From s/2+ 1 < a, it now follows thata = s.
]

5 The different types of substructures

Let S be a proper (a, s + 1)-geometry of order (s,%), 1 < @ < s+1 < t+1, that
satisfies the axiom of Pasch, that is regular with respect to non-collinear points
and such that there is at least one a-substructure. From lemma 4.1 it follows
that @ = s. We will now count the number of points and lines of S in an (s +
1)-substructure, an s-substructure and a mixed substructure, assuming that such
substructures exist.

By definition, the points and lines of S in an (s+ 1)-substructure form a partial
geometry pg(s, s, s + 1). Therefore we will use from now on the term projective
plane instead of (s + 1)-substructure. In a projective plane there are s2 + s + 1
points of S and s2 + s + 1 lines of S, and every two points are collinear.

The points and lines of S in an s-substructure are the points and lines of a
partial geometry pg(s,s — 1,s). Hence we will use the term dual affine plane
instead of s-substructure. In a dual affine plane =, there are s? + s points of S
and s? lines of S. Through each point p of S in « there is exactly one line of the
second type. From the regularity with respect to non-collinear points, it follows
that a line of the second type in  contains s points of S.

A mixed substructure contains exactly one line of the second type. Indeed, let
o be a mixed substructure and let y be a point of S in ¢ through which there are
s lines of S in o. Then o contains a line (y, z) of the second type through y. Let
p be a point of ¢ through which there are s + 1 lines of S. As S is regular with
respect to non-collinear points, {y, z) has exactly one point in common with each
of the s + 1 lines of S through p in o. Hence [{y, z)| = s + 1.

Let L be a line of S in ¢. Counting the lines of S in ¢ that intersect L, we get
that there are 1+4-cs+ (s+1—c)(s—1) = s?+ csuch lines, where c is the number
of points of L through which there are s + 1 lines of S in . Now we count the
number of lines of S in ¢ in another way. Through each point of (y, ) there are s
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lines of S in ¢. Each line of S in ¢ intersects (y, z), so there are (s + 1)s lines of
S in o. It follows that ¢ = s or thus L contains exactly one point through which
there are s lines of S in o. As S is regular with respect to non-collinear points,
this proves that o contains exactly one line of the second type. Hence o contains
s% + s + 1 points of S and s2 + s lines of S. From now on we will speak of a
punctured affine plane instead of a mixed substructure.

6 The characterization of Hy™ by H. Cuypers

In [3] H. Cuypers characterized the (g,q + 1)-geometry H7»™. His characteriza-
tion theorem is in a certain sense more general than ours, but in another sense it
is more restrictive. We will explain this more in detail, after a short description of
his result.

A delta space D is a partial linear space (that has not necessarily an order),
that satisfies the following axiom: for each antiflag (p, L) of D, p is collinear with
no, all but one or all points of L. To exclude some degenerate cases, it is assumed
that each line has at least three points.

A subset X of the pointset of a delta space D is called a subspace if each line
that contains two points of X, is completely contained in X. A subspace together
with all the lines intersecting it in at least two points is again a partial linear space.
Subspaces are usually identified with these partial linear spaces. The intersection
of a set of subspaces is again a subspace. For a subset X of the point set of a delta
space D, we define (X) as the intersection of all the subspaces of D containing
X, and call it the subspace of D generated by X. A plane is a subspace generated
by two intersecting lines.

If a delta space is embeddable in a projective space, then it satisfies the axiom
of Pasch and its planes can be embedded in a projective plane. It follows easily
from the previous section that a delta space embedded in a projective plane is
isomorphic to a projective plane, a dual affine plane or a projective plane from
which a line is removed.

Theorem 6.1 ([3]) Let S be a connected partial linear space (which has not nec-
essarily an order). Suppose that all planes of S are projective or dual affine and
that S contains at least two planes one of them isomorphic to a projective plane.
Then S is isomorphic to H}™,

This theorem is stronger than our characterization theorem in the sense that
the partial linear space S is not assumed to have an order. By connectedness it
follows immediately that the number of points on a line is a constant and equal to
g + 1, where ¢ is the order of the projective plane (which exists by assumption).
The number of lines through a point is however not assumed to be constant. In
our theorem, we start from an (a, s + 1)-geometry, which by definition has an
order (s, t).
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Moreover a priori it is possible in theorem 6.1 that for some antiflag (p, L),
i(p, L) = 0. For an (a, s + 1)-geometry this cannot occur.

On the other hand, in theorem 6.1 the existence of mixed substructures is
excluded, and for this reason the (g,¢ + 1)-geometry SH;*™ is not characterized
by theorem 6.1. Also, our theorem is for (o, s + 1)-geometries, we do not assume
from the start that o = s.

Our characterization theorem can therefore be seen as a certain extension to
theorem 6.1, although in some sense theorem 6.1 is more general than ours.

7 A characterization of Hy"™ and SH{;”"

In this section we prove our main characterization theorem.

Theorem 7.1 Let S be a proper (c, s + 1)-geometry of order (s,t), 1 < a <
s+ 1 < t + 1, that satisfies the axiom of Pasch, that is regular with respect to
non-collinear points, and such that there is at least one a-subgeometry. Then S
is isomorphic to Hyp™ or SHp™.

Proof. From lemma 4.1 it follows that a = s.

Step 1. Let {z, y) and (z, z) be two distinct lines of the second type. We will
construct a projective plane, an affine plane or a dual affine plane through the lines
{z,y) and (z, 2), such that the points in this plane are two by two non-collinear
inS.

Note that y &£ z in S. Indeed, if y ~ z then on the line (y, z) of S there are at
most s — 1 points collinear with z. This is a contradiction as S is an (s, s + 1)-
geometry. In other words, non-collinearity is transitive.

Let L, be a line of S through z. The plane (L;,y) is a dual affine plane
or a punctured affine plane. As (z,y) is contained in (L., y), it follows that
|{z,y}| = s or s + 1. In the same way it follows that [(z, z)| = sor s + 1. We
consider each possibility separately.

[ The case |(z,3)| = s and |(z, 2)| = s|

Let L be a line of S through z. Then S(y,L) and S(z, L) are dual affine
planes. As a dual affine plane contains exactly one line of the second type through
z, S(y, L) and S(z, L) are distinct. Let M be a line of S through y in S(y, L). Let
N bealine of S through z intersecting M in a point, such that N ¢ S(z, L). Let
P’ be the set of points of the substructures S(z;, L),forz; € N (i = 1,...,s+1).
As in lemma 4.1 it follows that each line that contains at least two elements of
P!, contains s + 1 elements of P’. Let £’ be the set of lines of S intersecting
P’ in at least two points. Let &' = (P',L',I'), with I' the restriction of I to
(P'x LYU(L xP'). :
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We will prove that all substructures S(L, z;),for z; e N (i = 1,...,s + 1),
are dual affine planes. To do so, we first prove that each contain a line of the
second type.

By construction y and z belong to &', and S(y, L) # S(z, L). This implies
that no two points of the line (y, z) belong to the same substructure S(z;, L), for
25 € N.

Let w be a point of the line (y, 2) of the second type. If w ~ =z, then
i(y, (w,z)) < s — 1, a contradiction as S is an (s, s + 1)-geometry. Hence w
is not collinear with z in S. As w was arbitrarily chosen, no point of (y, z) is
collinear with 2 in S.

If |(y, z)| = s + 1, then each of the substructures S(L, z;), for z; € N (i =
1,...,8 + 1), contains a line of the second type through z and a point of the line
(v, 2).

Assume now that |(y, z)| = s. Each of the s substructures S(L, 2;), 2; € N,
that contains a point of (y, z), contains a line of the second type through z. Let
S(L, zx) be the remaining substructure through L and a point z; of N. Denote the
intersection point of M and L by u. Theny, z,u € S(M,N). Clearly u ¢ (y, z),
as u ~ yand (y, 2} is a line of the second type. Moreover S(M, N) is a dual
affine plane, as by assumption |(y, z)| = s. As § is regular with respect to non-
collinear points, each of the lines of S through u in S(M, N) intersects the line
(y, z). Hence S(L, z;) intersects S(M, N) in the unique line of the second type
through u in S(M, N).

We conclude that each substructure S(L, z;), forz; e N i = 1,...,8+ 1),
contains a line of the second type, where s of these lines are incident with z and
one of them is incident with z or u.

Assume first that s # 2. We will prove that each substructure S(L, 2;), for
z; € N (i = 1,...,8 + 1), contains at least two lines of the second type. Let
z' € L,z # ' # u. In the dual affine planes S(y, L) and S(z, L), there is a
line of the second type through z’. We denote these lines by (z',y’) and (z’, 2)
respectively. As non-collinearity is transitive, the line (y', 2’) is also a line of the
second type. Let M’ be aline of S through y' in S(y, L) suchthat u,z ¢ M'. Let
N’ be aline through 2’ intersecting M’ in a point, such that N' is skew to L. Then
in the same way as we did above (replace z, M, N,y,z by ', M',N',y/, 2"), it
follows that either all S(z;,L), for z; € N (i = 1,...,s + 1), contain a line of
the second type through 2, or s of them contain a line of the second type through
z' and the remaining one contains a line of the second type through u', where
{v'} = L n M'. From the construction it follows that v’ € {z, 2’, u}. In either
case, all S(z;,L),forz; € N (i = 1,..., 8+ 1), contain at least two distinct lines
of the second type and hence it are all dual affine planes.

Assume next that s = 2. By assumption S(y, L) and S(z, L) are dual affine
planes. Let S(p, L), for p € N, be the remaining substructure through L in S'.

Assume that there are three lines L, L’ and L" of S through z in S(p, L). Then
S(y,L), S(y,L') and S(y, L") contain the line (z,y) of the second type, and
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hence it are dual affine planes. A dual affine plane contains s? + s = 6 points, so
we get that |P’| = 14. However S(y, L) and S(z, L) contain together 9 different
points of P’. So S(p, L) has to contain 8 points of S. This is a contradiction, as
a substructure S(L, M) contains at most s? + s + 1 = 7 points of S. So S(p, L)
contains a line of the second type through z.

Let 2’ be a point of L, z' # z. In the same way as above we prove that there
is a line of the second type through 2’ in S(p, L). Hence S(p, L) contains at least
two lines of the second type. This proves that S(p, L) is a dual affine plane. So
each substructure S(L, 2;), for z; € N (i = 1,2, 3), is a dual affine plane.

Now we will prove that all the substructures contained in S’ are dual affine
planes.

Assume first that there would be a projective plane p contained in S’. From
the above, it follows that p does not contain the line L. By definition of &',
each point of p is contained in one of the substructures S(L, z;), for z; € N
(t = 1,...,8+ 1). Clearly p contains at least two points of a S(L, z;), for
z; € N, as the s? + s + 1 points of S in p are contained in the s + 1 substructures
S(L,z), for z; € N (i = 1,...,8 + 1). The line through these two points
intersects L in a point . So p N L = {r} and p intersects each S(L, z;), for
zz€N(i=1,...,s+1)inalineof S.

Let w be a point of L, w # r. Each substructure S(L,z;), for z; € N
(i =1,...,s+1),is adual affine plane, and hence it contains s lines of S’ through
w. Counting the lines of S’ through w, we get that thereare (s+1)(s—1)+1 = s?
such lines.

A line through w and a point of p contains two points of S’, hence it is a line of
&'. Conversely each line L, of S’ through w intersects p. Indeed, L., is contained
in a substructure S(L, 2;), for z; € N. We proved above that p intersects S(L, z;)
in a line of S, and that in S(L, z;) each two lines of S intersect. It follows that
the s2 lines of S through w in S’ intersect p in a point.

The projective plane p contains s? + s + 1 lines of S. Assume that c of these
lines contain s points collinear with w. Counting the flags (p, Lp), forp € pa
point of S collinear with w and L, a line of S in p, we get that cs + (s + s +
1-c)(s+1) = (s+1)s?, or thus ¢ = s + 2s + 1. This is a contradiction, as by
definition ¢ < s? + s + 1. This proves that there is no projective plane contained
inS'.

Assume next that there is a punctured affine plane o contained in S’. Then o
contains exactly one line (w;, w.) of the second type, with |[{(w;,ws)] = s+ 1.
From the above we know that L is not contained in o. As in the case of a projective
plane, one proves that ¢ contains a point v’ of L. Let u be a pointof L, u # r'.
Through u there are s2 lines of S contained in &', being the s lines through u in
each dual affine plane S(L, 2;), for z; € N (i = 1,...,s + 1). Clearly there
are s + 1 lines through =’ in o, as (w;, w2) cannot be contained in a dual affine
plane. Each of these lines is contained in a different S(L, z;), for z; € N (i =
1,...,8 + 1). Now all lines through u in S’ are contained in the S(L, z;), for
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z; € N (i=1,...,8+ 1), and so they intersect a line of o through r’ in a point.
Hence all lines through u intersect o.

There are s2 + s lines of S in . Let ¢ be the number of lines of ¢ on which
‘there are s points collinear with u. Let a be the number of points of o, collinear
with u, through which there are s lines of S in o. Counting the flags (p, L),
for p € o a point of S collinear with » and L, a line of S in o, we get that
cs+(s2+s—c)(s+1) =as+ (s> —a)(s+1),orthus ¢c = s + s+ a. By
definition ¢ < s? + s, and hence ¢ = 0. This implies that no point of the line
(w1, ws) of the second type is collinear with w.

Let u’ be a point of L, 7' # «' # u. In the same way as above we get that no
point of {(w;,ws) is collinear with u'. As {w;,w.) is contained in &', it follows
that w; € P'. So w, € S(L,z2), for a zx € N. Hence the dual affine plane
S(L, z;) contains two lines of the second type through w;, namely (w,,u) and
(wy,u’). This is a contradiction. Hence there cannot be a punctured affine plane
contained in S’.

We conclude that each substructure contained in S’ is a dual affine plane.
There are s + 1 dual affine planes through L in S’. In each of them there is
one line of the second type through z containing s points, so in total there are
(s +1)(s = 1) = s% — 1 points of &' that are not collinear with z. Now let
P* be the set of these s2 — 1 points of S', together with z. As non-collinearity
is transitive, every two elements of P* are non-collinear in S. As S’ contains
only dual affine planes, each line (of the second type) containing two elements
of P*, contains s elements of P*. Let £* be the set of lines of the second type
containing at least two elements of P*. Let I* be the natural incidence relation.
Then §* = (P*,L*,T*) is a 2 — (5%, s, 1) design, i.e. an affine plane of order s.
As an affine plane is generated by any of its triangles, S* is independent of the
choice of §'.

| The case |(z,y)| = s + 1and |(z, 2)| = s +1]

Let L be aline of S through z. Then S(y, L) and S(z, L) are punctured affine
planes. Let M be a line of S through y in S(L,y), with M N L = {u}. Let
N be a line of S through 2z intersecting M in y', ' # u. Let &' = (P', L',I')
be the incidence structure defined as follows: P’ is the set of points of S in the
substructures S(L, z;), for z; € N (i = 1,...,s + 1), L' is the set of lines of S
containing at least two elements of 7', and I is the restriction of Ito (P’ x L) U
(L' xP).

Each point of the line (y, z) is contained in a distinct substructure S(L, z;),
foraz; € N (i € {1,...,s+ 1}). Because of the transitivity of non-collinearity,
each point of the line (y, z) is not collinear with z. Hence at least s substructures
S(L,z),forz; € N (i =1,...,s+ 1), contain a line of the second type through
z.

If at least two substructures S(L, z;) and S(L, zx), for zj, ¢ € N, 2; # zx,
are dual affine planes, then from the previous case it follows that each substructure
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in &' is a dual affine plane. This is a contradiction, as S(L, z) is a punctured affine
plane.

Hence at most one of the S(z;,L), forz; € N (i =1,...,8 + 1), is a dual
affine plane, at least s — 1 of these substructures are punctured affine planes, and
at most one of these substructures is a projective plane. We deal with each of the
possibilities separately.

Assume that exactly one of the substructures S(z;,L), for z; € N (i =
1,...,8 + 1), is a dual affine plane and exactly one of them is a projective plane.
In a dual affine plane there are s? + s points of S, in a projective plane and a
punctured affine plane there are s> + s + 1 points of S. So |P'| = & + 3% + s.

The line (z,y) is a line of the second type contained in a punctured affine
plane through L. Let M, ..., M,4+; = L be the s + 1 lines of S through z in
the projective plane through L in S’. Then each S(y,M;) (i = 1,...,8+ 1)
is a punctured affine plane, as |(z,y)| = s + 1. Clearly each point of S(y, M;)
(i =1,...,8+ 1), is contained in §’. Counting again the points of S’, we get
that |P’| > s + s% + s + 1, a contradiction.

Assume that exactly one of the substructures S(z;,L), for z; € N (i =
1,...,s + 1), is a projective plane and none of them is a dual affine plane. The
existence of a projective plane S(z, L), Z € N, shows that |(y, z)| = s. Now let
M, be a line of S through z in S(z,L), with M, N L = {u}. Then S(y, M,)
is a dual affine plane. So through u there are s lines of S in S(y, M) and each
of these lines contains a point of {y, z). The line of the second type through u in
S(y, M) therefore has to be contained in S(Z, L). This is a contradiction, as a
projective plane contains no lines of the second type.

Assume that all the substructures S(z;,L),for z; e N(i=1,...,s+1),are
punctured affine planes. Counting the points of S’ we get that [P'| = s3 + 5% +
s+1.

LetL; = L,...L, be the s lines of S through z in S(L, z). Then S(y, L;) are
s punctured affine planes. Together they contain s3 + s + 1 points of S’'. Hence
exactly s2 points of S’ are not contained in a punctured affine plane S(y, L;)
(i = 1,...,8). Let P* be the set of these s2 points and the s + 1 points of the line
(z,y)-

We will prove that the points of P* are two by two non-collinear. Let therefore
pbe apoint of P* and assume that p ~ y. Clearly p ¢ (z, y). By definition of P*,
the line (y, p) intersects S(z, L) in a point of the line (z, ) of the second type.
However, this implies that i(z, (y, p)) < s—1, acontradictionas S is an (s, s+1)-
geometry. Hence all points of P* are non-collinear with y. By transitivity of the
non-collinearity, it follows that every two points of P* are non-collinear in S.
This implies that P* is the set of all points of &' not collinear with z, union {z}.
As|P*| = s®+s+1,ineach S(L,z;),forz; € N (i=1,...,8+1),exactly s
points are not collinear with z.

We will now prove that S’ contains no dual affine planes. Assume therefore
that S’ contains a dual affine plane 7. By definition of S’, the s? + s points of S’
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in 7 are contained in the substructures S(L, z;), forz; € N (i = 1,...,s + 1).
So there is a substructure S(L, zx), for z; € N, that contains two points of =.
The line through these two points intersects L in a point u. Hence 7 N L = {u}.
As = is a dual affine plane, we know that there is a line (u, w) of the second type
through u, with |(u, w)| = s. Butu € L, so {u,w) is contained in an S(L, z;),
fora z; € N. This is in contradiction with the assumption. So S’ cannot contain
a dual affine plane. It follows that each line of the second type contained in S’,
contains s + 1 points of §'.

We define §* = (P*, £*,I*) as follows: P* is as above, L* is the set of lines
(of the second type) containing at least two points of P*, and I* is the natural
incidence relation. Note that £* is well defined because of the transtivity of non-
collinearity. It is easy to see that S* is a 2 — (s® + s + 1,5 + 1,1)-design, i.e.
a projective plane. As a projective plane is defined by any three of its points, S*
does not depend on the choice of S'.

Assume that exactly one of the substructures S(z;,L), for z; € N (i =
1,...,8 + 1) is a dual affine plane and none of them is a projective plane. We
will prove that through each point of S’ there is a line of the second type on which
there are s points of S’. Let « be the dual affine plane through L. Through each
point of 7 there is a line of the second type in 7 that contains s points of S. Now
let p € §', p ¢ n. By definition of S’, p belongs to a punctured affine plane
S(z;, L), for z; € N. So there is a line L, through p intersecting L in a point .
Let (u, u') be the line of the second type through w in . Then S(Ly, u’) is a dual
affine plane through p. So S(L,,u') contains a line of the second type through p
on which there are s points of S’. This shows that through each point of S there
is a line of the second type containing s points of S.

Now assume that there would be two lines of the second type containing s
points of S through a point w € S'. Let L,, be a line of &' through w. Then
through L., there are two dual affine planes contained in §'. From the first part of
the proof, it follows that all substructures contained in S’ are dual affine planes,
a contradiction. Hence through each point of S’ there is exactly one line of the
second type that contains s points of S’.

Note that the line of the second type in each of the punctured affine planes
through L in &' is incident with z. For the punctured affine planes containing
a point of (y, z), this follows from transitivity of non-collinearity. Moreover if
I{v, z)| = s and there would be a punctured affine plane S(L, z;), for z; € N,
that contains no point of (y, z), then = would contain a point 3’ of {y, z). So the
lines (y',z) and (y’, z) are two lines of the second type through y' containing s
points of S, a contradiction with what we proved above.

Let P* be the set of points of S’ that are not collinear with z, union the point
z. As there are s punctured affine planes and one dual affine plane through L, it
follows that there are s lines of the second type through z containing s + 1 points
of S, while the remaining line of the second type through z contains s points of
S. Hence |P*| = s? + s. By transitivity of non-collinearity, we know that every
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two points of P* are non-collinear.

Now we define an incidence structure S* = (P*, L£*,I*) as follows: P* is
the set points of S’ defined above, L£* is the set of all lines (of the second type)
containing at least two points of P*, and I* is the natural incidence relation. As
through each point of S’ there is at most one line of the second type containing s
points of S, |P*| = s2+s. It follows that through each point of P* there is exactly
one line of £* on which there are s points of S. Now we add a new point w to P*,
and we define 1w to be incident with each line of L* that contains s points of S.
Then clearly this new incidence structure isa 2 — (s2 + s+ 1, s+ 1, 1) design, i.e.
a projective plane. As 1 was not a point of S, it follows that S* = (P*, £*,I*)
is a dual affine plane. A projective plane is uniquely defined by any three of its
points, hence S* is independent of the choice of S'.

IThecase [{z,y)| = sand |{(z,2)| = s+ 1]

Let L be a line of S through z. Then S(L,y) is a dual affine plane, and
S(L, z) is a punctured affine plane. As is done in the previous two cases, we can
construct a line NV of S that intersects both S(L, y) and S(L, z) in a point not on
L. Let P’ be the set of all the points contained in the substructures S(L, 2;), for
z€EN(Gi=1,...,5+1).

If there are two dual affine planes or two punctured affine planes S(L, ;) and
S(L, z;), for z;, z; € N, z; # z;, then we can apply one of the previous cases.
So we may assume that all the substructures through L and a point of IV, except
for S(L,y) and S(L, z), are projective planes. However we proved above that at
most one substructure S(L, £), for Z € N, is a projective plane. Hence s = 2.

Let Ly = L, Ly and L3 be the three lines of S through z in S(L, ). The
substructures (y, L;), (i = 1,2, 3), contain the line (z, y) of the second type, with
[{z,y)| = 2, hence it are all dual affine planes. It follows that |P’| = 14. The
substructures S(z,L;) (¢ = 1,2,3) contain the line (z, z) of the second type,
with |(z, z)| = 3, hence it are all punctured affine planes. So |P’| = 15. This is a
contradiction. Hence this case does not occur.

We now studied all the possibilities. The incidence structures S* = (P*, £*,I*
), with P* as defined above, will be called planes of type IV, V and VI, when §*
is respectively a projective plane, an affine plane and a dual affine plane.

Step 2. We define parallelism among the lines of the second type containing
s points of S as follows. Two lines of the second type containing s points of S
are parallel if they coincide or if they are disjoint subsets of a dual affine plane or
a plane of type V or VL.

Clearly the parallelism defined in this way is reflexive and symmetric. It re-
mains to prove that it is also transitive. Let therefore {z,y), (u,v) and (p, w) be
three lines of the second type containing s points of S. Suppose that (z,y) is
parallel to (u,v), that (z,y) is parallel to (p,w). If two of these lines coincide,
then it follows immediately that (u,v) is parallel to (p, w). So we may assume
that no two of them coincide.

278



From the definition of parallelism, it follows that the lines {(z,y) and {u, v)
are both contained in a dual affine plane, a plane of type V or a plane of type VI.
Similarly, the lines (z,y) and (p, w) are both contained in a dual affine plane, a
plane of type V or a plane of type VI. We have to consider three cases.

Assume that both the plane containing (z,y) and (u,v) and the one con-
taining (z,y) and (p,w) are dual affine planes. Let 7, (respectively m3) be the
dual affine plane containing (z, y) and (u, v) (respectively (z,y) and (p, w)). If
m = T, then (u,v) and (p,w) are contained in the dual affine plane m;. By
definition of parallelism it follows that (u,v) and (p, w) are parallel. So we may
assume that 7; # 2. In this case the lines (u, v) and (p, w) are clearly disjoint.

Let M be a line of S in «; and let N be a line of S in 7, skew to M. We
define an incidence structure S’ = (P’, £',T') as follows: P’ is the set of points
contained in the substructures S(M, z;), with 2; € N (i = 1,...,8+1); L' is
the set of lines containing at least two (and hence s + 1) points of P/, I’ is the
restriction of I to (P’ x £') U (L' x P'). By construction ; and = are contained
inS'.

Let L, be a line of S through p in 72. Then L, intersects (z,y) in a point
w'. Let Ly be a line of S in 7y through w'. The substructure S(Ly, L) is a
dual affine plane, a projective plane or a punctured affine plane. So it contains s
or s + 1 lines of S through p and at most one line of the second type. We denote
these lines by Ny = Ly, ..., Ny41, where N,y can be aline of S or a line of the
second type. The substructures S(w, N;) (i = 1,..., s) are s dual affine planes,
as each of them contains the line (p, w). The substructure S(w, N1 ), is a dual
affine plane, a plane of type V or VL.

Clearly S(w, N;) (i = 1,...,8 + 1) intersect m; in a line. Assume that
S(w,N;), 7 € {1,...,8 + 1} intersects 7 in a line L of S. Then L intersects
(z,y) in a point u’. As (p,w) has to intersect each line of S in S(w, N;), {p,w)
intersects L and hence (z,y) in the point »’. This is a contradiction as (p, w) and
{z,y) are parallel. The plane m; contains exactly s -+ 1 lines of the second type.
Hence (u, v) is one of the lines of the second type contained in either S(w, Ny),
forak € {1,..., s}, orin the plane S(w, N,4+1), which can be a dual affine plane,
or a plane of type V or VI. By definition of parallelism, it follows in each case
that (p, w) is parallel to {u, v).

Assume that the plane containing (z,y) and (u,v) is a dual affine plane but
the plane containing (z,y) and (p,w) is not a dual affine plane. Then {z,y) and
(p, w) are contained in a plane of type V or type VI. We call this plane of type V
or VI the plane w, while we call the dual affine plane through (z, y) and (u, v) the
plane 7. Let N be a line of S in #. Let M be a line of S through the point p € w
that intersects NV in a point. Let M’ be a line of S intersecting both S(M, z) and
S(M,y) in a point not on M. Let &' = (P',L',I') be the incidence structure
defined as follows: P’ is the set of points of S contained in the substructures
S(M,z;),forz; € M' (i =1,...,s+1), L is the set of lines of S containing at
least two points of P’ and I is the restriction of I'to (P’ x £') U (£’ x P'). Then
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S’ contains both = and w, as it contains three points of each of them.

The line {z, p} is a line of the second type through z in w. Let IV, be a line of
& through 2 in 7. Then S(p, N;) is a dual affine plane or a punctured affine plane.
So p is collinear with the s points of N, different from z. Let M, ... M, be the
s lines of S through p and a point of N,. Then each S(w, M;) (i =1,...,8)isa
dual affine plane containing the line {p, w), and as in the previous case one proves
that each such substructure intersects = in a line of the second type different from
{z,¥). Now in the dual affine plane = there are exactly s + 1 lines of the second
type. So {u, v) has to be one of the lines contained in a dual affine plane S(w, M;),
forai € {1,...,8}. So (w, p) is parallel to (u, v).

Assume that none of the two planes containing (z,y) and (u, v) respectively
containing {x,y) and (p, w) is a dual affine plane. In this case the points of the
lines (z,y), (p,w) and (u,v) belong to an equivalence class C of non-collinear
points of S. Suppose that z ¢ C. Then z is collinear with each point of C. In
particular z is collinear with z. The plane S({z,z),y) is a dual affine plane. It
contains a line of the second type through 2 that is parallel to (z,y). We denote
this line by (z, 2'). From the preceding case it follows that (z, z') is parallel to
both (u,v) and {p, w), and these lines are two by two disjoint.

As by assumption the plane containing (z, %) and {p,w) is not a dual affine
plane, the line {z, p) is a line of the second type. So S({z, z},p) is a dual affine
plane or a punctured affine plane. Let Ly, be a line of S through p in S((z, z), p).
Let L, be a line of S through y in S((z, 2}, y), such that L, is skew to Ly. Then
we can again define an incidence structure S’ = (P', £',I') as follows: P’ is the
set of points contained in the S(L,, z;), with z; € L, (i = 1,...,8+1); L' is
the set of lines containing at least two (and hence s + 1) points of P’, I’ is the
restriction of I'to (P’ x L')U(L' x P’). As the plane containing (z, y) and (p, w)
is a plane of type V or VI, and as from the above we know that there is exactly
one plane of type V or VI in S’ through the point p, it follows that the plane
containing {z, 2') and (p,w) is a dual affine plane. In the same way one proves
that (z, 2') and (u, v) are contained in a dual affine plane. From a preceding case
it now follows that (p, w) and (u, v) are parallel.

So we proved that the parallelism defined above is an equivalence relation.
Note that each parallel class is a partition of the point set of S. The parallel
classes, which we denote by [(u, v}), are called points of the second type, and the
set of these classes is denoted by P*.

Step 3. We will define parallelism among the planes of type V.

Suppose that w is a plane of type V. Let z be a point of S, z ¢ w. As the
parallel classes of the lincs of the second type containing s points of S, partition
the points of S, there are s+ 1 lines {z, 1), - - -, {Z, y5+1 ) that are parallel to lines
of w. We will prove that the lines {z,¥1),- .-, {Z, ¥s+1) are contained in a plane
of type V.

Assume first that there is a line L of S containing z and a point u of w.
Let (u,u’) and (u,u") be two lines through u in w. Then |(u,u')] = s and
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|{u,u")| = s. Hence S(L,u') and S(L,u") are dual affine planes. Let N be
a line of S intersecting S(L,u') and S(L,«") in a point not on L. We define
an incidence structure §' = (P’, L',T') as follows: P’ is the set of points of S
contained in S(L, z;), for z; € N (i = 1,...,s8 + 1), L' is the set of lines of S
containing at least two (and hence s + 1) points of P’ and I is the restriction of I
to (P x L'YU (L' x P).

It is clear that x belongs to S'. Also S(L,u’) and S(L, ") belong to S’ and
hence S’ contains three distinct points u, 4’ and u” of w. This shows that w is
contained in §'.

From the previous part of the proof, it follows that each substructure S(L, z;),
forz; € N (i =1,...,8+1),is adual affine plane. As w is contained in S’, each
S(L, ;) intersects w in a line {u, p;) of the second type through u. Hence each
dual affine plane S(L, z;) contains a line of the second type through z parallel
to (u,p;). As (z,y;) is the unique line through z parallel to (u,p;), (z,y;) is
contained in S(L, z;). Hence the lines (z,y,),. .., (z,ys+1) are each contained
in a distinct dual affine plane S(L, z;), for 2; € N.

Let P" be the set of points of S’ that are not collinear with z, union {z}. Then
P" is the set of points of the lines (z,y1), . . . {Z, ¥s+1). Let L be the set of lines
of the second type containing at least two points of P". Let I” be the restriction
of I'to (P” x L")U(L" x P"). Then S" is a plane of type V. So we have proved
that there is a plane of type V through z, with point set the points of the lines
(ms yl): LRRR (22, y8+l)-

Next we assume that there is no line of S through z and a point of w. In
this case z and the points of w belong to an equivalence class C of non-collinear
points in S. Suppose that v ¢ C. Then v is collinear with z and with each
point of w. Let (v,21),...,(v,2:41) be the lines containing v and parallel to
(z,y1),. .., {Z,Ys+1). From the preceding case it follows that the points on these
lines are the points of a plane of type V. Indeed, (v, 21),. . ., (v, 2,41 ) are parallel
to lines of w and v is collinear in S with each point of w. As (v, z) is a line of S,
the same argument shows that the points on (z,y1),...,(z, ys41) are the points
of a plane of type V.

So we have proved that the points of the lines (z,y,),..., (T, yo41) are the
points of a plane of type V. We define parallelism among planes of type V as
follows: two planes w and w' of type V are parallel if some line of the second
type in w is parallel to a line of the second type in w'. From the definition of
parallelism for lines of the second type containing s points of S, it follows that the
new defined parallelism is an equivalence relation. Each parallel class of planes
of type V partitions the point set of S. The parallel classes, which we denote by
[w], are called lines of the third type, and the set of these classes is denoted by £*.

Step 4. We introduce a new incidence structure S = (P, £, 1), with P =
P U P*, with £ the set of all lines of S, all lines of the second type and all lines
of the third type and with incidence relation I defined as follows.
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l.forzePandL e L:z1L < zIL;
. for z € P and (y, z) a line of the second type z I {y,z) <= z € (y,2);
. forz € P and [w] € £*: z is not incident with [w];

. for [(y,2)) € P* and L € L: [{y, z)] is not incident with L;

wn AW N

. for [(y, 2)] € P* and (x, v) a line of the second type:
*If [(u,v)| = & [(yaz)] L{u,v) <= (u,v) € [(y,2)};
*If |(u, v)| = s + 1: [(y, 2)] is not incident with (u, v);

6. [(y,2)] € P*and [w] € L*: [(y,2)] I [w] <= (,2) is parallel to a line in

Step 5. We prove that S is the design of points and lines of a projective space.

We first prove that each two distinct points of S are incident with exactly one
lineof S.

Assume that py, p2 € P, p1 # p2. Then either p, is collirear in S with p,, in
which case the line of S through p; and ps is the unique line of S through p, and
p2; or p; and p, are not collinear in S, in which case the line of the second type
containing them is the unique line of S through p, and p,.

Assume that p, € P, [(z,y)] € P*. In this case the unique line of S through
p1 and [{z,y)] is the line of the second type through p, that belongs to the parallel
class of {x, y).

Assume that [(z,y)], [(v,v)] € P*, [(z,9)] # [(u,v)]. If (z,y) and (u,v)
have a point in common, then z, y, u, v are contained in a plane w of type V. Note
that w cannot be a plane of type VI, because in a plane of type VI all lines of the
second type containing s points of S belong to the same parallel class. So [(z, y)]
and [(u, v)] are two points of the line [w] and there is no other line in S containing
both these points. If {z,y) and (u,v) have no point in common, then we can
choose a line in [(z, y)] that does have a point in common with (u, v) (namely the
line through u and [(z, y}]). So the same argument as before shows that [(z,y)]
and [{u,v)] are on exactly one line of S.

Next we prove that every three distinct points of S, that are not incident with
a common element of L, generate a projective plane. From the definition of S
it follows that a dual affine plane and a punctured affine plane induce projective
planes. Also planes of type IV, V and VI are projective planes, containing no
lines of S but lines of the second type and lines of £*. We have to consider the
following cases.

Assume that p;, p2, p3 € P. Then clearly there is either a dual affine plane, a
projective plane, a punctured affine plane or a plane of type IV, V or VI containing
1, p2 and p3. Hence in any case p;, p» and p; are in a projective plane.

Assume that p;, p» € P and [(z,y)] € P*. The lines (p,[(z,y)]) and
(p2, [{z,¥)]} are lines of the second type containing s points of S.
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If (p1,p2) is a line of S, then the points of S in S({p1, p2), [(z,¥)]) are the
points of a dual affine plane, and hence in S it is a projective plane. .

If {p1, p2} is a line of the second type containing s points of S, then let Ly,
be a line of S through p,. The substructures S(Ly,,p2) and S(Ly,, [{(z,y)])
are both dual affine planes. Let M be a line of S intersecting S(L,,,p2) and
S(Lp,, [{=,)]) in a point not on L,,. We define an incidence structure S’ =
(P, £',1') as follows. Let P’ be the set of points of S contained in S(L,, 2;), for
z; apoint of M, let L' be the set of lines of S containing at least two points of P’
and let I' be the restriction of Ito (P’ x £') U (L' x P'). As S’ contains the dual
affine planes S(L,,,p2) and S(Ly,,, [(z,y)]), one proves as in the first part of the
proof that there is a plane of type V through p;, p, and [(z, y)].

If {p1,p2) is a line of the second type containing s + 1 points of S, then as
in the previous case we can define an incidence structure S’. It then follows that
there is a plane of type VI through p,, p; and [{(z, ¥)].

Assume that p € P and [(z,y)], [(u,v)] € P*. The lines (p, [(z,y)]) and
(p, [(u,v)]) are lines of the second type that contain s points of S. We have
proved above that there is a line [w)] of the third type, that contains both [{z,y)]
and [(u, v)]. We have also proved that each point of S belongs to a plane w' of
type V with parallel class [w]. Hence there is a plane w), of type V through p
with parallel class [w]. The plane w,, is a projective plane containing the points p,
[(, )] and [(u, v)].

Assume that [(z, y)], [(u,v)]. [(, ¢)] € P*. Let w be a point of P. The line
through w and [(z,y)] (respectively [(p,¢)] and [(u,v)]) is a line of the second
type that contains s points of S. Let r; (respectively r, and r3) be a point of S on
this line, that is distinct from w. Let L be aline of S through w. The substructures
S(L,r1) and S(L,r,) are both dual affine planes. As before, we can prove that
the points w, r, and 7 are contained in a plane w of type V. Hence (ry,r;) is a
line of the second type containing s points of S, while [(z, y)] and [(p, ¢)] are both
contained in the line [w] that is an element of £*. Moreover for each point z of the
line (ry,72), z € P, the line (w, 2) is a line of the second type containing s points
of S and the point [(w, z)] belongs to the line [w]. Analougously, the substructures
S(L,r1) and S(L, r3) are both dual affine planes, and hence it follows that the
plane through w, r; and r; is a plane w’ of type V. The line [w'] is an element of
L*, and it intersects [w] in the point [(w, 1 )].

Let p = (Puw, L, ) be the incidence structure defined as follows. The point
set Py, is the set of points of P* that lie on a line of £* that intersects both [w]
and [w'] in a point, together with the points of the lines of £* through [(z, y)] that
intersect a line [w"'] in a point, [w"'] being a line of £* that intersects [w] and [w'] in
a distinct point. The line set £,, is the set of all lines of £* containing two points
of P*. Note that from the definition of P,, it follows that each point of such a line
belongs to P,,. Finally I, is the restriction of I* to (P,, X L) U (Ly X Py).

We will now prove that p is a projective plane. Let « be the projective plane
through r,, ro and r3. Note that we proved in a previous case that « exists. Let z’
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be an arbitrary point of S in the plane .

If 2’ is a point of {ry,72), then we know that the line (w, 2’) contains a point
of the line [w], which is a point of P,,. Assume now that 2’ ¢ (r,,72). The
line (2’,r3) either intersects (ry, r2) in a point of S, or it is parallel to (r;, 2), in
which case it is a line of the second type containing s points of S.

Assume first that (z’,r3) intersects (ry,r2) in a point 2" of S. Then 2" is a
point of the plane w of type V, hence {(w, 2") is a line of the second type containing
s points of S. Also {w,r3) is a line of the second type containing s points of S.
Hence the substructures S(L, z"’) and S(L,r3) are both dual affine planes. As
we did before, we can prove that the plane through w, 2 and r3 is a plane w* of
type V. It follows that {w, z') is a line of the second type containing s points of S.
The line [w*] intersects [w] in the point [(w, 2"}], and it intersects [w'] in the point
[(w,r3)). Hence [w*] is a line of L,,. The point [(w, 2'})] lies on this line, hence it
is a point of P,,.

Assume next that {2, r3) and (ry, r2) are parallel. Then these two lines both
contain the point [{z’, r3)] of P*. The line through w and [(2’, r3})] is a line of the
second type containing s points of S. Let Z be a point of S on this line, Z # w.
The substructures S(L, Z) and S(L, r3) are both dual affine planes. It follows that
the plane containing w, 3 and Z is a plane & of type V. The line [@] is an element
of £*. This line intersects [w] in the point [(2’,r3)], while it intersects [w'] in
the point [(w,r3)]). Hence [&] is an element of £,,, and the point [(w, z')] is an
element of P,,.

So with each point z of the plane {r,, ¢, 3} there corresponds a point [{w, z)]
of p, and this point is unique. This proves that p is isomorphic to the projective
plane {ry,r2,73). It follows also that p is a projective plane, and hence [(z, )],
[{», q)] and [(u, v)] generate a projective plane.

We conclude that S is the design of points and lines of a projective space
PG(n,s). As each two distinct points of S* generate a line of S*, it follows
that S* = (P*,L*,I*) is the design of points and lines of a projective subspace
¥[m) of PG(n, s). As not every line of S contains a point of S*, it is clear that
m<n—2

Assume that there is no punctured affine plane. The lines of S are the lines
of S, the lines of the second type containing s points of S and a point of S*, and
the lines of the form [w), with w a plane of type V. So P is the set of all points of
PG(n,s) \ ¥[m], L is the set of all lines skew to ¥[m] and I is the incidence of
PG(n, s). This proves that S is isomorphicto H}™,0 < m < n - 2.

Assume next that there is a punctured affine plane. Then S contains lines on
which there are s + 1 points of S, that are not lines of S. Let B be the set of all
these lines. As the points of S* are the points of the subspace ¥[m)], the number
of lines of S through a point of S that contain a point of S*, is a constant. As there
are ¢ + 1 lines of S through each point of S, the number of lines of B through a
point of S is also a constant.
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A punctured affine plane contains exactly one line of B. Neither a dual affine
plane, nor a projective plane can contain a line of B. Hence a plane that contains
two lines of B, cannot contain a line of S. This proves that the lines of B through
a point z of S are the lines through z in an r-dimensional subspace II[r] of
PG(n, s), and this subspace contains no lines of S through z. It immediately
follows that the subspace II[r] can not contain lines of S, as otherwise on such a
line L of S there would be no points that are collinear with z, a contradiction as
Sisan (s,s + 1)-geometry.

Let y be a point of II[r], y different from z. Then the subspace II,[r'] co-
incides with II;[r]. Indeed, all lines through y in II;[r] are lines that do not
belong to S, so surely II;[r] C II,[r']. Now assume that IT, '] is not a subspace
of II;[r]. Then II,[r] would contain a line L of S through z. By definition of
IT, [r'], it follows that no point of L is collinear with y in S, again a contradiction.
This proves that IT, [r'] = I1;[r]. Hence for every point z of S, the dimension of
II,[r"] is r. We will prove that ¥[m] C II, [r], for each point z of S. Indeed, if
¥[m] would not be contained in II,[r], then there would be a line N of B through
z and a line (2, u), with u a point of ¥[m)], such that the plane through u and N
contains a line of S through 2. This is a contradiction, as such a plane cannot
exist. Hence ¥[m) C II,[r], for each point z of S, and thus r > m + 2. Two sub-
spaces II,, [r] and ITp, [r] either coincide, or they have no point of S in common,
Hence the subspaces II,[r], for z € S, partition the points of PG(n, s) \ ¥[m).
We conclude that S is isomorphic to SHy"™. O
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