ON THE SPECTRUM OF
CRITICAL SETS IN BACK CIRCULANT LATIN
SQUARES

NICHOLAS CAVENAGH, DIANE DONOVAN, ABDOLLAH KHODKAR!
CENTRE FOR DISCRETE MATHEMATICS AND COMPUTING
DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF QUEENSLAND
QUEENSLAND 4072
AUSTRALIA

Abstract: In this paper we prove there exists a strong critical
set of size m in the back circulant latin square of order n for all
"2% <m< "2.; % when n is odd. Moreover, when 7 is even
we prove that there exists a strong critical set of size m in the
back circulant latin square of order n for all "22‘ - (n-2)<

2_ 2 .2 2 2”
m< 52 andme {5, % +2,% +4,..., 552 -n}.

1. BACKGROUND INFORMATION

In any finite combinatorial configuration it is possible to identify defin-
ing subsets which uniquely determine the structure of the configuration and
in some cases are minimal with respect to this property. For instance, con-
sider the back circulant latin square B, corresponding to the cyclic group
of order n. That is, an n x n array in which cell (,7), 0 < i,7 < n—1, con-
tains the symbol i+ j (mod n). The papers [6] by Curran and van Rees, [5]
by Cooper, Donovan and Seberry, and [7) by Donovan and Cooper all deal
with identifying partially filled-in latin squares, called critical sets, which
uniquely determine the back circulant latin square and which are minimal
with respect to this property. Recently Cavenagh ([4]) has shown that the
size of a critical set in B,, must be at least O(n*/3). It is conjectured in [1]
that the smallest possible size for a critical set in By, (in fact for any latin
square) is |n?/4]. More recently Bedford and Johnson, [3] and [9], have
established the existence of weak critical sets (critical sets with a certain
type of completion) in back circulant latin squares.
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In all of these papers the authors exploit the cyclic nature of the latin
square. More specifically, for 0 < r,i,j < n — 1, let d, denote the set of
cells (i,7) which contain the symbol r where i + j = r and d,4, denote
the set of cells (¢,7) which contain the symbol r, where i + j = n + .
Then in the majority of results given above, the defining subset is given by
(Uooodr)U(UPZ2, | dnyr) (where @ is between 0 and n—2) or a closely related
set. This leads to a general question: For which partitions P = {I,J} of
the set {0,1,2,...,n — 2} does (U;erd;) U (Ujcsdnyj) uniquely determine
the structure of the back circulant latin square and which partitions are
minimal with respect to this property? The current paper sheds light on
the problem, while constructing new critical sets of order n and size (n? —
1)/4,...,(n%? — n)/2 when n is odd and n?/4,n2/4 +2,...,(n?> — n)/2 -
n,(n? —n)/2 —n+1,...,(n® — n)/2 when n is even. The existence of
critical sets of these sizes in latin squares was first verified by Donovan
and Howse in [8]. (See also [2].) The results in this paper, however, apply
specifically to back circulant latin squares. In addition, new constructions
of latin trades have rendered proofs more transparent.

2. DEFINITIONS

We start with basic definitions which allow us to state and prove our
main results, Theorems 35, 38, 41 and 43.

Let N ={0,1,...,n—1}. A partial latin square P of ordernisannxn
array with rows and columns indexed by N and entries chosen from N in
such a way that each element of N occurs at most once in each row and
at most once in each column of the array. For ease of exposition, a partial
latin square P will be represented by a set of ordered triples {(i, j; P;;) |
element P;; € N occurs in cell (z,7) of the array}. The transpose of a a
partial latin square P, denoted by PT, is the partial latin square obtained
by exchanging rows with columns:

PT = {(4,4 Py) | (3,4 Pys) € P).

If all the cells of the array are filled then the partial latin square is termed
a latin square. That is, a latin squere L of order n is an n x n array
with entries chosen from the set N = {0,1,...,n — 1} in such a way that
each element of N occurs precisely once in each row and precisely once in
each column of the array. Let B, denote the back circulant latin square
of order n, based on the addition table for Z,. For all positive integers n,
By ={(i,jii+Jj (mod n)) [0<i,j <n-1}

Later in this paper we will need precise definitions of certain subsets of
a back circulant latin square, with this in mind we emphasise the following
definitions.
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Definition 1. For 0 <r <n -1,
1. do={(i,5;r)]| i+j=r) and
2 duyr = {(i,5ir) | i+j=n+r}.

Definition 2. Given a partition P = {I, J} of the set {0,1,2...,n — 2},
let Dp be the following partial latin square in Bj:

Dp = (Jd) U (U dnss)-
iel JjeJ
Example 3. Let P’ = {I',J'} and P" = {I",J"} be partitions of the
set {0,1,2...,5), with I' = {0,1,4}, J' = {2,3,5}, I = {0,2,3,4} and

J" = {1,5}. Figure 1 illustrates the partial latin squares Dps and Dpn,
which are contained in the latin square B;.

D‘pr D’p"
0}1 4 0 2134
1 4 2134
4 2134 1
4 2 314 1
4 2(3 4 1
213 1
213 5 1 5
By
0]1]2]3]4]|5]6
1/2)]31415(61]0
2({3]1415]6]0]1
3|14[5]6[0]1f2
415({6]10|1]2(3
5(6(0[1}2[3[4
6]0(1[2[3]4]5
Figure 1

For ease of exposition we define:

Definition 4. For 0<r<n -1,

1. D, =dgUdy U...Ud,_;, and
2. Dn+r = dﬂ+r U dn+r+l U LU d2n_1.

Now simple counting arguments verify:

Lemma 5. For0<r<n-1,
1. |d;| =7 +1,
2 |dntel=n=(r+1),
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3. dr Udynr consists of all the elements (3,j;7) of By, wherei +j=r
(mod n),

4. |Dy| =7r(r+1)/2, and

5. |Dptrl = (n —r)(n —r —1)/2. a

Example 6. For instance
e dy = {(0,0;0)}, dn = {(1,2 — 1;0), (2,2 — 2;0),...,(n—1,1;0)}, so
|do] =1, |dn| =1 - 1;
o d = {(011; 1)’(1’0;1)}1 dny1 = {(2177' - 1;1)1(3:"' -2 1):---:
(n—1,21)}, 50 |[dy| =2, |dnsa| =1 - 2;
edpy = {(0,n-1n-1),1,n-2Zn-1),...,(n-1,0n - 1)},
dan—1 =0, 50 |[dn—1| =7, |d2n-1| = 0.

We can now define the partial latin squares that will be of chief consid-
eration in this paper.

Definition 7. Let [n/2] <r <n-2and [n/2)] -1 < s <7 —1 Then
Dy,s is the following partial latin square in By:

DT,E = (Dr \ dg) U dn+g U Dn+r.

Now let [(n+4)/2] <r<n-2and |[(n+2)/2)]<s<r—1. Thené&,,is
the following partial latin square in By:

Ers = ((Dr\ds) \ d|(n-2)/2)) U d|3n-2)72) U dnts U Dnyr.

Example 8. The partial latin squares D7 4 and &7 5 in the back circulant
latin square By are given in Figure 2.

D74 E75
0]1(2]3 5]6 0]1]2 4 6
112]3 5|6 12 4 6
213 5|6 2 4 6
3 5|6 4 6
5|6 4 6 3
516 4 6 3
6 4 6 3 5
4 3 5
4 7 3 5 7
Figure 2

In addition we will study the partial latin squares C, given below.
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Definition 9. Let C,, 1 < r < n—2, be the following partial latin squares
in By,

G
C,

(Dn-1\{(n-2,0;2~-2),(0,1;1))U{(n-2,1;n— 1)}, and
(Craa\{(n-—7r-1,0;n—r —1),(0,7;7)})
U{n-r-1,rn-1)}, r>2.

Example 10. The partial latin squares C;, C5, C3 and Cy in Bg are shown
in Figure 3.

Cl Cz
0 21314 0 314
112134 1{2]3]4
213(4 2(3]4
314 415
5 5
Cs Cy
0 4 1]
112134 2131415
314]5 31415
415 415
5 5
Figure 3

For a given partial latin square P the set of cells Sp = {(3,) | (3, j; P;;) €
P, for some P;; € N} is said to determine the shape of P and |Sp| is said to
be the size of the partial latin square. That is, the size of P is the number
of non-empty cells. Foreach r, 0 < r < n -1, let Rp denote the set of
entries occurring in row r of P. Formally, Ry = {P,; | (r,j; P;) € P}.
Similarly, for each ¢, 0 < ¢ < n — 1, we define Cp = {P; | (3, ¢; Pic) € P}.

A partial latin square Q of order n is said to be a latin trade (or latin
interchange) if @ # @ and there exists a partial latin square Q' (called a
disjoint mate of Q) of order n, such that

1. Sq =S¢,

2. for each (irj) € SQ’ Qij # Q,ij1

3. foreachr,0<r<n-1, Rp = Rp:, and

4. foreachc,OScﬁn—l,C&:C&.

A critical set in a latin square L (of order n) is a partial latin square C
in L, such that
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(1) L is the only latin square of order n which has element k in cell (¢, j)
for each (i,j; k) € C, and
(2) no proper subset of C satisfies (1).

A uniquely completable set (UC) in a latin square L of order n is a
partial latin square in L which satisfies Condition (1) above. So a uniquely
completable set P in a latin square L is a critical set if for each (i, j; k) € P,
there exists a latin trade Q in L such that QNP = {(i,7;k)}. (This ensures
that P\ {(¢,J; )} has at least two completions: L and (L\ Q@)U Q".)

Let L be a latin square of order n and U C L be a uniquely com-
pletable set. In addition let T be a partial latin square of order n such that
U C T c L. We say that the addition of an ordered triple ¢t = (r,¢;s) is
forced (see [10]) in the process of completing T to L, if

(i) Vr' # r, 3z # c such that (r',2;8) € T or 3z # s such that
(r',;2) €T, or
(ii) V' # ¢, 3z # r such that (2,c';8) € T or 3z # s such that
(r,d;2) €T, or
(iii) Vs' # s, 3z # r such that (2,¢;8') € T or 3z # c such that
(r,2;8') €T.

The uniquely completable set U is called strong if we can define a sequence
of sets of ordered triples U = F) C F» C F3 C --- C F, = L such that each
triple ¢ € F;4; \ F; is forced in F; for 1 < i < r—1. A uniquely completable
set is super-strong if each triple in this sequence is forced only by virtue of
property (iii) in the above definition of forcing.

In Section 3 we show that Dp (see Definition 2) is always a strong
uniquely completable set. However the set Dp is not necessarily a critical
set in B,,. For instance consider the partial latin squares Dp: \ {(0,4;4)}
and Dpr \ {(2,2;4), (2,6;1)} as set out in Example 3. These proper subsets
of Dp are also uniquely completable sets (in fact critical sets) in By. This
example leads us to the following open problem.

Open Problem. Classify all the partitions P = {I,J} of the set
{0,1,2... ,n — 2} such that Dp is a critical set in Bp.

The above problem has been studied in the past and the next theorem
provides some partial solutions to this question.

Theorem 11. Let 0 < r < n—1. Then D,UD, . is a super-strong critical
set in B,,.

Proof. This result is proved in [6], [5] and [7].
a

Applying Lemma 5 and Theorem 11 leads to the following corollary.
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Coroliary 12. Let 0 < r < n—1. Then there exists a super-strong critical
set of size (r(r +1)+ (n—r)(n—r—1))/2 in the back circulant latin square
of order n.

In this paper we generalise Theorem 11 and find some new partitions
P ={I,J} of the set {0,1,2...,n — 2} such that Dp defines a critical set
in By,. Specifically, we will show that the partial latin squares given by D, ,
and &, are strong critical sets in By,. We also show that the partial latin
square C is a strong critical set in B,,. In Section 3 we show that that these
partial latin squares have unique completion to By,. Then in Sections 4 and
5 we construct latin trades and verify that every element of the partial latin
squares D, 4, &, and C, is necessary for unique completion to B,. With
these constructions we prove that there exists a strong critical set of size
m in B, for all "24‘ lL<m< "22‘ % when n is odd. Moreover, when n is
even we prove that there exists a strong critical set of size m in B, for all

2
"22‘“—(n—2)gms#a,ndme{"T,%;+2,"Tz-+4,...,"22‘"—71.}.

3. UNIQUE COMPLETENESS

In this section we focus on the sets Dp and C, (see Definitions 2 and 9,
respectively) and prove that both of these sets have unique completion.

Lemma 13. For any partition P = {I,J} of the set {0,1,2...,n — 2},
the partial latin square Dp is a strong uniquely completable set in B,,.

Proof. The following is an algorithm which verifies that Dp has a strong,
unique completion to B,,.

Algorithm
e let X =0, F=Dpandt=|J|
e Fori=1tot
— Let z; = min{j | j € J\ X}, then for all y € N such that y < z;,
dy C F and for all z € N such that z > z;, symbol z; occurs in
row and column z of F. Hence in the process of completing F'
for k=0,...,z; cell (k,z; — k) must contain symbol z;.
— Set X :=XU{z;} and F := FUd,,.
¢ End
At the conclusion of this process we obtain a superset of D,,_;, which is a
strong, uniquely completable set by Theorem 11. Therefore Dy is a strong,
uniquely completable set in B,,. O

Lemma 14. Let 1 < r < n — 2. The partial latin square C, (given in
Definition 9) is a strong completable set in B,, for all r.

Proof. (a) The empty cells in row zero of C, are (0, j), where j € {1,2,...,
r}U{n—1}. We fill these empty cells from j = n—1 to j = 1. Since the cell
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(n—j—1,j) is filled with n — 1 for 1 < j < r this forces the cell (0,7 — 1)
to contain (n —1). On the other hand, (d; \ {(0,35;7),(5,0;5)}) C C-
for j = r,r — 1,r - 2,...,1. This forces the cell (0,j) to contain j for
j=rr—1r—-2,...,1. Weupdate C, by filling the empty cells in row
zero.

(b) The empty cells in column zero of C, are (i,0), where i € {n — 1 —
nn—rn—r+1...,n—1}. We fill these empty cells from i = n — 1
toi = n—1-r. Since the cell (i,n — 1 —¢) is filled with n — 1 for
n—1-r < i< n-2 this forces the cell (n —1,0) to contain n— 1. On the
other hand, (d; \ {(0,%;%), (3,0;4)})) CCr fori=n—-2,n-3,... ,n—-1-r.
This forces the cell (i,0) to contain i fori =n—-2,n-3,... ,n—1—r. We
update C, by filling the empty cells in column zero. The resultant partial
latin square is a superset of D,,_1, so it follows that C, is a strong uniquely
completable set in B,,. O

4. LATIN TRADES

In this section we develop a theory of latin trades that will be used to
show that the partial latin squares under consideration in this paper are
indeed critical sets. Lemmas 18 and 21 derive latin trades that may exist in
back circulant latin squares of any order. We also introduce an operation
o, (see Lemma 23) to combine these latin trades to make new ones. All of
the latin trades are designed to avoid particular sets of elements.

Example 15. Because of the complexity of the arguments that follow, in
this section we focus on a specific example. Our approach is then gen-
eralised in Section 5. Consider the partial latin square £75 in By, given
in Example 8. By the end of this section we will have shown that for
each element (7, j;k) in &5 there exists a latin trade I in B, such that
IN&r 5 = {(i,5; k)}. An immediate consequence will be that €75 is a critical
set in Byg.

First consider the element (0,2;2) in £7,5. What sort of properties must
a latin trade I have so that I N &5 = {(0,2;2)}? Well, to begin with, I
must intersect d,42, because I must have at least two cells containing the
entry 2. Also I must avoid d4 and dg. So if we can construct a latin trade
I which is contained in {(0,2;2)} U (IJdp), (where 8 < p < 9+ 2) we are
done. In fact a latin trade with these properties is given in Figure 4.
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2 8
8 2
8 2
Figure 4

The following construction will enable us to find latin trades for all the
elements in dp, d; and d; of 5. First we need the following definition,
which provides a “box” in which to frame a latin trade.

Definition 16. Let 1 < z,y < n. Define L(z,y,n) to be the partial latin
square in By, formed by the intersection of the first z + 1 rows with the
first y + 1 columns. More formally,

L(z,yn) = {(i,jii+j (modn))|0<i<2,0<j<y}

The next lemma gives a result on the existence of latin trades in subsets
of the back circulant square.

Lemma 17. Let 1 < z,y < n. The partial latin square L(z,y,n) contains
no latin trades if z +y < n.

Proof. Suppose there exists a latin trade I € L(z,y;n), where z + y < n.
Now, the cell (0,0) is the only cell in L(z,y,n) containing the symbol 0.
Therefore (0,0;0) cannot be contained in I. Since z + y < n, each cell
(¢,7) in L(z,y;n) contains the entry i + j. Suppose we have shown that
there exist no cells in I containing the entries 0 through to k, for some
k < z +y, and suppose that (0,k + 1;k + 1) € I. Then there must
be an element (0,7;k + 1) € I’ (where j # k + 1) and thus an element
(k+1-3,5;k+1) € I, by the definition of a latin trade. Thus 0 < j < k.
But from our assumption, (0,7;5) € I, so (0,j;k + 1) cannot belong to
I'. Tt follows that (0,k + 1;k + 1) is not in I. Similarly, each element
(t,k+1—4;k+1) €I, where1 <i < k+ 1. So the result follows. a

Lemma 18. Let n < 22 < 2n. There exists a latin trade in the back
circulant square B, denoted by G;,», with the following properties:
L. Gz,n C L(z, z,n), and includes the elements (0, 0;0), (0, z; z), (z, 0; z),
(» - z,2;0), (z,n — z;0).
2. Gz,n\ {(0,0;0)} is a subset of |Jdp, where z < p < n.
3. Ggz,x contains no entries in cells of the form (e, 8) where 0 < 8 < n—=z.

295



Proof. A latin trade G, with the above properties is given in Theorem
4, Section 3 of [8]. We shall give an alternative and more straightforward
construction.

We consider two cases: n = 2z and n < 2z.

If n = 2z, our latin trade G; 2, is an intercalate (latin trade of size 4)
containing the elements (0,0;0), (z,0; 2), (0, z; z) and (z,z;0). Its disjoint
mate, G, 5, consists of the elements (0,0; z), (0, z; 0), (z,0; 0) and (z, z; ).

Otherwise n < 2z. Let n — z = (2z — n)a + b, where a is an integer
greater than or equal to 0 and b is an integer such that 0 < b < 2z —n. We
consider two situations: b=0 and b > 0.

0 n—z T
0 (R e ity J|. __________ T
1 : ,
1 ’
] ' R4
] : ’
] ’,
. v
' ’
, \ ’
' TR
] ' .
1
2 — 1 e z
1
|
1
1
, n—gz
1
1
]
]
! 2(n — z)
' .
) Pd :
' ’
' e :
] ,’ [}
'
] I’ :
' 4 1
' Pid ' \
' .
n—-g| t--------memsemesems e 2n—zy------ 0
' 1
1 ,
: 1 e
1 ' ’/
1 '
: L
1 ' »
1 Ve
' [
T L S-T S-S esess-cscm—ccecsccc---- 0

- Qp - —>

Figure 5: The case b= 0.

If b = 0, we call this an initial case. Consider the diagram in Figure 5.
Since 2z — n divides n — z, we can “zig-zag” up columns n — z and z until
we reach (0, z; z).
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More formally, our latin trade is as follows (note that all entries are
calculated (modulo n)):
Gz = {(0,0;0),(2,0;2)} U{(z — i(2z — n),n — z;n — i(2z — n)),
(z—-(E+1)(2z —n),z;n—i(2z —n)) | 0< i < a},
with a disjoint mate obtained by swapping the two entries in each row:
Gzn = {(0,0;2),(2,0;0), (n - z,n - 2;0), (z,n — 2;3),(0,;0),
(2z —n,z;z)}U {(z - i(2z — n),z;n — i(2z — n)),
(- (GE+1)(2z-n),n—z;n—i(2x—n)) |1 <i<a-1}.
We verify that Gs,5 is indeed a latin trade with disjoint mate G ,, by
showing that the sets of entries from corresponding columns are the same.
Firstly, the set of entries in column 0 is {0,z} for both G and Gy ,..
Secondly, the set of entries in column z of G, is equal to:
{n—i(2z-n)| 0 <i < a} = {n—-i(2z-n) | 1 <i < a—1}U{0,n—a(2z-n)},

which is equal to the set of entries in column z of G ,,. Similarly, column
n —z contains the same entries in G, » asin G, ,, The reader may confirm
that G, lies in B, by checking that ¢ + j is equlva,lent to k modulo n, for
each triple (%, j;k) € Gz n.

Otherwise b > 0. Here we assume that the latin trade Gaz—n 2z—n+b
exists, and embed it in the top right-hand corner of G, (see Figure 6).
Our assumption is justified at the end of the proof.

The latin trade G, is as follows:

Gzn = {(0,0;0),(z,0;z)} U {(z — i(2x — n),n — z;n — i(2z — n)),
(z-(GE+1)(2z—n),z;n—i(2x-n)) |0<i<a-1}
U{2z-n+bn-z;2+b)}U {(i,j+n—-z;k+n—2z) |
(4,5 k) e G2z-n,2z-n+b and k # 0}
U{Gi+n—z;2+b)]|(575;0) € Goz—n2z—nss \ {(0,0;0)}}.

In each non-empty row of G, there are exactly two entries, so the dis-
joint mate G7 , is obtained by swapping the entries in each row. More
specifically:
Gen = {(0,0;2),(z,0;0), (n — z,n — 2;0), (z,n — ;2)}
U {(z —i(2z — n),z;n —i(22 — n)),(z - (i +1)(2z — n),n —z;
n—i2z-n))|1<i<a-1}U {2z —n+bz;2 + b)}
U{@,j+n-z;k+n- z) | (4,5;k) € Gl2::—n,2:—n+b and k#0
and (4,7) # (0,0)}U {(i,j+n—=z;2+b) |
(4,7;0) € Goz—p,22—n4s \ {(0,22 — 1;0)}} U {(0,2;0)},
where G3,_, 2,4 is the disjoint mate of Goz—n,2z-n+ts-
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0 n—zx T

0 -------------msssese-oqe- bomommeme oo z
0 1
l \ '
; SN
' i \GZ::—n,2z—n+ :
I e S GG R +b
' i N
i ;\\ :
2z—n"i' """""""""""" g -t z+b |
] ) 1
'
2z—n+b'? """"""""""""" z+b ------- 3z—n+b
[}
]
:
2n-3z'% """""""""""" 3n—4z ------- 2(n—x)
[} ] ]
1 , ,
n—z '% """"""""""""" 2n—g) =---"------ 0
' '
z |g ---mmmmmmmsm-esssssms-sss 0

Figure 6: The case b > 0.

As before, we show that the set of entries from corresponding columns
are the same. Firstly, the set of entries in column 0 is {0,z} for both Gz 5
and G, ,. Secondly, by examining the definition of Gz, above, the set of
entries in column n — z of G.,» is equal to:

{n-i(2z—n)|0<i<ae-1}U{z+b}

U{k+n—2]|(40;k) € Gaz—n2¢c—n+s and k # 0}.
But by Condition 3 of our lemma, this simplifies to:

{n-i2z-n)|1<i<a-1}U{0,z,2 +b}.
Meanwhile, the set of entries in column n — z of G ,, is equal to

{n-i@z—-n)|1<i<a-1}U{0,2}U{k+n—z|
(5,0;k) € Gy _pog—nys a0d 5,k #0}U{z +b] (5,0;0) € Goy_p 25 nss}-
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But from Condition 3 there are only two entries in column 0 and two entries
in row 0 of Gaz—1n,2z—n+b. So we must have (0,0; 2z —n), (0, 2z—n;0), (2z—
n,0;0) € G'zz-n,zz—n b It follows that the sets of entries in column n — z
are equal.

Thirdly, the set of entries in column z of G, is equal to:

{n-i2z-n)|0<i<a—-1}U{z+b}U{k+n—2z|
(%, 2z —n; k) € G2z—n,2z—n+b and k # O}'
The set of entries in column z of G7, ,, is equal to:

{n—-i@z-n)|1<i<a-1}U{0,z+b}U{k+n—2z]|
(i’ 2z - n; k) € G,2=—n,2z—-n+b and k # O}

Clearly these two sets are equal. For remaining columns, we use the fact
that corresponding columns of Gz —n,22-n+b and G5, _,, 2,4, CONtain the
same set of entries.

Now we justify the assumption of the existence of G2z—n,22—n+b, Where
b> 0. Let a; = a and b; = b. Next, let ap and b, be integers such that

by = (2 —n — b1)as + be,

with a2 > 0and 0 < by < 22 —n —b;. If by = 0 we can construct
G2z-n,2z-n+b, as it is an initial case, and therefore G, may be con-
structed. Otherwise b, > 0, and we require the existence of the latin trade
G2z—n—b,,22—n—b,+b;- The process continues recursively. We wish to show
that an initial case is eventually reached.

In general, define a series of integers by, bs,... as follows. Let b; = b.
Assume by, by, . ..,b;_; are defined for some integer i > 1. Then let a; and
b; be integers such that

b = (2:1: -n - (bl +by+---+ bi—1))a; + b;,

with a; > 0and 0 < b; < 2z —n — (b1 + b2 + --- + b;—;). Noting that
22—n—(by+bp+---+b) >0 and b; > 0 for all i, it follows that there
must be an integer k such that by = 0.

Thus a latin trade given by the initial case is eventually obtained, and
we can construct G . O

Example 15 continued. We wish to find a latin trade that intersects £7,5
only in the element (0,0; 0). Here we begin by using Lemma 18 to construct
the latin trade G79. Heren =9andz =7,son—z =2 and 2x —n = 5.
Thus n~z = (22 —n) x 0+ 2, giving b, = 2 and a; = 0. So in constructing
G7,9 we need the smaller latin trade Gs 7. This in turn requires the latin
trade G35, with az = 0,b; = 2. Finally a3 = 2 and b3 = 0, so G35 is an
initial case.
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Note that Gz \ {(0,0;0)} intersects only d7, ds and dp in the latin square
By. Thus the latin trade G7 ¢ proves the necessity of the element (0,0;0) €
&,,s. However, we can do more by “shifting” G7,9, as described in the next
definition.

0 7
0 5 718
0 3 516 810
314 6|0 7 0
40| <« ) 0 —
3 0 7 0
Gazs 5 0
Gs7 7 0
G79
Figure 7

Definition 19. Let I be a partial latin square in the back circulant latin
square of order n. We define I @ (%, j) to be the partial latin square in B,
given by:

I@(’t,])= {(a+i,ﬂ+.7';’)'+i+j (mOd n)) | (avﬂ;')') GI}

Note that a latin trade is a partial latin square, so the previous definition
can be used for latin trades. Also, if I is a latin trade, then I & (3, j) is also
alatin trade. In fact, if we know that a latin trade I intersects only certain
sets of the form dj, then we can make a similar claim for the latin trade
I & (i,7). However, to do so we must ensure that we have not “shifted” I
past row or column n — 1 of B,,.

Lemma 20. Let I C L(z,y,n) be a latin trade in the latin square B, that
includes (0, 0;0). Let i and j be integers such that i+ j < n, i+ 2z < n and
j+y < n. Let M be a subset of {0,1,...,n} and suppose I \ {(0,0;0)} is

a subset of
U dn.

meM
Then the latin trade I & (¢,7) \ {(i,7;% + j)} is a subset of:

U dmtitj-

meM

Proof. The conditions i+2z < n and j+y < n ensure that for all rows r and
for all columns c of the latin trade I & (¢,j),r <n—1and ¢ < n—1. Thus
elements of dy, in I are mapped to elements of d4.i4; in I ® (3, 7). a
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Example 15 continued. Consider the latin trade G, constructed above.
We noted that G7,9 \ {(0,0;0)} intersects only d7,ds and dy. Now applying
Lemma 20, the latin trades G7,¢®(0,1)\{(0,1;1)} is a subset of dg UdpUd,,
and thus does not intersect £75. Thus the element (0,1;1) is necessary
in &5 for a unique completion. Similarly (1,0;1) can be shown to be
necessary in &75. Also the latin trades Ggo @ (0,2), Gspo @ (1,1) and
Gée,9 ® (2,0) show the necessity of the entries (0, 2; 2), (1,2;2) and (2,0;2).
So using Lemma 18 and by translating latin trades, we have shown the
necessity of six of the elements of £7 5.

Now consider the cells of £75 that contain the entry 4. Here we run
into some difficulties if we try to use latin trades from Lemma 18. Consider
(0,4;4) € £7,5. It is infeasible to use a latin trade of the form G, 9 @ (0,4),
because z must be greater than 9/2. We need a latin trade that is more
rectangular in shape, and we must also be careful to avoid dgy3. With
these requirements in mind, we construct a new latin trade from the final
columns of G; p.

Lemma 21. Let 0 < z,y. There exists a latin trade, denoted by H;, in
the latin square B4, with the following properties:

1. Hzy C L(z,y,2 +y), and includes the elements (0,0;0), (0,y;y),
(2,0; z) and (z,y;0).

2. H;,\{(0,0;0), (z,y;0)} is a subset of |Jdp, where min{z,y} <p<
max{z,y}.

Proof. There are three cases to consider: z=y,z>yandz <y. fz =y,
use the intercalate Gz 2, (see Lemma 18). If z > y, our required latin trade
is constructed from the final columns of the latin trade Gz 2., (given in
Lemma 18). Condition 3 of Lemma 18 ensures that Gz,2z—y contains no
entries in columns 8, where 0 < 8 < z —y . We can create a new latin
trade from Ggz,2;—y, by removing the two elements (0,0;0) and (z,0;z)
from column 0 and replacing them with an entry in cells (0,z — y) and
(z,z). Then we can relabel all entries so that our latin trade occurs in the
latin square B;.,,.

More formally:

Hzy = {(0,0,0), (2,30} U{(G,J - (z-y)ik—(z-y)) |
(i,j;k) € Gx,Zz-y:j 22—y, k# 0}
U{('I:,j - (x _y);x)) I ('&,],k) € G:z,'.!z—yaj 2 z _yak = 0}:
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with disjoint mate:

H:’:,y = {(O:O; ¥),(0,%;0), (2,0,0), (z,¥;9)}
U{(taJ - (x - y); k- (:B - y)) I (Z,],k) € G::,Z’z—-y:
izz—-y,k#0,i¢ {0,z}}U{(,j- (z-y)2)|
(1,5;k) € G oo—ypd 2z -y, k=0,i ¢ {0,z}},

where G 5., is the disjoint mate of G,25—y.
Finally if z < y, then let H, , = (Hy,z)7. )

Example 15 continued. In Figure 8 we give the latin trade Gs g, con-
structed as in Lemma 18, together with Hp 2, which arises from the final
three columns of G5 g, as in Lemma 21. We also give the latin trade Hj 4
which indicates the kind of pattern that arises when there is a difference of
one between z and y in H. .

0 5 0 2 0 4
5(6 213 415

5|6 213 415

6 0 3 5 415
415

5 0 5 0 5 0

Gss H; o Hs 4

Figure 8

Note that Hs 2 \ {(0,0;0), (5,2;0)} is a subset of Ud,,, where 2 < p <5,
as per Condition 2 of Lemma 21.

Now we can show that every element of d4 is necessary in £5. For
elements (0,4;4), (1,3;4) and (2,2;4) use the latin trades Hg s @ (0,4),
Hg 39(1,3) and Hg 3 ®(2, 2) respectively. For elements (3, 1;4) and (4,0;4)
use the latin trades H3 ¢ @ (3,1) and H3 ¢ @ (4,0).

In fact we can also use the latin trades from the previous lemma to show
the necessity of the elements of dg43 and dgys.

The next lemma is similar to Lemma 20. However, here our aim is to
intersect the bottom right hand corner of I with the element (3, j; i+ j —n).

Lemma 22. Let I C L(z,y,z + y) be a latin trade in the latin square
B4, that includes the ordered triples (0,0;0) and (z,y;0). Let i and j be
integers such that ¢ > z and j > y. Let M be a subset of {0,1,...,z + y}
and suppose I \ {(0,0;0), (z,y;0)} is a subset of

U dm-

meM
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Then the latin trade I ® (i — z,j —y) \ {(5,F;i+ 7 - (2 +¥), (i —z,5 —
y;i+j5—(z+y))} is a subset of

U dmtivi-@+n)-

meM

Proof. The conditions i > z and j > y ensure that I ® (i — z,j — y) is
bounded to the left and above by row 0 and column 0 respectively. a

Example 15 continued. Now we use the latin trades Hys and Hs 4
constructed by Lemma 21 and apply Lemma 22, translating the latin trades
so that the bottom right-hand element intersects the appropriate element
of &7,5. So for elements (4,8;3), (5,7;3), (6,6;3) and (7, 5;3) use the latin
trades Hy 5 ®{0, 3), Hy50(1,2), Hy 5®(2,1) and H,;59(3,0). For element
(8,4;3), use the latin trade H; 4 ® (3,0). For elements (6,8;5), (7, 7;5) and
(8,6;5) use the latin trades Hy s @ (2,3), Hy s ®(3,2) and Hy5 @ (4,1).

The element (8,8;7) € dy7 is necessary because without it, we can
swap the entries 7 and 8 throughout the latin square. This leaves us with
the elements of dg. Latin trades of rectangular shape will again be useful
here, but how do we guarantee that they will avoid both dg+3 and d45?
We can do so by combining two latin trades from Lemma 21.

In the following lemma, I,,, could be equal to Hy, ,, whereas I, ,
could be equal to either Hz, , or Ga,,. (with y = z,).

Lemma 23. Let 23,y < 2 < 22 +y and let I, , and I, , be latin trades
contained in L(z,,y, 21 + y) and L(z2,y, 2) respectively such that:

1. I,y includes the elements (0, 0;0), (0,y;y), (z1,0;z;) and (21,;0).

2. I, includes the elements (0,0;0), (0,y;y), (22,0; 22), (z2,2 — 22;0)

and (z - y,;0).

3. I,y contains no entries in cells of the form (a, 8), where @ + 8 > 2.

4. Either row z, of I, , or row 0 of I, , contains no other entries.
Then, in the latin square By, {s,+y, there exists a latin trade (denoted by
I,y or I, ,) obtained by adding z; to the non-zero entries of Iz, 4 and
overlapping non-zero entries in the last row of I, , with those in the first
row of I, ,. More formally,

Lyyorleyy = (Izyp\{(z1,%;:0)})
U {(i+z11j;k+xl) I (i’j;k) € Izz.y and k # 0}
U{(i + 21,5;0) | (,5;0) € I, 4 and (i,5) # (0,0)}.

Proof. Let I, and I, , be the disjoint mates of I, , and I, , respec-

tively. Since 0 occurs only twice as an entry in cells of I, ,,, we must have
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(0,;0), (#1,0;0) € I}, ,. Since (z —y,y;0) € Iz, and there are no cells
of the form (z —y, a) with a > y, we must have (0,y;0) € I, ,. By similar
reasoning, (22,0;0) € I, ,. Let
7 = (I;hy \ {(1‘1,0; 0)}) U {(l + 1,53k + 71) I (iaj; k) € I:’cz,y and
k# 0} U {(i+ 21,5 0) | (3,4;0) € I, , and (3,]) # (0,9)}-

For ease of proof let Z represent I, , o, Iz, . It is clear that Z and 7’
have the same size and shape.

Consider an arbitrary ordered triple (a, 8;v) from Z. We will show that
v occurs somewhere in both row a and column B of I'. First
suppose that (a,B;v) € I;,,y \ {(z1,¥;0)}. Then there exists an element
(«,8;7) € I, , \ {(0,5;0)}. I (a,8;7) = (21,0;0), then observe that
(z1 + 22,0;0) € Z'. Otherwise (o', 8;7) € I'. Thus v occurs in column j3
of Z'. There also exists (a,8';7) € I}, , \ {(21,0;0)} C Z' and so 7y occurs
in row a of 7.

Next suppose that (e, 8;7) = (i + 71, j; k + 71), where (i, j; k) € Iz,,y
and k # 0. Then, there exists (i', j; k) € I, , and (' + 21, 5;k+ 1) € Z'.
Thus v occurs in column B of Z'. There also exists (i,'; k) € I, ,. Then
we have (i + x1,5';k + 71) € Z' and so v occurs in row a of Z'.

Finally suppose that (a,B8;v) = (¢ + z1,7;0) and (¢,5) # (0,0). Then
(,5;0) € I,y I j =y, then (0,y;0) € I, ., so (0,3;0) € 7', otherwise
Jj # y and there exists (i',5;0) € I, ,. Since j # 0, (i + 21,5;0) € Z'.
Thus v occurs in column B of Z'. There also exists (4, j';0) € I, ,- Since
(4,7) # (0,0), ' # y. So we have (i +2,,5';0) € Z', and so 7y occurs in row
a.

Thus Z and Z' are row and column balanced. )

Corollary 24. Let I,,, and I, , be latin trades contained in L(z1,y, z1+
y) and L(z2,y, 2 + y) respectively such that

1. I, , includes the elements (0, 0;0), (0,¥;v), (z1,0; 1) and (z1,%;0),

2. I, , includes the elements (0,0;0), (0,¥;y), (z2,0; z2) and (z2,y;0),

and

3. either row z, of I, 4 or row 0 of I, , contains no other entries.
In addition let z be an integer such that 0 < z < z; + z2 +y and 2 ¢
{z1,¥,21 + ¥,71 + z2}. If I, , does not intersect d, and I, , does not
intersect d,_z,, then the latin trade Iz, y o, Iz, y, as defined in Lemma 23,
does not intersect d.

Corollary 25. If either ) > y or z2 > y, then the latin trade H, 4 o,
H,, y is well defined as per Lemma 23. Moreover, H, o Hz, 5 \ {(0,0;0),
(z1 + z2,;0)} intersects only subsets of the form d,, for p in the following
ranges:

L mm{zl:y} <p< max{xl)y}’ and
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2. min{z; + 22,2; + ¥} < p < max{z; + 3,71 +y}.

Proof. The condition (z; > y or z; 2> y) ensures that either the last row of
H, y or the first row of H;, , contains only two entries, so that Condition
3 of Lemma 23 is satisfied. Otherwise the result follows from Corollary
24. O

Example 15 continued. In Figure 9 we show how the latin trades Hj 3
and H, 3 may be adjoined by the operation o, to create a new trade in Biyg.

0 3
] 3 3|4
314 415
415 0 2|3 3 5
213
31 15 313 [0
5 718
5 0 718
718 0
Hs 3 Hy3 Hg3 o0, Ha3
Figure 9

Note that, ; = 5, y = 3 and z; = 2, min{5,3} = 3, max{5,3} = 5,
min{5 + 2,5 + 3} = 7, and max{5+ 2,5+ 3} = 8. Thus Hp3 0, Ha3\
{(0,0;0),(7,3;0)} intersects only subsets of the form dp, where 3 < p <5
or 7 < p £ 8, as per Corollary 25.

Consider the element (0, 6; 6) of £7,5. Here we use the latin trade (Hs 20,
H2)®(0,6). Corollary 25 ensures that (Hj 20, Ha 2) avoids the sets dg and
dg. So when we translate this latin trade across by six rows, it will avoid
the sets dj2 and dy4 as required. The remaining elements of £ 5 (except
for (8,8;7)) are shown to be necessary using latin trades Hy5 & (0,3),
H,y50(1,2), Hy 59(2,1), Hy,s(3,0), Hs5,49(3,0), He 30(0,5), He,3®(1,4)
and Heg3 @ (2,3). Finally there is a latin trade containing every ordered
triple with either entry 7 or entry 8 (we exchange entries to obtain the
disjoint mate); this shows the necessity of (8,8;7). Thus &7,5 is indeed a
critical set!

5. NECESSITY OF ELEMENTS

The latin trades developed in the previous section will be used to show
the necessity of elements in the partial latin squares D, ,, £, ; (see Definition
7) and C, (see Definition 9) for unique completion.

For each partial latin square P listed above it will be shown that for
each (i,7;k) € P there exists a latin trade I € B,, which intersects P in
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(¢,7;k) alone. Lemmas 26 and 28 deal with the partial latin square Dy 4,
Lemmas 29 and 30 deal with the partial latin square £, , and Lemma 33
deals with the partial latin square C,.

In Lemmas 26 and 28 care must be taken to show that the latin trade
does not intersect dn+,. Hence in Lemma 26 we verify the existence of latin
trades which do not contain the symbol 2, where z is in an appropriate
range. In Lemmas 29 and 30 care must be taken to show that the latin
trades intersect neither dn4, nor dyy|(n—3)/2)- Hence in Lemma 27 we
carefully state a set of constraints for which there exists two solutions and
then use this lemma in the proof of Lemmas 28 and 30. In Lemma 29 we
verify the existence of latin trades which do not contain the symbols z; and
22, where z; and z, are in an appropriate range.

Lemma 26. If2 < y < z and z € {0, 2,y,z+y}, there exists a latin trade
Jz,y(z) in the latin square B4, with the following properties:

1. Jz4(2) C L{z,y,z +y), and includes the elements (0,0;0),(0,y;y),
(z,0;z) and (z,y;0).

2. Jz,y(2) \ {(0,0;0), (z,y;0)} is a subset of | Jd,, where y < p < z.

3. Jz,y(2) does not intersect d..

Proof. If either 2z > z or z < y, the latin trade H:, given in Lemma 21
suffices. Otherwise z < z and 2z > y, and we use the latin trade H, ;41 40,
Hgyy—z-1,y- Observe that z > max{z —y + 1,y} and z < min{z + (2 —
y+1),y+ (z —y+1)}. Thus from Corollary 25, our latin trade does not
intersect d,. 0

In the following lemma we verify the solution of a set of constraints. We
make use of this result in Lemmas 28 and Lemma 30.

Lemma 27. Let i, j, y and n be positive integers (i < 7, i +j > |n/2))
under the following set of constraints:

1.2<y
2.n-2-(+J) <y
i+1<Ly

4. y < n/2;

5. y<n-—1-j;and
6. n>95.

If, in turn, i + § < n — 3, then there exists at least one integer y that
satisfies the above inequalities. If, as well, 1 + j < n — 4, then there
exist at least two solutions for y. Finally if i+ j < n—3,n > 5 and
(4,7) € {(0,n = 3), ((n — 3)/2, (n — 3)/2)}, there exist at least two distinct
solutions for y.

Proof. We combine each lower bound for y with each upper bound for y.
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Firstly, 2 < y < n/2 has two solutions if n > 5 and one solution if n = 5.
Consider 2<y<n—-1-j. Ifi+j<n-3,thenj<n-3.Ifj=n-3,
then i = 0, and there is exactly one solution for y. Otherwise j < n — 4,
and there are two solutions for y in the inequality 2 < y < n-1-3j.
Next consider i +1 <y <n/2. fi+j <n-3andi<j, we have that
i1 < (n-3)/2. If i = (n—3)/2, we must have j = (n—3)/2, and there is one
solution for y. Otherwise i < (n—4)/2, and there are at least two solutions
for y in the equation i +1 < y < n/2. The inequality i+1<y<n-1-j
has at least two solutions for y because i + j < n — 3. The inequality
n~—2—(i+j) <y < n/2 has two solutions because (i + j) > |n/2].
Finally, the inequality n — 2 — (i + j) < ¥y < n — 1 — j has at least two
solutions for y, because i > 0. O

Lemma 28. Let [n/2) <r<n-2,|n/2]-1<s<r~—1. Then for each
entry (i,5;k) € D,,, (see Definition 7), there exists a latin trade I in B,
such that

IND,, = {(7;k)}

Proof. We split our proof into two cases. In Case 1, i < j and in Case 2,
i > j. Case 1 is then to be split into the subcases 1A to 1E. (See Figure 10
for a pictorial representation of the cases.)

CaselA: i+j < |n/2)—1,i+j < s. Note that i + j < n/2—1is
equivalent to n < 2(n — 1 — i — 7). So using Lemma 18, we can construct
the latin trade Gn_j_i_j»n which contains the element (0,0;0), with all
other entries in subsets of the form d,, where n —1—-i—j < p < n.
Observing that i+ (n - 1-i—j)<n-landj+(n—-1-i—-j)<n-1
and applying Lemma 20, G—1-i—j,n ® (4,5) contains only (3, j;i + j) and
elements of the set: Jd,, wheren—1 < p < n+i+j. Sincei+j < s <r-1,
Gn-1-i—jn®(i, ))\{(i, j;i+7)} does not intersect ((Dy\ds)U(DrirUdnyts)).
Hence our latin trade intersects D, , only in the required element.

Case 1B: [n/2] <i+4j <r—1,and s <i+j. The cases (i,5) = (0,n —3)
and (i,5) = ((n — 3)/2,(n — 3)/2) are dealt with at the end of this case.
Lett=s—-(i+7)+n.

We will use Lemma 26 to construct a latin trade Jn_, ,(t) for an appro-
priately chosen integer y. Then we wish to place the latin trade J,,—,,, () ®
(¢,J) so that it contains (i, j;i+j), and (i+n—y,j+y;i+5), and otherwise
intersects only | J dp wherer < p < n+r—1and p # n+s. In order to do this
we need all of the conditions listed below. Conditions 1 and 2 ensure that
y is in the appropriate range for Lemma 26 and Conditions 3 and 4 ensure
that Lemma 20 can be applied. Then by Lemma 26 and Lemma 20, Condi-
tions 5 and 6 ensure that Jn—y,, (1) ® (4, )\ {(Z, 5;i+7), G+n—y,j+y;i+7)}
is a subset of | Jdp, wherer <p<n+r—1.
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do dins2 ds dr—1

Case 1A
Case
1C
Case 2 Case
1B
Case
2
Case
2 dn+a
CaselD
dn+r
Case2 Case
1D | Case 1E

Case 2 ] Liz,._ 2

Case Analysis of Lemma 28

Figure 10

2<y<nf2and

t ¢ {y,n—-y,n}

y+j5n-1,

n—y+1i<n-—1(or, equivalently, y > i +1)
.y+(E+3j)>n-2(>r), and

.G+ +(n-y)<n+r-1

Condition 6 is always true because (i+j) < r—1. We cannot havet =n
in Condition 2 because s # (i+j). Assuming Condition 1 is true, we cannot
have t = y in Condition 2. To show this, recall that i +j <r—-1<n—-3.
Also s > |n/2) -1, implying that t = s—(i+j)+n 2 n/2-2—(n-3)+n >
nf2 > y.

So we wish to show that there exist two integer solutions for y under
the following constraints: y > 2,y 2n—2—-(i+j),y2i+1,y <n/f2
and y < n—1—j. We can then choose one solution y for which ¢ #n —y,
and thus satisfy all Conditions 1 through to 6.

This follows from Lemma 27, except in the following cases: n < 3,
(i,§) = (0,n = 3) and (i,) = ((n — 3)/2, (n - 3)/2)-

Il ol ol
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If n < 4, Case 1B does not arise. If n = 5, Case 1B only occurs if r = 3,
s =1and i + j = 2. Here the trade H3 2 ® (i, j) suffices.

I (¢,j) = (0,n — 3) and s # n — 5, our only choice for y is 2, but here
t=8-(n-3)+n=8+3#n—-2andsot#n—y. Thus we can use the
latin trade J,—2,2(t)® (0,7 —3). In the special case where (¢, j) = (0,n—3)
and s = n — 5 we use the following latin trade:

(Hn-3,2 or G2,3) ® (0,n — 3).

The subset dp+, is avoided.

If (3,7) = (n — 3)/2,(n — 3)/2), n is odd, and we may choose y =
(n—1)/2. Suppose that t =n—y. Thent=s—-(n—-3)+n =s5+3
and ¢t = (n + 1)/2. But this implies that s = (n — 5)/2, contradicting
8 > |n/2] — 1. Thus t # n —y, and our choice y = (n — 1)/2 satisfies
Conditions 1 through to 6.

Case 1C: |n/2) <i+j<s<r-1

Here we use Lemma 21 to construct Hy,_, ,, for a carefully chosen integer
y. We will then use Lemma 20 to place the latin trade Hy—,,, @ (i,7) so
that it contains (Z, j;i+7) and (i +n—y,j+y;i+7) and otherwise intersects
only |Jdp where r < p < n+ 8- 1. In order to do this we need Conditions
3, 4 and 5 from Case 1B, as well as i+ j + (n — y) < n+ s — 1. But this
last inequality follows from the fact that i + j < s.

This is a subset of the inequalities from Lemma 27, and i+j < s < n—3,
so we certainly have at least one value for y.

CaseID: n+r <i+j < 2n-3,0ori+j = n+ s. We first construct
the latin trade H|y,/3) [n/2] from Lemma 21. This latin trade contains the
ordered triples (0,0;0), (|n/2], [n/2];0), and all other entries occurring in

din/2) U dfny2)-
Now,i,j<n-1landi+j>n+38>n+|n/2]—1 together imply that
j 2 [n/2]. Furthermore j <n—1and i+j > n+ |n/2] — 1 imply that
i > |n/2]. So from Lemma 22 the latin trade
Higsa),in/21 © (¢ = |n/2],5 — [n/2])

contains the elements (i — |n/2),j — [n/2];i+ j — n), (i,§;i+ j — n) with
all other elements chosen from diyj1|n/2)—n OF ditjy[n/21—n-
But

i+j+|n/2]-n>n+s+|n/2) —n>2[n/2]-1>n-2

and
i+j+[n/2]-n<n+[n/2] -3.
Therefore all ordered triples in

H\n/2),fnr2) © (i = |n/2],5 = [n/2])
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except for (i — |n/2),7 — [n/2];i + j) (which lies in diy; & D;,) and
(i,§;i + j — n) are in the following set: |Jdp, wherer < n -2 < p <
[n/2]+n—3 < n+ s —1. So our latin trade intersects D,,, only in the
required element.

Case 1E: i+ j = 2n — 2. For the final case we use the latin trade consisting
of all cells containing entries n - 2 or n — 1:

{(a,n—-2-a;n—2),(e,n~-1-asn—-1)|0<a<n—-1}.

Case 2: Finally if i > j, we may use the transpose of the above latin trades,
as both D,,, and B, are symmetric. O

In proving the next result (specifically Cases 2 and 4 of the proof) we
utilize the construction given in Lemma 26. To aid the reader’s understand-
ing of this proof a diagram outlining this construction is given in Figure
11.

Lemma 29. Let 2<y <z, y<zn1<z1+1<22<z+y, 21,22 # = and
(21,22) # (y +1,2y). Then there exists a latin trade K y4(21,22) in the
latin square B4, with the following properties:
1. Kz y(21,22) C L(z,y,z + y), and includes the elements (0,0;0),
(0,%:9), (2,0;7) and (z,3;0).
2. K:,y(21,22) intersects neither d,, nor d.,.
3. Kz y(21,22)\{(0,0;0), (z,y;0)} is a subset of | J dp, where min{y, z; —
y+1}<p<z.

Proof. Case 1: z; > z. For this case z; > z; > max{z,y}, so we may use
the latin trade Hy from Lemma 21.

Case 2: z; < z, and either z < 2y or z; > 2y. We wish to use Lemma 26
to construct the latin trade Jz4y—z,—1,4(22 +¥ — 21 — 1). To ensure this is
possible, we require the following conditions to hold:

l.Ly<z+y—-2z -1

2. y#z2+y—zn-1

dz4+y—-znn—-1#2znt+ty—n-1.

4. (z+y-zn-1)+y#Fn+y-an-1.
But Conditions 1, 2, 3 and 4 are implied by z; < z, 22 # 21+ 1, 22 # =
and 2; < y + z respectively. The latin trade H, _,41,, exists from Lemma
21, because z; > y. Combining these latin trades gives our required latin
trade:

K:c,y(zla 2) = Hz1—y+1,y Or Jz+y—z1—1,y(z2 +y—2-1)

Observe that H,,_,41, intersects neither d;, nor d,. This follows
because 2; >y, 21 >z —y+land 23 # (51 —y+1)+y. Also z >
a+1= (21 —y+1)+y. We next show that Jz4 s, 14(z2 +y—21—1)

310



Hp,y

Hm,y Op Jz—m,y(z2 - m)

0 y
0 y
21 2
m 0
m m+y

Jz-my(22 —m)

0
y / m+y Z2

Z2—Mm

r—m 0

Overlapping of trades in Cases 2 and 4 of Lemma 29

Figure 11

avoids d;, _(z;,-y4+1) = dy—1 and d:,—(z,-y+1)- The latter is true because
by definition, Jz4y—,—1,4(22 + ¥ — 21 — 1) avoids dzy4y—2,-1. The former
is true because y — 1 < y.

So from Corollary 24, our latin trade K (2, 2,) will intersect neither
d;, nor d., as required.

Cased: 21 <2,2>2y,y+1<2z <2yand 22 = 2y. The required latin
trade is:

Kz»y(zl’ 22) = Hy+1,y °r H:c—y—l,y.

Observe that max{y,y + 1} < z; < (y +1) +y. Therefore from Lemma 21,
Hy4,,y avoids d;,. Also z; = 2y lies strictly between y +1 and (y +1) +,
50 Hy41,y also avoids d, .
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Next we show that H;_,_1, intersects neither d,, _(,41) nor d,,_(y41)-
This follows from the fact that z; —(y+1) < 22— (y+1) < min{y,z—y-1}.
Now apply Corollary 24 and we know that the combined latin trade misses
the required elements.

Case 4: z; < z, T > 2y, 21 < 2y and z; # 2y. The required latin trade is:

Kzy(21,22) = Hyy or Jo—yy(22 - y)-

For Jz—yy(22 — y) to exist from Lemma 26 we require y < z —y (which
follows from z > 2y) and z2—y ¢ {0,y, z—y,z} (which follows from 2, >y,
22 # 2y, 22 # z and 23 < 2 +y). To prove Hy , avoids d;, and d,,, observe
that y < 21 < 2y, ¥y < 22 and 22 # 2y. Next we prove Jy;_y (22 — )
intersects neither d;,_, nor d;,_,. For the former observe that z; —y <y
and the latter is clear from the definition of Jz_y (22 —¥). So by Corollary
24, the latin trade K ,(21,22) avoids both d,, and d.,.

a

Lemma 30. Let [(n+4)/2) <r<n-2and [(n+2)/2] <s<r—1. Let
&r,s be as in Definition 7. Then for each entry (i, j; k) € &, there exists a
latin trade I in By, such that IN¢&,, = {(3,5; k)}.

Proof. We split our proof into two cases. In Case 1, 7 < j and in Case 2,
i > j. Case 1 is then to be split into the subcases 1A to 1E. As the partial
latin square &,.; is similar to D;,,, most cases can be verified using Lemma
28. However care must be taken to ensure that d|(3,_2)/z) is also avoided.

Case 1A: i+j < |(n—2)/2]. Apply Case 1A in Lemma 28. Since n+i+j <
L(3n = 2)/2], d|(3n—2)/2) is avoided.

Case 1B: |n/2] < i+j < s. Here we need the latin trade Jy—y,,(2) ® (3, 5)
constructed as in Lemma 26, with ¢ = |(3n — 2)/2] — (i + j). For this to
exist, and not to intersect the required entries we need:

1. 2<y<nf2

2.t ¢ {y)n - yan}'

b y+j<n—-1

4 n—-y+i<n—1.

5. y+(E+J)2(n—2).

6. i+j)+(n—y)<n+s—1.
Note that Conditions 1 and 2 above will be required for the implementation
of Lemma 26, Conditions 3 and 4 for the implementation of Lemma 20 and
Condition 5 is required since we require y +i+j > r.

Condition 6 above follows from the fact that i +j < s. We cannot have
t = n in Condition 2 because i +j > [n/2]. Next,i+j < sands<n-—3.
Since t = |(3n — 2)/2) — (¢ + 7) it follows that ¢t > |(3n—2)/2] - (n—-3) >
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[n/2] + 2. But y < n/2 by Condition 1. So ¢ > y. But from Lemma 27,
as i+ j < s < n— 3 there are at least two solutions to Conditions 1, 3, 4
and 5, and thus we may choose one of these solutions not equal to ¢. Then
apply Lemma 22 to ensure the latin trade is correctly placed.

Case 1C: s < i+j < r— 1. We deal with this case at the end of proof.

Case 1D: [(3n —2)/2) < i+j < 2n —3. Apply Case 1D in Lemma 28.
Since n + [n/2] — 8 < | (3n — 2)/2, d|(3n—2)/2) is avoided.

Case 1E: i+ j = 2n— 2. Apply Case 1E in Lemma 28.

Now we settle the Case 1C (s < i +j < r — 1). Note that this case
exists only for n > 9. Here we will construct the latin trade

Kn_yy(l(Bn—2)/2) —(i+37),n+5— (i +3))

using Lemma 29. We must choose y carefully to ensure that the following
conditions of Lemma 29 are satisfied:
.2<y<nf2
y < |(Bn—2)/2| - (i +j).
[(3n=2)/2] - (E+j)+1<n+s—(i+]7).
n+s—(i+j)<n.
-n=y#|Bn-2)/2] - (i+)).
.n—y#Fn+s—(i+7).
. (|.(3n - 2)/2J - (i+j)a"+ 8§ = (i +.7)) # (y + 112:‘/)-
Some of these inequalities may be quickly taken care of. Conditions 3
and 4 follow from the fact that [(n + 2)/2] < s < i+ j. If we assume
Condition 1 we can remove Condition 7. To see this, suppose that:

[(n-2)/2)-(Gi+j—n) = y+1and
s—(i+j—n) = 2.

NOUUR W N

Manipulating to cancel y gives
(1) s+(E+j) = 2|n/2]+n-4.

Buti+j<r—-1<n-3ands<i+js0s+(i+j) < 2n—7, contradicting
).
Next we want to ensure that K, ,(|(32 —2)/2) - (i +j),n+s—(i +
7)) ® (4, j) does not intersect &, ;. To prove this we need:
8 n—-y+i<n-1
9. y+jij<n-1.
10. y+(i+j)>n-2.
11. |3 ~-2)/2) - (GE+j)—y+1+(E+jF)>n-2.
12. n—-y+(GE+j)<n+r—-1
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By Lemma 20 and Condition 3 of Lemma 29 these Conditions ensure that
Kn—yy(1(3n-2)/2] - (i+7), n+s—(i+3))®(i, j) intersects only (i, j; i+J),
and the following: |Jdp, wheren —2<p<r—-landp g {n+i+jn+
8, (3n—2)/2]}. Condition 11 is equivalent to y < |n/2] +2 so it is implied
by Condition 1. Condition 12 is met because i 4 j <r—1.

We wish to show that there exists two (consecutive) integer solutions
for y under the following constraints: y > 2,y >2n-2—-(i+j),y>i+1
and y < n/2,y < n-1-j We can then choose one solution for y so
that both Conditions 5 and 6 are satisfied, because Condition 3 states that
[(3n - 2)/2] — (i + j) and n + s — (i + j) are not consecutive.

From Lemma 27, we can find such a y except possibly when n < 5,
(4,5) € {(0,n—3),((n — 3)/2,(n — 3)/2)}. We can rule the first inequality
out because n > 9, as stated at the beginning of this case.

If (4,7) = (n—3)/2,(n - 3)/2), n is odd, and we choose y = (n —1)/2.
For these values of i, j and y, n —y # |(3n — 2)/2] — (i + j). Moreover
8> [(n+2)/2) impliesn —y #n+s—(i+7).

If (¢,7) = (0,n — 3) and 8 # n — 5, our only choice for y is 2, but here
n—y#Fn+s—(i+j)andn—y # |(Bn —2)/2] - (i + j) (since n > 9).
Thus we can use the latin trade Jp_22(n + s = (¢ + j)) ® (0,n — 3).

Finally consider the special case where (¢,j) = (0,2 —3) and s =n —5.
If n = 9, we must have r = 7 and s = 5, contradicting s = n — 5. Similarly
ifn=10,s#5. Thusn >11,n—-3 > [(n+4)/2] and we use the following
latin trade:

(Jn_s,z(L(n + 4)/2]) o, Gz,s) (4] (O,n - 3).

Case 2: Finally if i > j, we may use the transpose of the above latin trades,
as both &, ; and B,, are symmetric. O

Next we turn our attention to the partial latin square C,. It is worth
noting that C. is similar to D,_; except that C, contains some occurrences
of the symbol n — 1 and C,. has additional empty cells in row 0 and column
0. To prove that all the entries of C, are necessary for unique completion
one constructs latin trades which intersect each entry (i, j; k) € C; in that
entry alone. Care must be taken to ensure these latin trades avoid the
required entries.

Definition 31. Let I C L(z,z,n) be a latin trade. Then the reversal of
I about the entry z, denoted by I*(z), is the latin trade in B, formed by
taking the mirror image of I along the set of cells d; of L(z,z,n). More
formally:

I®z) = {(z-j,z—1i;2z - k(mod n)) | (5,5;k) € I}.

314



Example 32. In Figure 12 we give the latin trade G4,5 C Bs (from Lemma
18) on the left, with G{5(4) on the right.

0 4
0 314
4

w
' N

>

Figure 12

Lemma 33. Let C;, 1 < r < n — 2, be the partial latin squares given in
Definition 9. Then for each element (i,j;7 + j) € C, there exists a latin
trade I in B, such that INC, = {(3,5;: + j)}-

Proof. Let (i,7;i + j) be an element of C,. We split our proof into nine
cases.

Case1: 0<j<(n—2)/2,i > (n-2)/2 and i +j < n—2. Here we use the
latin trade Hy,_;_; ;41 @ (3, 7). From Lemma 21, and since i +1>n—-1—1
(equivalently ¢ > (n — 2)/2), we know that H,_1_;;41 \ {(0,0;0)} is a
subset of Ud,, wheren —1-i<p<n. Sincei+n—-1-i=n-1<n
and j+i+1<n-1<n, from Lemma 20 we know that (Hp—1—;;+1 ®
@I\ {(@,5;1+4)} is a subset of Jdp, wheren—1+j < p < n+ (i +j).
Since j > 0, this partial latin square does not intersect C,. It follows that
Hyo1-ii41 ® (1,5) NCr = {(4, 51 + 7))}
Case 2: i=10,0< j < (n—2)/2. Note that from the definition of C,, we
must have j > r. Here we use the latin trade G,,_;_j» ®(0, j) from Lemma
18, which exists because 0 < j < (n—2)/2. From Lemma 18, we know that
Gn-1-jn \ {(0,0;0)} is a subset of Udp, where n — 1 — j < p < n. Since
n—l—-j<nandn-1-j+j=n-1<n,from Lemma 20 we know that
(Gn-1-jn ® (0,1)) \ {(0,; 1)} is a subset of Ud,, where n —1 < p < n+j.
The only place this partial latin square might intersect C;, then, is in
the subset d,—; when ¢ = 0. But the entry n — 1 occurs only in columns 0
through to r of C,, and we have j > r. Thus we can safely say that this
partial latin square avoids d,,—1 NC;. It follows that Gp_1_;n®(0,5)NC, =
{(0,59)}-

Case3: j > (n—2)/2and i+ j < n—2. Here we use the latin trade
Hj41,n-1-5 9 (4,7) from Lemma 21. Since j > (n—2)/2,j+1>n—-1-3,
and we have that Hjy 5-1-;\{(0,0;0)} is a subset of Ud,, where n—1—j <
p<n. Sincei+j+1l<nandn—1-j+j=n-1<n,from Lemma
20 we know that (Hji1,n-1-; ® (i,7)) \ {(3,5;¢ + j)} is a subset of (Jd,,
wheren~1+i<p<n+i+j.
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Now, n—1+i > n— 1, with equality only possible if ¢ = 0. But if i = 0,
from the definition of C}, we must have j > r. And the entry n — 1 occurs
only in columns 0 through to r of C,. Thus we can safely say that this
partial latin square avoids dn—; N Cy. It follows that Hjyy n-1-; ® (¢,5) N
Cr ={(,5;i+3)}

Case 4: i,j > 1and i +j < n/2. We use the latin trade Gpn—(i4j),n ® (i, ),
constructed in Lemma 18, which exists because n — (i + j) > n/2. Since
n-(G+j)+i<nand n-(i+j) +j < n, from Lemmas 18 and 20,
we know that Gn—(i+j),n ® (7': .7) \ {(7" Jii+ J)} is contained in Udp) where
n < p< n+(i+j), which does not intersect C.

Case5: 4,7 > 1,i+7 > n/2,i,j < (n— 2)/2. We use the latin trade
Gin/21,n® (i, J), constructed in Lemma 18. Since [n/2]+i < n and [n/2]+
j < n then from Lemmas 18 and 20, we know that G, /21 n® (4, )\ {(%, j; i+
)} is contained in Ud,, where n < n/2+ [n/2] < p < n+ (i + j), which
does not intersect C;.

Case 6: i+ j = n— 1. Here we use the latin trade H,_1-i,i+1 ® (i, ). This

will overlap column 0. However if (i,j;n—1) € Cy, theni >2n—r—1.
Also C, has elements of the form (0,z;z) only if z <n—r—1.

Case T: § =0, i < (n—r — 2)/2. Here we use the reversal of a latin trade
(see Definition 31). Our latin trade is as follows:

(Gf—r-i—l,n—r(n —-r—i- 1) Or Hf,ﬂ—i—l—f') @ (i,'l’ +i+ 1)

The intersection of this trade with column 0 is a subset of {(0,%,4)} U
{(0,z;z) | n—r—1 <z < n—1}. Also it is easy to see that this latin trade
avoids dy,,_1 N Cr.

Case8: j=0, (n—r—2)/2<i< (n-2)/2. Our latin trade is:
{G,n-i-1;n-1),(,0;i),(n-1,0;n - 1)}
UHp-2i—2i+1 \{(n —2i - 2,i+1;0)} ® (2i + 1,n—i—1)).
This latin trade will intersect column O only in the element (i,0;i) and

elements of the form (z, 0; ), where 2i+1 < z < n—1. But 2i+1 > n—r—1,
so the latin trade only intersects C, in the required element.

Case 9: j =0, i > (n—2)/2. Here we use the latin trade Hy_1 ;41 ® (%, 5)-
This will overlap column 0. However, since n—1—1 < i+1, this latin trade
intersects column O only in (0,%;i) and (0,n — 1;n — 1). Also (3,0;%) € C,
implies that (i,n —1+i;n— 1) € C,. Thus the latin trade meets C; in the
required element only. a

Example 34. In Figure 13 we give a latin trade I in Bg such that INC; =
{(0,0;0)}. This is Case 7 of Lemma 33, and I = (Gf'5(4) o Hy,4) ®(0,2).
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The partial latin square C; is given on the left, while I is given on the
right.

0 213|4 0 5
1{2]13]4 5/0
2{3|4 5]0
3|4 510
5 4 0]1(2]3
5 1{2]13)4

Figure 13

6. MAIN RESULTS

We are now in a position to state and prove our main results.

Theorem 35. Let |n/2] <r<n-2and |[(n—2)/2] <s<r—1. Then
the partial latin square D, , (see Definition 7) is a strong critical set in B,,.
Proof. Let I = {0,1,...,r=1}\{s}and J = {r,r +1,... ,n - 2} U {s}.
Obviously, P = {I, J} is a partition of the set {0,1,2... ,n—2}. Moreover,
Dp = (U d;) U (U dntj) = (Dr \ ds) U (Drir Udnys).
iel ieJ
So, by Lemma 13, (D, \d;) J(Dn+rUdn+s) is a strong uniquely completable

set in By,. Also, Lemma 28 shows that each element of (D, \ d;) J(Dn4r U
dn+s) is necessary for the unique completion. O

Corollary 36. Let n be odd, (n —1)/2<r<n-2and (n-3)/2<s<
7 — 1. Then, in B,,, there exists a critical set of size
r(r+1) + p—r)(n—r-1)
2 2
Corollary 37. Let nbeeven, n/2<r<n-2and (n—-2)/2<s<r—-1.
Then, in B, there exists a critical set of size
r(r+1) + n—r)n-r-1)
2 2
Theorem 38. Let [(n+4)/2) <r<n-2and |(n+2)/2)]<s<r-1
Then the partial latin square &, , (see Definition 7) is a strong critical set
in By,
Proof. Let I ={0,1,...,r=1}\{s, |(n-2)/2]} and J = {r,r+1,... ,n—
2} U {s, [(n — 2)/2]}. Obviously, P = {I,J} is a partition of the set
{0,1,2...,n — 2}. Moreover,
Dp = (| d) (U dnss) = &ra-

i€l jeJ

(+1)+(n—s—1).

—(8+1)+(n—s—1).
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So, by Lemma 13, &, , is a strong critical set in B,,. On the other hand,
Lemma 30 shows that each element of £, is necessary for the unique
completion. This completes the proof. O

When n is odd by Lemma 5 we have |dy (n—3)/2| = |d(n-3)/2| + 1. This
leads to the following corollary.

Corollary 39. Let n be odd, (n+5)/2<r<n-2and (n+1)/2<s<
r — 1. Then, in By, there exists a critical set of size

r(r+1) + n=-r)n—r-1)
2 2
Remark 40. By Lemma 5 we have |yt (n-2)/2| = |d(n-2)/2| = n/2 for n

even. So Theorems 35 and 38 generate strong critical sets in By of the
same sizes.

—(s+1)+(n-s8-1)+1.

Theorem 41. The partial Latin square C, (see Definition 9) is a strong
critical set in By,.

Proof. By Lemma 14, each C, is a strong completable set in B,. On the
other hand, Lemma 33 shows that each element of C,. is necessary for the
unique completion. This completes the proof. a

Corollary 42. Let ((n? — n)/2) — (n — 2) <t < (n? —n)/2. Then there
exists a strong critical set of size ¢ in By,.

Theorem 43. There exists a stroglg critical set of size m in the back cir-
2 .
culant square of order n for all "T"~ < m < 2%, when n is odd, and

for all “2.;" -n-2)<m< -'%* and m € {n?/4,(n?/4) + 2, (n%/4) +
4,...,"22‘" —n} when n is even.

Finally we make a comment about what the complete spectrum for the
size of a critical set in back circulant square of order n might be. We give
two conjectures made by Bate and van Rees [1]:

. Conjecture 1 For all n > 1, the size of the smallest critical set in a
back-circulant latin square is [n2/4].

Conjecture 2 For all even n > 6, there exists no critical set of order
[n?/4] + 1.

Bate and van Rees [1] showed these conjectures to be true for alln < 12
(n # 11). This indicates that some of the “holes” in the spectrum may not
be filled when n is even.

Acknowledgement The authors wish to thank the referee for his helpful
suggestions.
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