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Abstract. For a graph G, let D(G) be the set of strong orientations of G. Define
d(G) = min{d(D)|D € D(G)} and p(G) = d(G) — d(G), where d(D) (resp.
d(G) ) denotes the diameter of the digraph D (resp. graph G). In this paper, we
determine the exact value of p(K, x K,), for r < s and (r,s) ¢ {(3,5), (3,6),(4,4)},
where K, x K, denotes the tensor product of K. and K,. Using the results obtained
here, a known result on p(G), where G is a regular complete multipartite graph is
deduced as corollary.

1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). For
v € V(G), the eccentricity, denoted by eg(v), of v is defined as eg(v) =
max {dg(v,z) |z € V(G)}, where dg(v,z) denotes the distance from v to
z in G. The diameter of G, denoted by d(G), is defined as d(G)= max
{ec(v) lveV(G)}.

Let D be a digraph with vertex set V(D) and arc set A(D) which has
neither loops nor multiple arcs (that is, a pair of arcs with same tail and
same head). For v € V(D), the notations ep(v) and d(D) are defined
as in the undirected graph. For z,y € V(D), we write z = y or
y+ z if (z,y) € A(D). For V' ¢ V(D) and =z ¢ V', by z = V'
(or V! ¢ z), we mean that z is adjacent to all the vertices of V' i.e.,
(x,v) € A(D) for all v € V'. For vertices z;,2,...,2x of V and a

subset V' of V\{z1, 22, ..., 2¢}, we write z; = 2z, = ... = 2 o V'
for the set {z; — 2, = ... & zx = v |v' € V'} of directed paths,
where 2y = z2 — ... = 7 — v' represents the directed path with arcs
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Iy = Tg, Ty — Tz, ..., Te_1 — T and zx = v'. For v € V(D), Nj(v)
denotes the set of out-neighbours of v in D. For z € V(D) and V' C V(D),
by dp(z,V’) £ k, we mean dp(z,a) <k, for all a € V'. We call a digraph
D to be k-regular if df(v) = dp(v) = k for every v € V(D). A digraph
D is verter - transitive if for every pair of vertices u, v € V(D), thereis an
automorphism that maps u to v.

For graphs G and H, the tensor product, Gx H, of G and H is the graph
with vertex set V(G) x V(H) and E(G x H) = {(u,v)(z,y) : uz € E(G) and
vy € E(H)}. Let V(G) = {21,23,---,@n} and V(H) = {y1,32,-.-,¥m }:
for our convenience we wnte V(GxH) asfollows: V(GxH) = V(G)xV(H) =

U {{z:} x V(H)} = U {V(G) x {y;}}. Wecall X; = {z:} xV(H) asa

G-layer and Y; = V(G) x {y;} asa H-layer in Gx H. If G and H are
connected and nontrivial, then G x H is connected if and only if at least one of
G and H is nonbipartite. Clearly, the tensor product is commutative. Hence
while considering K, x K, we always assume that r < s.

For graphs G and H, the cartesian product, GOH, of G and H is the
graph with vertex set V(G) x V(H) and E(GOH) = {(u,v)(z,y) : v=1y
and uz € E(G) or v=2z and vy € E(H

Let K, denote the complete graph of order n. For our discussion, we assume
that V(KX,) = {0,1,...,n—1}.

An orientation of a graph G is a digraph obtained from G by assigning to
each edge in G a direction. An orientation D of G is strong if any pair of
vertices in D are mutually reachable in D . Robbins’ celebrated one-way street
theorem states that a connected graph G has a strong orientation if and only
if G is 2-edge-connected [16]. Given a 2-edge-connected graph G, let D(G)
be the set of all strong orientations of G. The orientation number of G is
defined to be d{(G) = min {d(D) |D € D(G)}. In (11}, d(G) - d(G) is defined
as p(G)-

Any orientation D in D(G) with d(D) = d(G) is called an
optimal orientation of G. The problem of evaluating the orientation number
of an arbitrary connected graph is very difficult. Chvatal and Thomassen [3],
among other results, obtained d(G) < d(2d+1) if d > 3 and d(@) <6 if
d = 2, where d is the diameter of the 2—edge-connected graph G. Further, they
have shown that the problem of deciding whether a graph admits an orientation
of diameter 2 is NP-hard. Goldberg [4] evaluated the extreme value of the
diameter of a strong digraph with n vertices and n +m arcs; it states that if
G is a 2-edge-connected graph with n vertices and n 4+ m edges, where n >4
and m > 1, then J(G) > [3{:—;—111.' . The parameter cf(G’) has also been studied
in various particular classes of graphs including the complete n -partite graphs,
see ([2), [5], [6], [7], [9], (10], [12], [13], [14], [15] and [17]) and the cartesian
product of graphs (see the references in [11]). Optimal orientations have variety
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of applications, see [11]. For further results on orientations of graphs see [11], a
recent survey by Koh and Tay.

Notations and terminology not defined here can be seen in [1].

In this paper, we focus on the orientation number of K, x K,;. K, x K is
connected if and only if r > 2, 8> 2 and (r,8) # (2,2) or (r,8) = (1,1). In
fact, K, x K, is isomorphic to both K,.(s) — E(sK,) and K,(r) — E(rK,),
where K.(s) denotes the complete r-partite graph in which each partite set
has s vertices and sK, denotes s disjoint copies of K,. As any two distinct
G-layers X; and X; of K, x K, induce a subgraph isomorphic to Kj,, — Fo,
where Fy = {(i,k)(j, k) : k € V(K,)} is the 1-factor of K,,, d(K,xK,) =2
or 3 according as min{r,s} > 3 or min{r,8} = 2 and r #s.

In this paper, we obtain the exact value of p(K, x K,) for almost all the
values of r and s. It is shown that for » < s and (r,8) ¢ {(3,9),(3,6),(4,4)},

{ 2 if (r,8) € {(2,3),(2,4)},
PE-xK)=¢ 1 if(r,s) €{(3,3),(3,4)}

0 otherwise.

For the exceptional values, (r,s) € {(3,5), (3,6), (4,4)}, it has been proved
that p(K, x K,) < 1. Further, as K, x K, is a spanning subgraph of
K, (s), we deduce that p(K,(s)) = 0 for r > 3, 8 > 3 and (r,s) ¢
{(3,3),(3,4),(3,5), (3,6), (4,3), (4,4),(5,3),(6,3)}. For r > 2 and s > 2,
p(Kr(s)) =0 was proved in [6).

2 Optimal orientations of K, x K

In the sequel, we use the following notations. Let V(K,) = {0,1,...,r—1}
and V(K,) = {0,1,...,s—1}. The vertex (i+k,j+!) of K, x K, represents
the vertex ((¢ + k)(modr),(j + 1)(mods)). Recall that for i € V(K,) and
j € V(K,), X; = {(i k) : k E V(K.)}, Y; = {(kj) : k € V(K;)}

and V(K, x K,;) = U X; = U Y;. Throughout this paper, addition in
i=0

the subscripts of the G-layer X; a.nd the H-layer Y; are taken, respectively,

modulo r and modulo s. The main theorem of t.hxs paper follows from a

sequence of lemmas that we shall prove below.
Lemma 2.1. If both r end s are even and r,s8 > 6, then p(K, x K,) = 0.

Proof. Delete the set of edges
B = {(i,i)i+5,i+9):ieV(K,), j e V(K,)}
of K, x K, and denote the resulting subgraph by H. We orient H so that for
any i € V(Kr) and j € V(Ka)’
G- {GE+1,7+1),6+1,7+2),...,6+1,5+§)}U

339



i+5-1
{k___LiJH{(k,j +2),(k,j+3),...y (K +5) (kyJ — 1)}} U

i-2
{k—%g{(k’j +2),(k,j+3),-..,(k,j+ 5 —1),(k,j— 1)}} U
{G-1,7+1),G-1,5+2),...,¢-1,7+% -1)}}.

Let D be the resulting digraph. D is vertex-transitive (see (1) of Appendix)
and Z2=7=2 -regular. We claim that d(D) = 2; it follows that d(K,xK,) = 2
and, this in turn implies that p(K, x K,) = 0. d(D) = 2 is shown
by proving ep((i,j)) = 2 for all (i,j) € V(D). To prove this, we show
that dp((%,7),X;) € 2, dp((§,7), Xip1) £ 2, dp(($,7), Xiv1) £ 2 for every
1€ {23,...,r—3}, dp((i,5),Xi-2) <2 and dp((3,J), Xi-1) < 2 in order.

The existence of the paths (i,5) = ({+2,7-1) = (,j+1), (57 —
(i+},j+1) — {(i,j+2),(i,j‘+.3),...,(i,j+-§-)} and (4,7) = (i+1,j+3) =
g(i,l-g‘;ilﬂ), (z;}j-é-(-%f?)%—)-é'érl)} in D shows that dp((%,7), Xi\{(i,4)}) £

, and hence ap(\t,7),Ai) S 4.

The existence of the paths (i,j) = (i+2,7+%) = {(+1,j+5+1),
(i+1,j+2+2),...,(i+1,j—-1)} and (4,7) = (+2,j—1) = (i+1,j) in
D shows that dp((i,5), Xi+1\NF((3,5))) < 2, and hence dp((3, j), Xi+1) < 2.

For every | € {2,3,...,r — 3}, the existence of the paths (i,j) —
GHl+1,5+2-1) = {G+Li+§,GE+Li+5+1),...,G+1,j-2)}
and (i,j) = (E+1+1,7-1) = {i+1j),¢E+1,7+1)} in D shows that
dD((ia J)’ X..H\Ng((t,]))) <2, and hence dD((i,J)! Xi-l-l) <2

The existence of the paths (i,j) = (i—3,j+%-1) = {(i—-2,7+%),(-2,j+
%+l), -~~1(i—21j"2)} and (ivj) - (i—31j-1) —+ {(i—2,j),(i—2,j+1)} in
D shows that dp((3, ), Xi—2\N3((i,4))) < 2, and hence dp((i, ), Xi-2) < 2.

The existence of the paths (i,5) = (i—2,j+%-1) = {((-1,7+ %), -
1,j+-.:;+l),...,(i—l,j—1)} and (,j) = (1-2,j-1) = (¢—-1,5) in D
shows that dp((i,4), Xi-1\N((i,5))) < 2, and hence dp((i,), Xi-1) <2. W

Lemma 2.2. If r > 5 is an integer and s > 7 is odd, then p(K, x K,) = 0.
Furthermore, p(Ks x Kg) = 0.

Proof. We orient K, x K, so that for any i € V(K,) and j € V(K,),
(i)j) - {(k7.7 + 2)1(k:j + 3)1 ey (k’J + 'a—Tl)s (ka] - 1)}
whenever k ¢ {i —1,i+1} and
(i,5) = {(k,5 +1),(k, 5 +2),...,(k,j+ 251)} for k € {i—1,i+1}.
We denote the resulting digraph by D. Clearly, D is (r —1)(25*) -regular and
vertex-transitive (see (1) of Appendix). We claim that d(D) = 2.

For r = s = 5, the verification of ep((0,0)) = 2 is easy and hence it is
omitted; consequently d(D) = 2, as D is vertex-transitive.
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We complete the proof by showing dp((¢,7), X:) < 2, dp((i,7), ..,,1) <2,
dp((%,7), Xit2) <2 and for t € V(K,)\{0,1,2}, dp(( ,]) Xist) < 2, in order,
when 7> 5 and s> 7 is odd.

The existence of the paths (i,5) — (i + 1,j +1) = {(z, +2),(,5 +
3), SI +Hh) G) o G+ L+ o {65+ .65 +

L) IO (A 1)} and (i,7) = (i+2,j - 1) - (i,j +1) in D shows
that dp((3,5), Xi\{(3,5)}) < 2, and hence dp((3, ), X;) < 2.

The existence of the paths (i,j) — (i + 2,,7 -1 = (i+1,7), &35 —=
(i+2, J+5—§) = {(G+1,7+5),6+1,j+282),...,(i+1,5-2)} and (,5) =
(z+2!]+ 2 ) —+ (7'+1t.7 1) in D shows that dD((%,j),X.+1\N;((l,j))) <2,
and hence dp((%,5), Xi+1) < 2.

The existence of the paths (i,7) = (i+1,j+ 25%) = {(i +2,5 + &), (i +
2,5+52),...,(+2,-2)}, (f) = G-15+1) - (i+2,5) and (i,)
(i—-1,7+2) = (i+2,j+1) in D shows that dp((i,J), Xi+2\N}((3, 7)) < 2,
and hence dp((i, ), Xi42) < 2.

For any t € V(K,;)\{0,1,2}, the existence of the paths (i,j) — (i +
2,j+2) - {(z+t i+, (z+t,1+—+-)} (4,4) = (+2,5+%5) =
{G+t7+ 22, (z+t,1+—+—), ,(z+t,1-1)}, (3) = (+2,j-1) >
(i+¢tj+1) and (4,j) - (E+1,7+1) = (i+¢j) in D shows that
dp((5,5), Xi+1\N5((3,5))) < 2, and hence dp((i, ), Xirs) < 2. =

Lemma 2.3. For s 25, p(K2xK,) = 0 and p(K;xK3) = 2 = p(K2x Kj).

Proof. Clearly, K3 x K3 = Cg, the cycle of length 6, and hence p(K> x K3) =
p(Cs) = 2. Moreover, as K3 x K4 = Q3, the 3-cube, and p(Qs) = 2 [11],
p(K2 x K;) = 2. Next we prove that for s > 5, p(K2 x K,) = 0. First we
consider the case 8 = 5. We orient K> x K5 so that

(0,0) = {(1,1), (1,2)}, (1,0) = {(0,3), (0,4)},

(0,1) = {(1,0), (1,4}, (1,1) = {(0,2), (0,3)},

(0,2) = {(1,0), (1,3)}, (1,2) = {(0,1), (0,4)},

(0,3) = {(1,2), (1,4}, (1,3)—{(0,0), (0,1)},

(0,4) = {(1,1), (1,3)}, (1,4) = {(0,0), (0,2)}.
From this orientation of K> x K; it can be seen that p(K, x K5) = 0 as
d(K2 x K3) = d(K2 x K5) = 3. Hence we suppose that s > 6.

To show that d(K2 x K,) = 3, s > 6, it suffices to provide an orientation
of K3 x K, so that the resulting digraph D has diameter 3. We define the
orientation as follows:

If s is even, orient the edges of K3 x K, so that (0,j) = {(1,5 - 1),(1,5 +
1), (1,542),...,(1,5+5-1)} and (0,5) < {(1,j+4),(1,j+§+1),...,(L,i=2)},
Jj € V(K,). Consequently, in the resulting dxgraph say, Dl, (1, J) = {(0,7+
2),(0,j+3),...,(0,5+%)} and (1,5) « {(0,5+§+1),(0,i + % +2),...,(0,5 -
1),(0,5 +1)}.
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If 3> 7 is odd, then orient the edges of K2 x K, so that for any i € {0,1}
and j € V(K,), (i,5) =» {((+1,j+1),(i+1,j+2),...,(6+ 1,7+ 5 3) i+
1,j + 241)}. The resulting digraph, say, D, is vertex-transitive (see (1) of
Appendlx) From the orientations described above, it is easy to check that the
resulting digraphs D; and D, have diameter 3. Hence p(K2 x K,) = 0. W

Next we consider the case r = 3 and s is odd. As K3 x K3 is isomorphic to
the cartesian product K3;0OK3 (see p.183 of [8]), p(K3 x K3) = 1 [11). Hence
we consider 8 > 5.

Lemma 2.4. p(K3 x Kg) < 1.

Proof. Orient K3 x K so that for any i € V(K3) and j € V(Ks),

G2 {G+1,i+1),6+1,j+2),(0+2,j+1),6+2,7+2)}
Let D be the resulting digraph. To verify that d(D) < 3, it is enough to verify
that ep((0,0)) < 3. The verification is easy and hence it is omitted. [ ]

Lemma 2.5. If s > 7 is odd, then p(K3 x K,) = 0.
Proof. We orient K3 x K, so that for any j € V(K,),

(O)j) _’ {(I’j + 1)’(11j+ 2)’ ’(l,J + f )i
(2,5 +3),(2,5+4),-., 25+ 55), (2,5 - 2,(2,7 - D}

1L3) = {(0,j+1),(0,5+2),...,(0,5 + £51),
(2,5 +2),(2,5 +3),-. ,(2,J+ 1) ), (2»1 D},

2,5) = {(0,5+3),(0,5+4),...,(0,5 + d (0,5 -2),(0,5 - 1),
(1,j+2),(1,5+3),...,(Lij+ %), (1,1-1)}

Let D be the resulting digraph. Clearly, D is (s — 1)-regular. To show that
d(D) = 2, it is enough to verify that for each i € V(K3), ep((¢,0)) = 2. We
achieve this by showing dp((i,0), Xx) < 2 for i, k € V(K3).

First we prove that dp((0,0),Xe) < 2, dp((0,0),X1) < 2 and
dp((0,0), X2) < 2, m order. The existence of the paths (0,0) — (1,1) —
{(0 2) (0,3),.. ’(0 }’ (0, O) = (1, ,—1) = {(0 'i-) (0, "-L'): (0,8 -
1)} and (0,0) - (2, 3—2) - (0,1) in D shows that dD((O 0), xo\{(o 0} <2,
and hence dp((0,0),Xo) < 2. To show that dp((0,0),X;) < 2, we consider
two cases, namely, s = 7 and s > 9. If s = 7, the existence of the
paths (0,0) = {(1,1),(1,2),(1,3)}, (0,0) = (2,3) — {(1,5),(1,6)} and
(0,0) = (2,5) = {(1,0),(1,4)} in D shows that dp((0,0),X;) < 2. If
s > 9, the existence of the paths (0,0) = {(1,1),(1,2),...,(1,%51)}, (0,0) =
(2, 9;3) — {(1 9:1‘.1.) 1, 2 )9 (1,8 - 2)}1 0,0) — (2,8 -2) = (1,0)
and (0,0) = (2, L‘) - (1,s—1) in shows that dp((0,0),X;) <
2. Next, we prove that. dp((0,0),X,) < 2 The existence of the paths
0,0) =+ {(2,3),(2,4),-.-,(2,232), (2,8 - 2),(2,s - 1)}, (0,0) + (1,%3%) -
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{2, 52),(2,%2),...,(2,5 - 3)}, (0,0) = (1,1) = (2,0), (0,0) = (1,2) =
(2,1) and (0,0) = (1,3) = (2,2) in D proves that dp((0,0),X2) < 2.

Next we verify that dp((1,0),Xo) £ 2, dp((1,0),X;) < 2 and
dp((1,0),X2) < 2, in order. To show that dp((1,0),Xo) < 2, we consider
two cases, namely, s = 7 and s > 9. If s = 7, the existence of the paths
(1,0) = {(0,1),(0,2),(0,3)}, (1,0) = (2,2) = (0,0), (1,0) = (2,6) —
{(0,4),(0,5)} and (1,0) = (2,3) = (0,6) in D shows that dp((1,0), Xp) < 2.
If s > 9, the existence of the paths (1,0) — {(0,1),(0,2),...,(0, %)},
1,00 = (2,2) = (0,0), (1,0) = (2,%52) = {(0,%),(0,4£2),...,(0,s -
3)} and (1,0) = (2,%52) - {(0,s — 2),(0,s — 1)} in D shows that
dp((1,0), Xo) < 2. We next show that dp((1,0),X;) < 2. The existence of
the paths (110) -+ (Oa 1) - {(1:2)’(123),“'7(11 A:;_L)}’ (1’0) - (O’L;l) —+
{(1,2£2),(1,42),...,(1,s- 1)} and (1,0) = (2,2) = (1,1) in D shows that
dp((1,0), X1\{(1,0)}) < 2, and hence dp((1,0),X;) < 2. The verification
of dp((1,0),X2) < 2 follows by the existence of the paths (1,0) —
{(2,2),(2,3),---,(2,%3%), (2,5 - 1)}, (1,0) = (0,2) = {(2,0),(2,1)}, (1,0) =
(Ov %) - {(21 £‘2l2)1 (21"%&)5'"1(2:3_3)} and (110) - (0’.3—73) - (213_ 2)
in D.

Finally, we prove that dp((2,0),Xo) < 2, dp((2,0),X;) < 2 and
dp((2,0),X2) < 2, in order. The existence of the paths (2,0) —
{(Os3)v(0:4))--':(01 ,n;—_l),(o’s - 2)!(013 - 1)}; (210) — (1,8 - 1) -
{(0,0),(0,1),(0,2)} and (2,0) —+ (1,23) = {(0, &), (0,%82),...,(0,s — 3)}
in D shows that dp((2,0),Xp) < 2. We next verify that dp((2,0),X;) <
2. The existence of the paths (2,0) — {(1,2),(1,3),...,(1,%%),(1,s —
nh 2,0 = (0,s-1) = {(1,0),(1,1)} and (2,0) = (O, %1‘) —+
{(1,21),(1,42),...,(1,s - 2)} in D guarantees that dp((2,0),X1) < 2. To
show that dp{(2,0),X2) < 2, we consider two cases, namely, s = 7 and
82>9. If s = 7, the existence of the paths (2,0) — (1,2) = {(2,4),(2,5)},
(2,0) = (1,3) = (2,6), (2,0) = (0,3) = {(2,1),(2,2)} and (2,0) —
(0,5) — (2,3) in D proves that dp((2,0), X2\{(2,0)}) < 2, and hence
dp((2,0),X3) < 2. If 8 > 9, the existence of the paths (2,0) = (1,2) —
{(2,4),(2,5),- ., (2,59}, (2,0) » (1,558) = {2, 248),(2, %0), ..., (2, -
D} (2,0) = (0,5 -2) = {(2,1),(2,2)} and (2,0) = (1,4) = (2,3) in D
shows that dp((2,0),X2\{(2,0)}) <2, and hence dp{(2,0), X>) < 2. [ ]

Lemma 2.6. p(X3; x Ky) = 1.

Proof. If possible assume that there is an orientation of K3 x K; so
that the resulting digraph D has diameter 2. Consider the vertex (0,0).
If (0,0) has only one out-neighbour, say, (i,j) in D, then the vertices
(,741), (5,5+2), (4,7 +3), (i+1, ), (:+2, ) cannot be of distance at most 2 from
(0,0), as these vertices are nonadjacent to (i,7). Similarly, if (0,0) has exactly
two out-neighbours, then it can be easily verified that they cannot be in a single
layer. If they are (i,7) and (r,s) with i #r and j # s, then dp((0,0), (3, s))

343



and dp((0,0),(r,7)) are both greater than 2. Therefore, we conclude that
d}((0,0)) > 2. Similarly, d;((0,0)) > 2. Thus d5((0,0)) = 3 = d((0,0)). In
general we can conclude that for any vertex (i,3), d§((i,4)) = 3 = dp((i,4))-

If all the out-neighbours of (0,0) arein the i** Kjs-layer, then (i,0) cannot
be reachable by a directed path of length at most 2 from (0,0). Therefore,
the out-neighbours of (0,0) must be in two different Kj-layers. Out of the
three out-neighbours of (0,0), assume without loss of generality that two of
them be (1,1) and (1,2). If the third out-neighbour of (0,0) is (2,3), then
dp((0,0),(1,3)) > 2, a contradiction. Therefore (2,3) is an in-neighbour of
(0,0). Again, without loss of generality assume that (2,1) is the remaining out-
neighbour of (0,0). Consequently, (1,3), (2,2) and (2,3) are the in-neighbours
of (0,0). As dp((0,0),(0,1)) = dp((0,0),(2,0)) = dp((0,0),(1,3)) =
dp((0,0),(2,2)) = 2, ((1,2),(0,1), ((21),(10)), ((21),(1,3)) and
((1,1),(2,2)), respectively, are arcs of D.

Next we consider the vertex (2,1). Already we have obtained two of its out-
neighbours, namely, (1,0) and (1,3). Using the above argument, it is clear
that (0,3) is the remaining out-neighbour of (2,1), otherwise we may not be
able to reach the vertex (1,2) by a directed path of length at most 2 from
(2,1). Consequently, (2,1) « {(0,0),(0,2),(1,2)}. As dp((2,1),(1,1)) =
dp((2,1),(1,2)) = dp((2,1),(2,3)) = 2, ((0,3),(1,1)), ((0, 3),(1,2)) and
((1,0),(2,3)), respectively, are arcs of D.

Next we consider the vertex (0,3). As we have already obtained two of its out-
neighbours, namely, (1,1) and (1,2), the third out-neighbour should be (2,2);
otherwise, the vertex (1,0) cannot be reachable by a directed path of length at
most 2 from (0,3). Hence (0,3) + {(1,0),(2,0),(2,1)}. As dp((0,3),(0,2)) =
dp((0,3),(1,0)) = dp((0,3),(1,3)) = 2, ((1,1),(0,2)),((2,2), (1, 0)) and
((2,2),(1,3)), respectively, are arcs of D. Finally, we consider the vertex
(2,2). So far we have (2,2) — {(0,0),(1,0),(1,3)}. Hence (2,2) «
{(0,1),(0,3), (1,1)}. Again as dp((2,2),(2,0)) = 2, ((1,3),(2,0)) is an arc of
D. Now dp((2,0),(0,0)) > 2 as (1,1) and (1,2) arein N3((0,0)) and (2,0)
is an in-neighbour of (1,3). This contradiction shows that d(Ks x K4) > 3.

We orient K3 x K3 so that
(0,0) = {(1,1),(1,2),(2,1)}, (1,0) = {(0,1),(2,1),(2,2)},
(2,0) = {(0,1),(0,2),(1, 1)}, (0,1) = {(1,2),(2,2),(2,3)},
(1) 1) -) {(0’ 2)’ (0’ 3)’ (2! 2)}’ (27 1) -_) {(0’ 2), (112)’ (1,3)}’
(0,2) = {(1,0),(1,3),(2,3)}, (1,2)— {(0,3),(2,0),(2,3)},
(2,2) = {(0,0),(0,3),(1,3)}, (0,3)— {(1,0),(2,0),(2,1)},
(1,3) = {(0,0),(0,1),(2,0)}, (2,3)— {(0,0),(1,0),(1,1)}.
This orientation is of diameter 3 and hence d(K3 x K3) = 3. | |

Lemma 2.7. p(K3 x Kg) < 1.

Proof. Orient K3 x Kg so that for any i € V(K3) and j € V(Ks),
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(,7) =+ {(+1,5+1),+1,7+2),(i+ 1,7 +3), (i +2,j +1), (i + 2,7+ 2)}.
Let D be the resulting digraph. To verify that d(D) < 3, it is enough to verify
that ep((0,0)) < 3. The verification is easy and hence it is omitted. |

Lemma 2.8. If s > 8 is even, then p(K3 x K;) = 0.
Proof. We orient K3 x K, so that for any j € V(K,),

©0,5) = {1,7+1),(1,7+2),...,(L, 7+ 3),
(21j+ 4)) (2':.7 +5):“"(2,j+ %)1(2:]- - 2)1(2:j - 1)}1
(11.7) - {(01.7 + l)v(01j+ 2)v"1(0’j+ % - 1)1
(27j+ 2)’(2sj+3),"'$(2$j + %)7 (27j - 1)})
25 = {(0,j+3),(0,5+4),...,
0,5+ %-1),(0,5-3),(0, —2),(0,5 - 1),
(L,j+2),(1,j+3),...,(L,i +5-1),(3,5 - 1)}.

Let D be the resulting digraph. Clearly, D is (s — 1)-regular. To show that
d(D) = 2, it is enough, because of the symmetry of the graph K3 x K, and
the orientation, to show that for each i € V(K3), ep((i,0)) = 2.

First we prove that dp((0,0),Xe) < 2, dp((0,0),X:) < 2 and
dp((0,0), Xz) < 2, in order. The existence of the paths (0,0) — (1,1) —
{(0,2),(0,3),...,(0,)}, (0,0) = (1,%) — {(0,22),(0,24),...,(0,5s - 1)}
and (0,0) = (2,5 —2) = (0,1) in D verifies that dp((0,0), Xo\{(0,0)}) < 2,
and hence dp((0,0),Xo) < 2. To show that dp((0,0),X;) < 2, we consider
two cases, namely, s = 8 and s > 10. If s = 8, the existence of the
paths (0,0) = {(1,1),(1,2),(1,3),(1,4)}, (0,0) = (2,4) = {(1,6),(1,7)}
and (0,0) = (2,6) — {(1,0),(1,5)} in D proves that dp((0,0),X;) < 2.
If s > 10, the existence of the paths (0,0) — {1,1),(1,2),...,(1,2)},
(0,0) = (2,252) - {(1,52),(1,24),...,(1,8 - 2)}, (0,0) = (2,5 —2) =
(1,0) and (0,0) = (2,4) = (1,8 —1) in D shows that dp((0,0),X;) <
2. Next we prove that dp((0,0),X2) < 2. The existence of the paths
0,0) - {(2t4),(2:5),---)(2s'§):(213-2), (2,s - 1)}, (0,0) — (1’%3) =
{2, %42),2,244),...,(2,s - 3)}, (0,0) = (1,1) = (2,0), (0,0) = (1,2) -
(2,1), (0,0) = (1,3) = (2,2) and (0,0) = (1,4) = (2,3) in D shows that
dD((O’O)) X2) < 2.

Next we show that dp((1,0),Xp) < 2, dp((1,0),X;) < 2 and
dp((1,0),X2) < 2, in order. To show that dp((1,0),X,) < 2, we consider
three cases, namely, s = 8, s = 10 and s > 12. If s = 8, the existence of
the paths (1,0) = {(0,1),(0,2),(0,3)}, (1,0) = (2,2) = {(0,0),(0,5),(0,7)}
and (1,0) = (2,7) = {(0,4),(0,6)} in D guarantees that dp((1,0),Xo) < 2.
If s = 10, the existence of the paths (1,0) — {(0,1),(0,2),(0,3),(0,4)},
(1,0) = (2,2) =+ {(0,0),(0,5),(0,6)}, (1,0) = (2,4) = {(0,7),(0,8)} and
(1,0) = (2,5) = (0,9) in D proves that dp((1,0),Xo) < 2. If s > 12, the
existence of the paths (1,0) = {(0,1),(0,2),...,(0,%53)}, (1,0) = (2,2) -
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(0,0, (1,0) = (2, %52) = {(0, ), (0, £2),..., (0,5~ 4)} and (1,0) > (2,4) -
{(0,5s - 3),(0,s - 2),(0,8 — 1)} in D shows that dp((1,0),Xo) < 2. Next we
show that dp((1,0),X;) < 2. The existence of the paths (1,0) = (0,1) —
{(1,2),(1,3),.., (1L, 42)}, (1,00 = (0,%52) - {(1,%44), (1, 248),..., (1,8 -
1)} and (1,0) = (2,5 —1) = (1,1) in D proves that dp((1,0), X1\{(1,0)}) <
2, and hence dp((1,0),X;) < 2. To prove dp((1,0),X2) < 2, we consider
two cases, namely, s = 8 and s > 10. If s = 8, the existence of the
paths (1,0) = {(2,2),(2,3),(2,4),(2,7)}, (1,0) = (0,1) = {(2,0),(2,5)}
and (1,0) = (0,2) = {(2,1),(2,6)} in D shows that dp((1,0),X3) < 2. If
s > 10, the existence of the paths (1,0) = {(2,2),(2,3),..-,(2,%),(2,s - 1)},
(1,0) = (0,2) - {(2,0,(2,1),(2%42),(2, %)} and (1,0) + (0,%5%)
{(2,%8),(2,438),...,(2,8 - 2)} in D proves that dp((1,0), X2) <2.

Finally, we show that dp((2,0),Xe) < 2, dp((2,0),X:) < 2 and
dp((2,0),X2) < 2, in order. The existence of the paths (2,0) —
{(0,3),(0,4),...,(0,252),(0,8 — 3),(0,8 - 2),(0,s — 1)}, (2,0) = (,s—-1)—
{(030)1 (03 1)1(0: 2)} and (2$0) = (11 £’.2-_2) = {(0: '28')1((): "_12'-_2')’--%(0’3 - 4)} in
D guarantees that dp((2,0),Xo) < 2. We next show that dp((2,0),X1) <
2. The existence of the paths (2,0) — {(1,2),(1,3),...,(1,%52),(1,s -
1}, 2,00 » (0,s = 1) = {(1,0),(1,1)} and (2,0) = (0,%53) -
{(1,2),(1,%2),...,(1,8—2)} in D proves that dp((2,0), X1) < 2. Finally, we
show that dp((2,0), X2) < 2. The existence of the paths (2,0) = (1,5 —1) =
{2,1),(2,2)-..,(2,55%)}, (2,0) = (1,25%) = {(2,4),(2,42),...,(2,s - 2)}
and (2,0) = (1,%52) = (2,s—1) in D proves that dp((2,0), X2\{(2,0)})) <2,
and hence dp((2,0),X2) < 2. =

Lemma 2.9. For any odd integer s > 5, p(K4 x K,) = 0.

Proof. We consider the case s = 5 at the end of the proof. For any odd
integer s > 7, we orient K4 x K, so that for any j € V(K,),

©0,5) - {(1,j+1),(1,j+2),---,(1,1'+§-‘-),

(2’j +3)a(2sj +4)a-'-v (2sj+ ; )’ (2’j - 2):(2’j - 1)’
(3,7 +2),3,7+3),..-,(3,5 +21),3,5 - 1},

(L,4) = {(0,5+1),(0,5+2),...,(0,5 + =),
(21j+ 2)’(2’j+3)""1(2tj + "—;—)) (213 - 1)1
(37j+3)a(3)j +4)v'°'1(3vj + 8_;_1')’ (31] - 2)1(3:.7 - 1)}:

(21.7) - {(OsJ +3), (O:J + 4)1 vee v(oaj + ﬁ)v (O)J - 2): (Ovj - 1),
(Lj + 2))(1:j+3)’--'s(11j+ %)’(l)j - 1))

(3sj + 1):(3’j + 2),- [EE) (3)j + %)}1

(3:.7) - {(O:j + 2): (01.7 + 3)7- oo ,(O,j + ‘__1)7 (Ovj - 1):

(1,5 +3), (1,5 +4),..., (1,7 + %52, (1,5 - 2), (1,5 = 1,
(2,7 +1),(2,7+2),..-, 25+ 5}

Let D be the resulting digraph. Clearly, D is 1("—2'1)~-regular and vertex-
transitive (see (2) of Appendix). We complete the proof by showing ep((0, 0) =

346



First we prove that dp((0,0),Xo) < 2. The existence of the paths
0,00 = (1,1) =+ {(0,2),(0,3),...,(0,2$)}, (0,0) — (1,%5!) -
{(0, 242), (0, %55), ..., (0,8 — 1)} and (0,0) » (3,2) = (0,1) in D proves
that dp((0,0),Xp\{(0,0)}) <2, and hence dp((0,0),Xp) < 2.

To show that dp((0,0), X;) < 2, we consider two cases, namely, s = 7 and
s> 9. If s = 7, the existence of the paths (0,0) = {(1,1),(1,2),(1,3)},
(0,0) = (2,3) = (1,6), (0,0) = (3,2) =+ (1,0) and (0,0) = (3,6) —
{(1,4),(1,5)} in D showsthat dp((0,0), X1) < 2. If 3 > 9, the existence of the
paths (0,0) - {(1,1),(1,2),...,(1,%451)}, (0,0) = (3,2) -+ (1,0), (0,0) —
(2v §;4) - (1:3_ 1) and (0’0) — (21 g;g'g) - {(11 L;J'))(l’ A:%'_:‘.),.”,(]_,s_ 2)}
in D guarantees that dp((0,0),X;) < 2.

We next show that dp((0,0),X2) < 2. The existence of the paths
(0,0) - {(2’3): (2:4)9"’r(21 '_;_l)’ (2a3 - 2)3 (2,8 - 1)}’ (an) - (313 - 1) -
{(2,0),(2,1),(2,2)} and (0,0) » (3, %5%) - {(2, 4),(2,%42),..., (2,6 - 3)}
in D shows that dp((0,0), X2) < 2.

Next we prove that dp((0,0),X3) < 2. The existence of the paths (0,0) =
{3,2,3,3),...,(3,%5),3,s - 1)}, (0,0) » (2,5 —1) - {(3,0,3,1)}
and (0,0) — (2,23%) — {(3,4!),(3,42),...,(3,s - 2)} in D proves that
dp((0,0), X3) < 2. Thusif 8> 7 is odd, then p(K,; x K;) = 0.

Finally, we consider the case when s = 5. The following orientation of
K4 x K5 has diameter 2. Orient K4 x K5 so that for any j € V(K5),

0,5) = {(1,7 +1),(1,7 +3),(2,7 + 3),(2,5 +4),(3,5 + 3), (3,5 + 4)},

(1,7) = {(0,7 +1),(0,5 +3),(2,5 + 1),(2,5 +3),(3,7 +3), (3,7 + 9)},

(2,7) = {(0,5 +3),(0,5 +4), (1,5 +1), (1,5 +3),(3,5 +1),(3,5 + 3)},

(3,7) = {(0,7 +3),(0,5 +4),(1,5 +3), (1,7 +4),(2,7 +1),(2,5 + 3)}.
Let D be the resulting digraph. To verify that d(D) = 2, it is enough to verify
that ep((0,0)) =2 and ep((1,0)) = 2, because of the symmetric nature of the
orientation (see (3) of Appendix). As the verification is easy, it is omitted. W

Lemma 2.10. p(K4 x K;) < 1.

Proof. We orient K4 x K, so that for any j € V(K,),

(0,5) = {(1,7 +1),(1,7 +2),(2,j +1),(3,7 +1),(3,7 + 2)},

(1,5) = {(0,5 +1),(2,5 +1),(2,7 +2), (3,5 + 1)},

(2,5) = {(0,5 +1),(0,5 +2), (1,7 +1),(3,7 +1),(3,5 + 2)},

(3,5) = {(0,5 +1),(1,5 +1), (1,7 +2),(2, +1)}.
Let D be the resulting digraph. To verify that p(K, x K4) < 1, it is enough
to verify that ep((,0)) <3, ¢ € V(K,). The verification is easy and hence it
is omitted. |

Lemma 2.11. p(K4 x Kg) = 0.
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Proof. We orient K4 x K¢ so that for any j € V(Kg),
0,7) = {(1,5+1),(1,5+4), (2,7 +3),(2,5+4), (2,5 +5),(3,5+4), (3,7 +5)},
(1,7) = {(0,5+1),(0,5+3), (0,5 +4),(2,+1), (2,5 +4),(3,7+4), (3,7 +5)},
(2,7) = {(0,7+4),(0,5+5),(1,5+1),(1,5+3), (1,5 +4), (3,5 +1), (3,7 +4)},
3,5) = {(0,5+3),(0,5+4),(0,i +5),(1,5 +3), (1,5 +4), (1,5 +5),(2,5+1),
(2,7 +3),(2,i + 4}
Let D be the resulting digraph. To verify that d(D) = 2, it is enough to
verify that ep((#,0)) = 2, i € V(K,). The verification is easy and hence it is
omitted. [ ]

Lemma 2.12. p(K4 x Kg) = 0.
Proof. We orient K; x Kz so that for any j € V(Ks),

(0,7) = {(1,j+1),1,7+2),(1,5+3),(1,i+4),(2,7+1),(2,5+3),
(2,7 +5),(2,j+6),(3,5+1),(3,5 +4),3,7 +6)},

1,7) = {(0,j+1),(0,5+2),(0,5+3),(2,i+1),(2,5 +4),(2,j +6),
(3,7 +1),(3,i +3),(3,7 +5),(3,5 +6)},

(2,7) = {(0,5+1),(0,j+4),(0,j+6),(1,5+1),(1,5+3),(1,5 +5),
(1,7 +6),(3,i+1),(3, +2),(3,7+3), 3, +4)},

3,9 = {(0,+1),(0,5+3),(0,5+5),(0,5+6),(1,5+1),(1,5+4),
(1,§ +6),(2,§+1),(2,5+2),(2,5 +3)}.

Let D be the resulting digraph. To verify that d(D) = 2, it is enough to
verify that ep((,0)) = 2, i € V(K,). The verification is easy and hence it is
omitted. u

Lemma 2.13. If s > 10 is even, then p(Ky x K,) = 0.

Proof. Consider the subset By = {(i,5)(k,j+%):i € V(Ky), j € V(K,), k€
V(K4)\{i}} of E(Ks x K,). Clearly, the subgraph induced by E, is 3-regular.
Delete the edges of E; from K4 x K, and denote the resulting subgraph by
H. We orient H so that for any j € V(K,),

(O’j) - ggl'j +1§)E2(11.7 +2')?’)v- -'22(11.7. + ';' —2?)Eé]ﬂj + '% +1;-)1 (lij - l)n
)j+ ’ ’j+ [RRES] )j+£— ’ 1j+£+ ’
(3,7 +2),(8,7+3),.... (3,5 + § - 1,3, - D),
L) - go,j:;)i 2(0’.’:3?)"“2;0’.’:;;' —1?)Eé0’-j * ); +1),(0,5 - 1),
' J 1(4y) 1erer\@d +35—1),6,7 - 1),
(3,7 + 1,5 +2),..., B, + £ =2, 3,5+ 5 + 1),
(2’1) - {(O)J + 1)$ (01.7 + 2)1- --1(01j+ '% - 2)t(0sj +'% + 1))
(11] + 2)1(1sj+3))"°)(11j + '% - 1))(1t.7 - l)v
(3vj + 2)’(3$j+ 3),---,(3,j + '% - 2):(3vj+'% + 1)) (3’] - 1)}’
(3»j) - {(01] + 2):(01.7 + 3):' --v(otj + '% - 1))(0:] - 1)’
(1’j+ 1)) (I:J +2)"‘°:(11j + % - 2)3(1)j + '% + 1)’
(2:j+2)$ (Z,j +3)1”-a(21j + '% - 2)1(21.7"" % + 1)) (21j - 1)}'
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Let D be the resulting orientation of H. Clearly, D is vertex-transitive (see
(2) of Appendix) and 3(% — 1)-regular. We shall show that d(D) = 2, and it
follows that d(K; x K,) = 2. To show that d(D) = 2, it is enough to show
that ep((0,0)) = 2.

First we prove that d((0,0), Xp) < 2. The existence of the paths (0,0) —
@,s-1) = {(0,1),(0,2),...,(0,3 — 2)}, (0,0) = (2,4 -2) = {(0,% —
1),(0,%),...,(0,s—4)} and (0,0) = (2,5+1) = {(0,5-3),(0,3-2),(0,s—1)}
in D proves that dp((0,0), Xo\{(0,0)}) < 2, and hence dp((0,0),Xp) < 2.

We next show that dp((0,0),X1) < 2. The existence of the paths (0,0) —
{1,2),(1,3),...,(1,5 - 2), (1,5 + 1),(L,s = 1)}, (0,0) = (3,4 -1) =
{(1,$),(1,3+2),(1,5+3),...,(1,5-3),(1,0)}, (0,0) = (2,2) = {(1,1),(1,§-
1)} and (0,0) = (2,24 1) = (1,5 —2) in D shows that dp((0,0),X;) < 2.

We now prove that dp((0,0),X3) < 2. The existence of the paths (0,0) —
{(23 1)1 (2, 2)7 LRES ] (2, ';' - 2): (21 % + 1)}1 (0! 0) -+ (13% - 3) —+ {(21 % - 1)’ (21 %)}s
(0,0) = (1,5-2) = {(2,4+2),(2,4+3),.--,(2,5-3)} and (0,0) = (1,2+1) -
{(2,8-2),(2,3-1),(2,0)} in D proves that dp((0,0),X2) < 2.

Finally, we show that dp((0,0),X3) < 2. The existence of the paths
(010) - {(3:2)’(3»3)1---v(3a'% - 1)’(313 - 1)}: (an) - (la'% - 2) —+
{(3,%2),3,5+1),...,(3,s-4)}, (0,0) = (1,£+1) = {(3,5-3),(3,5—2)} and
(0,0) » (1,5 — 1) = {(3,0),(3,1)} in D guarantees that dp((0,0),X3) < 2.
We have verified that ep((0,0)) = 2. As D is vertex-transitive, d(D) = 2. B

Lemma 2.14. p(K;s x Kg) = 0.

Proof. We orient K5 x K¢ so that for any i € V(K;) and j € V(Ks),
(@,3) =2 {(E+1,7+1),(6+1,7+4),(i+2,7+3), (i + 2,7 +4), (i + 2,5 +5),
(E+3,7+4),(@+3,7+5),(E+4,7+1),(i+4,7+3),(i+4,7 +4)}.
Let D be the resulting digraph. Clearly D is vertex-transitive (see (1) of
Appendix) and hence to verify that d(D) = 2, it is enough to verify that
ep((0,0)) = 2. The verification is easy and hence it is omitted. u

Lemma 2.15. p(Ks x Kg) = 0.

Proof. Consider the subset E; = {(i,7)(i4+1,j+4):i€ V(K;), j € V(Kp)
and [ € V(K5)\{0}} of E(Ks x Kg). Clearly, the subgraph induced by E; is
4-regular. Delete the edges of E; from K5 x Ky and denote the resulting graph
by H. We orient H so that for any i € V(K;) and j € V(Kp),

(6,5) 2 {G£1,5+1), (21,5 +2), (1,5 +3),(£2,j+1), (£ 2,5 +3),

(i£2,7+6)}.

Let D be the resulting orientation of H. We shall show that d(D) = 2,
and it follows that d(Ks x Ks) = 2. Clearly D is vertex-transitive (see (1)
of Appendix) and hence to verify that d(D) = 2, it is enough to verify that
ep((0,0)) = 2. The verification is easy and hence it is omitted. u
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Lemma 2.16. If s > 10 is even, then p(Ks x K;) = 0.

Proof. Consider the subset By = {(i,§)(k,j+ ) : i € V(K5), i € V(K,)
and k € V(Ks)\{i}} of E(Ks x K,). Clearly, the subgraph induced by E, is
4-regular. Delete the edges of E; from K5 x K, and denote the resulting graph
by H. We orient H so that for any i € V(K;) and j € V(K,),
) {G21,7+2), (21,5 +3),..., (21,5 +§-2),GE£Li+5+1),
(ix1,7-1), (i£2, j+1), ((£2,+2),..., ((£2,j+5-2), (i£2, j+5+1)}.
Let D be the resulting orientation of H. Clearly, D is vertex-transitive (see
(1) of Appendix) and (2s — 4) -regular. We shall show that d(D) = 2, and it
follows that p(Ks x K,) = 0.

First we prove that dp((0,0), Xo) < 2. The existence of the paths (0,0) —
1,2) = {(0,4),(0,5),...,(0,%)}, (0,0) = (1,5-2) = {(0,3 +1),(0,5 +
2)’"',(013 - 4)}: (O’O) —+ (2’% + 1) - {(0’3 - 3):(():3 - 2))(073 - 1)}:
(0,0) = (1,8 —1) - {(0,1),(0,2)} and (0,0) = (2,1) =+ (0,3) in D proves
that dD((O! 0)7 XO\{(01 0)}) S 2: and hence dD((O’ O)’XO) S 2.

We next show that dp((0,0),X;) < 2. The existence of the paths (0,0) —
{1,2),(1,3),...,(1, % — 2),(1,4 + 1),(L,s - 1)}, (0,0) = (2,1) = (1,0),
(010) = (2,2) - (la 1): (030) = (3:§ - 2) - {(13';' - 1)1 (lt'%)} and
(0,0) = (3,2+1) = {(1,4+2),(1,3 +3),...,(1,s - 2)} in D shows that
dp((90,0), Xi) L2 Similarly, dD((01 0), Xq) <2

Next we prove that dp((0,0),X2) < 2. (0,0) = {(2,1),(2,2),...,(2,5 —
2), (2: '% + 1)}: (01 0) - (3: 1) - (2a 0)$ (0) 0) - (4"% - 2) - {(2:'5' - 1)) (27 %)}
and (0,0) » (4, +1) = {(2,5+2),(2,§+3),.-.,(2,5-1)} in D proves that
dp((0,0), X2) < 2. Similarly, dp((0,0),X3) < 2. This completes the proof for
ep((0,0)) = 2. As D is vertex-transitive, d(D) = 2. ]

Theorem 2.1. Let r < s, then for (r,s) ¢ {(3,5),(3,6),(4,4)},

2 if (r,8) € {(2,3),(2,9)},
pKrxKg)=( 1 if (r,s) € {(3,3),(3,4)},

0 otherwise.
Furthermore, for (r,3) € {(3,5),(3,6),(4,4)}, p(K,x K,) <1.

Proof. p(K; x K3) = 2 = p(K; x Ky) follows from Lemma 2.3, p(K3 x
Ks3) = 1 follows from p(K30Ks) = 1 [11], as K3 x K3 is isomorphic to
K3OK; (see p.183 of [8]), p(K3 x K4) = 1 follows from Lemma 2.6 and for
(rs) ¢ {(2,3),(2,4),(3,3),(3,4),(3,5),(3,6), (4,4}, p(Kr x K,) = 0 follows
from Lemmas 2.1, 2.2, 2.3, 2.5, 2.8, 2.9, 2.11, 2.12, 2.13, 2.14, 2.15 and 2.16.

For the exceptional values, namely, (r,s) € {(3,5),(3,6),(4,4)}, p(Kr x
K,) <1 follows from Lemmas 2.4, 2.7 and 2.10. [ ]

350



Note that, for any r and s, K,.(s) is a supergraph of K, x K,. Also
d(K.(s)) = d(K, x K,) if min{r,s} > 3. So, for » > 3 and s > 3,
p(Kr x K,) = 0 implies that p(K,(s)) = 0. Thus we have

Corollary 2.1. For r >3, 8>3 and (r,8) # (3,3),(3,4),(3,5),(3,6),(4,3),
(4,4),(5,3) and (6,3), p(K+(s)) = 0.

In fact, it is known [6] that for s > 3, d(K.(s)) = 2 except when
(r,8) = (4,1).

Remark 2.1. All the optimal orientations obtained in this paper result in
digraphs with the difference of the indegree and outdegree of each vertex
is at most one. This type of orientation is considered to be significant
(for example, see pp. 750 — 751 of [11]).

Appendix
1. For any two vertices (a,b) and (c, d), the automorphism mapping (a,b) to
(c,d), denoted by f((:'b), is given by f(a %) N(u,v)) = (u+c-a,v+d-b), in all
the digraphs obtained by the orientations described on K, x K,, in Lemmas 2.1,
2.2,2.3 (s 2 7 is odd), 2.14, 2.15 and 2.16. This proves the vertex-transitivity
of the respective digraphs.
2. For any two vertices (a,b) and (c,d), the automorphism mapping (a,b) to
(c,d), denoted by £{), is defined as follows:

fa=c f((wo) = (uv+d-Db)

I a # ¢ let V(Ki)\{a,c} = {p,g}, and consider the permutation
¢ = (a,)(p,q) of V(Ky), and define f(;3)(u,v)) = ($(u),v+d ~b),
in all the digraphs obtained by the orientations described on K, x K, in Lemmas
2.9 (s > 7) and 2.13. This proves the vertex-transitivity of the respective
digraphs.
3. Consider the digraph D obtained by the orientation defined on K, x K
in Lemma 2.9. If we apply the permutation (0,3)(1,2) of V(Ky) to the first
co-ordinates of the vertices of D, then the resulting digraph is isomorphic to
D. Because of this, we have verified the eccentricity only for the vertices (0,0)
and (1,0).
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