An Improved Method for Finding Knight Covers

Frank Rubin

Master Software Corporation
59 DeGarmo Hills Road
Wappingers Falls, NY 12590

Abstract: A two-step approach to finding knight covers for an NxXN
chessboard eliminates the problem of detecting duplicate partial solutions.
The time and storage needed to generate solutions is greatly reduced. The
method can handle boards as large as 45x45 and has matched or beaten all
previously known solutions for every board size tried.

Introduction:

A knight cover for a chessboard is a placement of knights on the
board so that every square is either occupied or under attack from one of
the knights. The Knight Covering Problem for a given board is to find a
knight cover using the minimum number of knights.

An earlier article [5] in Ars Combinatoria described a computer
method for generating knight covers. The method had a serious
drawback. It generated large numbers of duplicate positions, resulting
in a great deal of wasted effort. Detecting and eliminating the duplicate
positions required a large amount of storage. Since storage is limited,
only a fraction of the duplicates could be removed.

In this paper, a new 2-stage approach is described. The method does
not generate any duplicate positions, so it does not require much storage,
has far less wasted effort, and can find good covers for larger boards.

Terminology

. Aneighbor of a square A is a square that can be reached by one
knight move from A. If B is a neighbor of A, then A is a neighbor of

B. The neighborhood of square A, denoted N(A), consists of A and its
neighbors. Each square may have from 2 to 8 neighbors, depending on
how close it is to the edges and corners of the board. Any reference to
the 8 neighbors of a square means that extended squares beyond the edge

of the board are also being considered.

The program

The program operates in two distinct stages, setup and search. The
setup stage chooses the order in which the squares of the chessboard will
be examined. The search stage examines the board in the chosen order,

ARS COMBINATORIA 82(2007), pp. 321-336

and decides which of the squares will be occupied.
The search stage will be described first, since that will explain the
objective of the setup stage. The search stage is a simple recursion.
Here is a brief outline of the search algorithm. The heart of the
algorithm is the recursive procedure Place which selects the square for
knight K starting at position P, where P is an index into the order table.

Start with an empty board.
Place (1, 1).

Procedure Place (K, P)
Starting from position P, choose the next square A in order.
Repeat
Try placing a knight on square A.
If the total number of knights placed so far is more than the
best so far, then placing a knight on A is rejected.
Count the total number of squares that are covered by all of
the knights placed so far. If this total is too low, then placing
a knight on A is rejected.
Otherwise, place knight K on square A. Recursively call
Place (K+1, A+1). After returning from the recursion,
remove the knight from A.
Test whether square A can be left empty.
Look at the neighbors of A. For each neighbor B, if all the
squares in N(B) have been reached, and all of them are
empty, then B can never be covered, so leaving square A
unoccupied is rejected.
Otherwise, leave A empty and continue sequentially to the
next square, A+1.
Until the board is covered.

In summary, a partial cover will be abandoned if it does not cover
enough squares, or if there is some square on the board that can never
be covered. Such a square is called an orphan. A square becomes an
orphan when its neighborhood has been left empty.

The steps of the program will be described in more detail in the
following sections.

Representing the board
The board is represented as an NxN array of integer-valued marks
centered inside an (N+4)x(N+4) array of marks. Initially, all squares

322

within the board are marked 0, meaning "empty," while the surrounding
guard squares are marked 20, meaning "out of bounds.” When a square
is attacked, 1 is added to its mark.

When a square is occupied, 10 is added to its mark. Thus, an empty
square attacked by k knights is marked k, while an occupied
square attacked by k knights is marked k+10. So an empty square
always has a mark from O to 8, an occupied square has a mark from 10 to
18, and a guard square has a mark from 20 to 28.

This means placing a knight on a square is simply a matter of adding
10 to its mark, and adding 1 to each of its 8 neighbors' marks. The two
tiers of guard squares surrounding the board eliminate the need to check
whether the neighbors are in bounds.

Choosing the order

The efficiency of the search depends upon how early unproductive
placements can be rejected. The order in which the squares are examined
determines how soon any bad placements can be recognized and
abandoned.

Ideally, the order would be chosen dynamically according to where
knights have already been placed, and how many more knights are
required to reject any given square. However, this dynamic calculation
takes a great deal of time, and was deemed impractical until the new two-
stage algorithm was devised. It is more effective to choose the order in
advance, and make a table of which squares to check for coverage.

The goal of the ordering is to have, at each step of the search,
as many squares as possible where all of their neighbors have been
considered. That way, orphans can be detected and eliminated as early
as possible. To pick the order, each square is given a score according
to how many of its neighbors have not yet been visited. The fewer
unvisited neighbors, the higher its score, and the more valuable it is to
choose its neighbors soon. The value of a square is the total of its score,
plus the scores of its neighbors.

At each step the square with the highest value is chosen next. In
case of ties, the square nearest the upper left corner is chosen next. This
tie-breaking rule results in better orderings than random tie-breaking, or
using the row-dominant tiebreaking rule.

Two different score functions were tried. For a square which has
U unreached neighbors, the function 1/U proved to give a poorer order
than the function 5 V. That is, bad placements were detected earlier, on
average, using the scoring function 5%V,

323

Since squares near the corners of the boards have the highest scores
initially, this procedure leads to orders that skip from corner to corner and
work inwards from all 4 directions. That is a very inefficient process.

It proved necessary to force the order into a single corner by placing
2 or 3 squares near one corner into the ordered list initially. Numerous
combinations were tried. The best orders were obtained by choosing
squares (1,2) and (2,2) as the first two on the list.

Once the order for visiting the squares has been chosen, it is a
routine matter to find when all of the neighbors of each square have been
considered. That is the point at which the square needs to be tested to
see if it is an orphan. These are precomputed and stored in a table, so
checking for orphans is very rapid.

Setting the bounds

The algorithm rejects any placement where the number of covered
squares is too low. This is done by keeping a running total of the number
of covered squares, and comparing this total to a table of bounds. The
n-th element in the bounds table b(n) is the number of squares that must
be covered after n knights have been placed. If the number of covered
squares c(n) is less than b(n) the partial placement is rejected.

Setting these bounds suitably is critical for obtaining good
placements in a reasonable amount of time. If the bounds in the table are
too low, the program will run too long, perhaps for years. If the bounds
in the table are too high, good knight covers will be missed. The number
of bounds, that is, the size of the b table, is the number of knights that
are expected to be needed. The number for the (N+1)x(N+1) board can
be estimated from the number needed for the NxN board. For a large
chessboard the number of knights is high, and it takes many runs of the
program to adjust all the bounds.

In the earlier paper [5], it is briefly mentioned that it is possible for
the program to adjust its own bounds. This process is called training.
The training process has now become fairly sophisticated, so that it is
possible to let the program set its own bounds without intervention.

During each run the program counts the number of placements p(n)
of n knights that were generated. The counts p(n) are compared to a
desired range L to U set at the start of the first run. Typically, L=U/10 for
large boards. At the end of each run if p(n)<L the bound is decreased,
and if p(n)>U, the bound is increased. The amount of the increase or
decrease is proportional to log(L/p(n)) or log(p(n)/U), respectively.

The adjustment process operates in several distinct phases. For small

324

n, p(n) is correspondingly small. During this early phase the bound b(n)
is decreased whenever p(n)<2L. This phase ends once a count p(n)>U is
encountered. In the middle phase, b(n) is decreased whenever p(n)<L,
and increased whenever p(n)>U. When p(n)>U, subsequent bounds
b(n+) are also increased as long as p(n+i)>U/2.

The middle phase ends when a count p(n)=0 is found. The
corresponding b(n) is decreased by 3. The remaining bounds are set
using biased interpolation. If E is the expected number of knights, then
b(n) is reset to b(n-1)+[((b(E)-b(n-1))/(E-n+1))+1.25] where [x] is the
integer part of x. The reason for the bias is that knights in the middle
of the board can cover more squares than knights at the edges or in the
corners. The final knights to be placed will be in the corner and along the
edges opposite the starting corner.

After each run the program increases L and U by a factor of 10/9 and
immediately proceeds to the next run. The program can run continuously
until the researcher decides that no further improvement in the knight
cover is likely within a reasonable additional running time.

Results
The program has matched the previous best covers [5] for board sizes

from 10x10 through 22x22. For all board sizes 23x23 and larger that
have been tried the program has matched or improved on the previous
best covers, as follows:

Boardsize |23 24 25 26 27 28 29 30 35 40 45

Fisher [1] 84 88 97 - -~ - - L . L
Lemaire [3] [84 88 98 106 -- 120 126 138 -- 235 292
Rubin [5] 83 8 96 102 - - .« o o L .

Rubin (new)/ 82 88 96 102 111 119 126 136 182 233 291

The program also beat the simulated annealing solutions of Jackson
and Pargas [2] for all boards from 16x16 through 20x20 by 2 to 3 knights.

The original plan for this research was to try all square board sizes
up to 30x30. However, after the Lemaire paper [3] was published, a
decision was made to try some larger boards in the hope of finding a
best cover using Monier's pattern [3]. Monier's pattern is one of the two
densest known covering patterns [6]. It is very effective for covering
the middle of the board, but it is difficult to cover the remaining squares
near the edges. No sizeable area using Monier's pattern had ever been
observed in any of the covers generated for boards up through 30x30.

325

(A Monier-pattern solution for the 18x18 board was discovered by
Morgenstern [4] as this paper was being prepared for publication.)

Lemaire has predicted that Monier's pattern will dominate for boards
larger than 130x130.

Board sizes of 35x35, 40x40 and 45x45 were tried. Each board was
covered twice, once running the covering program without constraints and
once forcing a Monier pattern in the center, with the following results:

35x35 40x40 45x45
Unconstrained 182 233 292
Monier 183 234 291

These results suggest a crossover between the 40x40 and the 45x45
boards. Given the irregular jumps that covering patterns take, however, it
is possible that there are boards smaller than 40x40 where Monier is best,
and a few boards larger than 45x45 where it is not.

What's next?

The question naturally arises, are these covers optimal? Which
boards are most likely to have smaller covers? Optimality has been
proven [3] for all boards up to 15x15. The following table can help
detect which larger boards might be improved. It shows the density, or
mean number of squares covered by each knight for various board sizes
1x1 through 45x45.

Anywhere the density of the (N+1)x(N+1) board is significantly
lower than the density of the NxN board is a likely place for
improvement. It appears that 27x27 and 30x30 are the most likely.

Table 1 The best coverings now known. N=board size, K=number of
knights required, D=density=n? /K.

N K D N K D N K D
1 1 1 12 24 6 23 82 6451
2 4 1 13 28 6.036 24 88 6.545
3 4 225 14 32 6.125 25 96 6.510
4 4 4 15 36 6.25 26 102 6.627
5 5 5 16 40 64 27 111 6.568
6 8 45 17 46 6.283 28 119 6.588
710 49 18 52 6.231 29 126 6.675
8 12 5.333 19 57 6.333 30 136 6.618
9 14 5.786 20 62 6.452 35 182 6.731

10 16 6.25 21 68 6485 40 233 6.867

11 21 5.762 22 75 6452 45 291 6.959

326

Improved Covers

For large boards the number of minimal covers tends to be very
large, so it is not yet feasible to list and categorize all of them. One
cover is given for each square board size where the new method beat the
previous best cover. Both unconstrained and Monier covers are shown
for board sizes 35x35, 40x40 and 45x45.

References

[1] David C. Fisher, "On the NxN Knight Cover Problem,"
Ars Combinatoria 69(2003) pp 255-274.
[2] Anderson H. Jackson, Roy P. Pargas, "Solutions to the NxN Knights
Covering Problem," J. Recr. Math. 23(1991), pp 255-267.
[3) Bernard Lemaire, "Knights Covers on NxN Chessboards,"
J. Recr. Math. 31(2003), pp 87-99.
[4] Lee Morgenstern, June 2004, www.contestcen.com/kn 18.htm.
[5] Frank Rubin, “Improved Knight Coverings,"
Ars Combinatoria 69(2003) pp 185-196.
[6] Frank Rubin, "An Efficient Knight Covering Pattern,”
J. Recr. Math. to appear.

An 82-knight cover of a 23x23 chessboard
il

i CEARE R

i
e ﬁ_*&ﬁ

5
£ i
3 £

327

A 111-knight cover of a 27x27 chessboard

F1F1E 1R

s

i

1

s

S

328

A 119-knight cover of a 28x28 chessboard

AR

i RAr

329

A l36—knith cover of a 30x30 chessboard

R AR

RArEAAr &

B

330

A 182-knight cover of a 35x35 chessboard

Ll

||

]

i

Al

A

2

331

A 183-knight Monier pattern cover of a 35x35 chessboard

4 | A

2R 22 213

L1

332

33-kni

t cover of ¢

40x40 chessboard
1 1

Ll

1 1

L1

11

333

A 234-knight Monier pattern cover of a 40x40 chessboard
] 1 I 11 [T
n 3 RIRIRIR]
2
Al ;F_
u u
= A
u Al
il
] n
mE 3
: R
AR} -
Lii! L1111 111 11111

334

291-knight Monier pattem cover of a 45x4:

S chessboard

I HEEN|

335

336

