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Abstract

The stabilizers of the minimum-weight codewords of the binary
codes obtained from the strongly regular graphs T(n) defined by the
primitive rank-3 action of the alternating groups A, where n > 5,
on Q?}, the set of duads of 2 = {1,2,.-- ,n} are examined. For
a codeword w of minimum-weight in the binary code C obtained as
stated above, from an adjacency matrix of the triangular graph T'(n)
defined by the primitive rank-3 action of the alternating groups An
where 7 > 5, on Q{%, the set of duads of 2 = {1,2,---,n}, we
determine the stabilizer Aut(C)w in Aut(C) and show that Aut(C).,
is a maximal subgroup of Aut(C).

1 Introduction

The simple alternating group A,, where n > 5, acts as a primitive rank-
3 group of degree (3) on the 2-subsets, Q{2 where O = {1,2,---,n}.
The orbits of the stabilizer in A, of a 2-subset P = {a,b} consist of {P}
and one of length 2(n — 2) and the other of length (";%). We take as
points the 2-subsets of Q and for each P € Q{2} we define a block P
tobe {Q € 2% | PNQ # 0, Q # P), ie. the members of the orbit
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of length 2(n — 2). The 2-subsets P and blocks P form a symmetric 1-
((3),2(n — 2),2(n — 2)) design whose binary code we will be examining.

An alternative way to approach the designs, graphs and codes that we
will be looking at is through the span of the adjacency matrices of the
triangular graphs. For any n the triangular graph T'(n) is defined to be
the line graph of the complete graph K,,. It is a strongly regular graph on
v = (3) vertices, i.e. on the pairs of letters {i,;} where 4,5 € {1,...,n}.
The binary codes formed from the span of adjacency matrices of triangular
graphs have been examined by Tonchev [14, p. 171] and Haemers, Peeters
and van Rijckevorsel [8, Theorem 4.1] and recently by Key, Moori and
Rodrigues [11]. See also [3, 4, 1, 2]. In particular the weight enumerator of
these codes are easily determined.

The code of the 1-( ('2‘), 2(n —2),2(n— 2)) design obtained by taking the
rows of the incidence matrix as the incidence vectors of the blocks is also
the code formed by the span of the adjacency matrix of the triangular graph
T(n); the automorphism group of this design will contain the automorphism
group of the graph, the latter of which is easily seen to be S,. Similarly,
the automorphism group of the code will contain S,,. However for n = 6
the group of the design and code is larger than the group of the graph (Sg),
and we will use the code to explain this.

In [11] we studied the binary code C obtained from an adjacency matrix
of the triangular graph T'(n) and permutation decoding. Here for a code-
word w of minimum-weight in the binary code C obtained as stated above,
from an adjacency matrix of the triangular graph T'(n) defined by the prim-
itive rank-3 action of the alternating groups A, where n > 5, on Q{2}, the
set of duads of = {1,2,---,n}, we determine the stabilizer Aut(C),, in
Aut(C) and show that Aut{C),, is a maximal subgroup of Aut(C).

In Section 2 we give the necessary definitions and background, in Sec-
tion 3 we give a brief overview of the primitive rank-3 action of the alternat-
ing groups A, on the 2-subsets, Q{?} where = {1,2,--- ,n}. In Section 4
we describe the nature of the binary codes of the triangular graphs T'(n)
for n > 5 and the nature of the minimum-weight codewords.

Since the alternating group A, acts as an automorphism group of C, in
Section 5 we determine the stabilizer (A, ),, of 2 word of minimum-weight w
in C and show that (A, )y & Sp—2, for n > 6 and even. Similarly we show
that (An)w & An—1, for n > 5 and odd. In all cases (An)w are maximal
subgroups of A,.

Further in Section 6 by extending the results of Section 5 to S, we
show that for n > 8 and even (Sp)w & Sp—2 x 2. If n = 6, however
(As)w = 23:L3(2). Also for n > 5 and odd we show that (Sp)w = Sn-1.
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2 Background and terminology

An incidence structure D = (P, B,Z), with point set P, block set B and
incidence Z is a t-(v, k, A) design, if |P| = v, every block B € B is incident
with precisely k points, and every ¢ distinct points are together incident with
precisely A blocks. The design is symmetric if it has the same number of
points and blocks.

The code Cr of the design D over the finite field F is the space
spanned by the incidence vectors of the blocks over F. If the point set of D
is denoted by P and the block set by B, and if Q is any subset of P, then
we will denote the incidence vector of Q by v©. Thus Cr = (vZ | B € B),
and is a subspace of FP, the full vector space of functions from P to F.

All our codes will be linear codes, i.e. subspaces of the ambient vector
space. If a code C over a field of order g is of length n, dimension k, and
minimum weight d, then we write [r,%,d]; to show this information. A
generator matrix matrix for the code is a £ X n matrix made up of a
basis for C. The dual or orthogonal code C* is the orthogonal under the
standard inner product (,), i.e. Ct = {v € F*|(v,c) = O for all c € C}.
A check (or parity-check) matrix for C is a generator matrix H for C+;
the syndrome of a vector y € F™ is HyT. A code C is self-orthogonal
if C € CL and is self-dual if C = CL. If ¢ is a codeword then the
support of c is the set of non-zero coordinate positions of c. A constant
vector is one for which all the coordinate entries are either 0 or 1. The
all-one vector will be denoted by 3, and is the constant vector of weight
the length of the code. Two linear codes of the same length and over
the same field are isomorphic if they can be obtained from one another
by permuting the coordinate positions. Any code is isomorphic to a code
with generator matrix in so-called standard form, i.e. the form [Ii | A);
a check matrix then is given by [—-AT | I,—x]. The first k coordinates are
the information symbols and the last n — k coordinates are the check
symbols. An automorphism of a code C is an isomorphism from C to C.
The automorphism group will be denoted by Aut(C). Any automorphism
clearly preserves each weight class of C.

Terminology for graphs is standard: the graphs, I' = (V, E) with ver-
tex set V and edge set E, are undirected and the valency of a vertex is
the number of edges containing the vertex. A graph is regular if all the
vertices have the same valency; a regular graph is strongly regular of type
(n, k, A, p) if it has n vertices, valency k, and if any two adjacent vertices
are together adjacent to A vertices, while any two non-adjacent vertices are
together adjacent to u vertices. The line graph of a graph I’ = (V, E) is
the graph I'* = (E, V') where e and f are adjacent in I'® if e and f share a
vertex in I'. The complete graph K, on n vertices has for E the set of
all 2-subsets of V. The line graph of K, is the triangular graph T(n),
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and it is strongly regular of type ((3),2(n — 2),n — 2,4). These graphs are
unique for n # 8 and for n = 8 there are exactly three other graphs with
the same parameters, the so-called Chang graphs: see [4, 8].

The codes are the binary span of the adjacency matrix of the graph.
The p-rank of these has been studied by various authors; see [3, 8] for
collected results.

The designs and codes in this paper come from the following standard
construction, described in [9, Proposition 1] and in [10]:

Result 2.1 Let G be a finite primitive permutation group acting on the set
Q of sizen. Let a € Q, and let A # {a} be an orbit of the stabilizer G of
a. If
B={A%: ge G}
and, given § € A,
E={{a, 8} : g€ G},

then B forms a self-dual 1-(n, |A|, |A]) design with n blocks, and £ forms
the edge set of a regular connected graph of valency |A|, with G acting as
an aultomorphism group on each of these structures, primitive on vertices
of the graph, and on points and blocks of the design.

3 Alternating groups

For a set Q of size n we shall use the notation Q{¥} to denote the set
of all k-subsets (a set of k unordered elements) of @ for 1 < k < n. If
k = 2 we call Q{2} the set of all duads of Q. Since || = n we have
|} = (7). If A = {01,02,-- ,0k} is a k-subset of Q, then the stabilizer
of the “point” A in the action of G on Q{*} is the setwise stabilizer G, in
the action of G in Q. The pointwise stabilizer of A in the action of G on
is denoted by G(s). Obviously G{s) < Ga. The permutation representation
of G associated with its action on A defines a homomorphism of G, into
the symmetric group Sx = Sk with kernel G|4) and so the factor group
Ga/G|a) is isomorphic to a subgroup of Sk.

Lemma 3.1 If n > 3 then the alternating group An acts transitively on
Q2 the set of duads of @ = {1,2,--- ,n}.

Proof: For if we let {o1,02} and {03,04} be duads in Q{?, then the
permutation (o1 03)(02 04) € A, moves them accordingly. W

We now look at the structure of the stabilizer (An)a of A = {o1,02} €
{2} and show that (An)a = Sn—2 = (Sn){c1,02}-

Theorem 3.2 Ifn > 5 then the altermating group An, acts primitively as
a rank-8 permutation group of degree (3) on Q) where @ = {1,2,--- ,n}.
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Proof: That the action is transitive follows from Lemma 3.1. Since A,
acts on Q{% and [Q{?}| = (3) we have that

(An) for, o) = = X e = (n = 2)1. 1)
2 n(n-1)

Now

(An)(o1, 02y = {9 € An|{01,02}° = {01,02}}
{g € A, I o9 = 0’1,029 =03 Or 019 = 0'2,0'29 = 01}.

Clearly
(An.)[a\.aa] =Ap-2 < (A"){dx, a3}

and
K ={(0102)-a|a € (Sn)o;,0a)y @isodd} < (An){,h,z}.
Thus A, UK < (A,) {01, o} 80

2(n — 2)!

|An—2UK]| = | Ancal+IK] = 2l4na] = "2 = (n-2)! = [(An) sy, gy

by (1) .

Hence (A'*){ol. o2} = An-2U K. Since
(Aﬂ){dl'az} S An) l(Aﬂ){q'l’ dz}l = 2|Aﬂ—2| = IS‘R—2I

and An—2 = (An)(01,03) < (An){01,62}, We can deduce that (An)(,, 5,y =
n—-2:

The group (An)y,,, ,,} has three orbits {{o1, o2}}, {0i,7|i € {1,2},7v €
Q\ {01, 02}} and {v,p|v7,p € Q\ {01, o2},7 # pu}. These orbits have
lengths 1, 2(r. — 2) and 5"—'2%("—'32, respectively. Now any non-trivial block
for the action of A, on (%} which contains the point {0}, 02} must also
contain one of the other orbits of (4n){,,, ,,)- However, a simple argument
shows that for n # 4 such a block must also contain the other orbit, and
so the action of A, on 2{?} is primitive. Now since (4,) {01, o} IS the sta-
bilizer of a point in the action of A, on Q{2} and A, is primitive we have
that (As),,, o,} is maximal. W
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4 The binary codes

In all the following we will take G to be the simple alternating group An,
where n > 5, in its natural primitive rank-3 action of degree (3) on Q{2
where Q = {1,2,---,n}. For the orbits A of the stabilizer of a point,

as described in Result 2.1, we take the one of length 2(n — 2) and get a
symmetric 1-((3), 2(n — 2), 2(n — 2)) design D.

Alternatively let n be any integer and let T(n) denote the triangular
graph with vertex set P the (3) 2-subsets of a set  of size n. The 1-design
D = (P, B) will have point set P and for each point (2-subset) {a,b} € P,
a # b, a,b € Q, a block, which we denote by {a,b}, is defined in the
following way:

{a,6) = {{a,z}, {b,y} | z# a, b; y # a, b}.

Then
B={{a,b}|a,be, as#b}.

The incidence vector of the block {a, b} is then

v{a;b} = Z :U{a»z} + z v{b:y} (2)
z#a y#b

where, as usual with the notation from [1}, the incidence vector of the
subset X C P is denoted by vX. Since our points here are actually pairs
of elements from Q, note that we are using the notation »{%%} instead of
»{{a:b}} a5 discussed in [1). Clearly G acts as an automorphism group on
D on C, C+, and on T(n). With the exception of n = 6 we have that the
full automorphism of D is S, which is in turn the automorphism group of
C. When n = 6 the automorphism group of both design and code is the
alternating group Ag = PGL4(2).

To avoid trivial cases we will take n > 5. Then in all the following C
will denote the binary code of D and of T'(n) and we shall henceforth refer
to these binary codes as the binary codes of the triangular graphs.

First we summarize some results on these codes, the weight enumerator
and their automorphism groups, that we will be needing. The proofs can
be found in [11].

The following lemma follows easily and is mentioned in [8]. Note that
in this lemma, the notation < i, A(Z) > denotes the fact that there are A(3)
vectors of weight i. Here we only prove the first part of the lemma. For
the remaining facts, see [11].
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Lemma 4.1 Let C be the binary code obtained by the row span of an ad-
Jjacency matriz for the triangular graph T'(n), where n > 5.

Ifn=2m is even then C is a [(%5"), 2m —2,4(m —1)], code with weight
distribution

Table 1
The weight distribution of C
i AG)_
0 1
4m-1) @9
8m - 2) e
m? 3Cm)

if m is even, and weight distribution

Table 2

The weight distribution of C

i A(3)

0 1
2

4(m—1) (9]

8(m—2) (&)
2

m2-1 i)

if m is odd. Ifn is odd, then C is a [(’;),n— 1,n—1]s code with weight
distribution

Table 3
The weight distribution of C
i AGY
0 1
n-1 n
2i(n — 24) 3]

where1 <1< (n-1)/2.
The automorphism group of C is S, unless n = 6, in which case it is
PGL4(2) = As.
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Proof: The dimension of these codes is well documented and not hard to
deduce: see [3]. It is easy to see that the sum of the incidence vectors for
i disjoint duads will give a vector of C of weight 2i(n — 2i). Clearly we
must have ¢ < | 3] and for n even, at i = , we get the zero vector. Thus
for n = 2m even we get increasing weights from a minimum of 2(n — 2)
up to a maximum when i = [, and the weight distribution is seen by
simple counting to be as given in the statement, distinct cases for m even
and m odd. In this case of n even the minimum-weight vectors are then
the incidence vectors of the blocks of the design.

If n is odd, the maximum number of disjoint duads is "T"l, and all the

weights are distinct, with a minimum when ¢ = i;—l, ie. weightn—1. 0

Now if w is a codeword of minimum-weight in C, in Sections 5 and
6 we determine respectively the structures of (An)w and (Sp)w, i.e, the
stabilizers of w in A,, and in the automorphism group of the code C, which
is the symmetric group Sy.

Since A, acts as an automorphism group of C, in Section 5, Lemmas 5.1
and 5.2 deal with the action of A,, on the minimum-weight codewords of C.
Furthermore, since the automorphism group of C is the symmetric group
Sp, in Lemmas 6.1 and 6.2 of Section 6 we consider the action of Sy.

5 Stabilizer in A, of a minimum-weight code-
word

In Lemma 5.1 and Lemma 6.1 we deal with the cases where n > 8, and even
and in particular when n = 6. In Lemma 5.2 and Lemma 6.2 we address
the cases where n > 5, and odd.

Lemma 5.1 Forn > 6 and even, the stabilizer in A, of a word of minimum-
weight w in C is a marimal subgroup of An of index (3). Purthermore
(An)w = Sn—2-

Proof: Let Cy(n—2) = {w € C | wt(w) = 2(n—2), where n > 6 and even},
(where wt(w), represents de weight of a codeword w in C) denote the set of
minimum weight codewords in C. Since A,, is an automorphism group of C
it preserves the weight class of C, therefore it preserves Cy(5,_2). Now, from
Table 1 of Lemma 4.1 we have that A(3) = [Cy(n—2)| = (3) for any n > 6.
Now, since Ay, is (n —2)-transitive on n points it is transitive on (3) points.
From this we deduce that A, is transitive on Co(,_3), ie, whn = Ca(n—2) for

any w € Ca(n—2). Hence |Co(n—2)| = R%'?IJT' So it follows that (3) = R%Tﬂ
and thus |(An)w| = (n—2)!. That the index of (An)w in An is (3) is routine.
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The () minimum-weight codewords are the incidence vectors of the
blocks of the design D, so the design formed by taking the words of minimum-
weight as blocks is precisely the design D. But by Result 2.1 we know that
An acts primitively on points and blocks of D so the maximality of (A, )w
in A, follows. By Lemma 3.2 we deduce that (A,)y & Sp—2. B

Remark: From Lemma 5.1 we observe that the minimum-weight code-
words are precisely the blocks of D and so it follows Sy, _ is a block stabilizer
in D.

Lemma 5.2 For n > 5 and odd, the stabilizer in A, of a word of w of
minimum-weight in C is a mazimal subgroup of Ay of index n. Moreover
(An)w = An-l-

Proof: Observe from Lemma 4.1 that if w is a word of minimum-weight in
C the size of C,_; is n. Transitivity of A, on C,_; follows using a similar
argument to that in the proof of Lemma 5.1. Now |[Cp—1| = An"w from

which follows that |(A,)y| = fl'i—lﬂ and certainly [An:(An)w] = n. From
the previous statement we get that (An)., is & maximal subgroup of A,
and we can easily deduce that (A;)y = An—y. B

6 Stabilizer in S, of a minimum-weight code-
word

Since the automorphism group of the code is the symmetric group S,, for
all n > 5 except when n = 6 in this section we deal with the stabilizers
(Sn)w by extending the results of Section 5 to S,. Notice from Lemma 4.1
that the case n = 6 is an exception, since the automorphism group of both
design and code is not the symmetric group Ss. The automorphism group
of both design and code is the alternating group As = PGL4(2). We show
then that (As). is a maximal subgroup of As isomorphic to 23:L3(2).

Lemma 6.1 Forn > 8 and even, the stabilizer in the automorphism group
of C, of a minimum-weight codeword w in C is a maximal subgroup of S,
of indez (3). Moreover (Sp)w = Sn—2 X 2. If n.= 6, then (Ag)y = 23:L3(2).

Proof: We first prove that the stabilizer in S, of a word w of minimum
weight in C, ie, (S,)y is 2 maximal subgroup of S, and finally show that
for n = 6, (Ag)w is a maximal subgroup of As. From Lemma 4.1 we have
that the minimum weight of C is 2(n — 2), for either cases of m when
n 2 8 and even. Define Cyn_g) = {w € C | wt(w) = 2(n — 2), where n >
8 and even}, to be the set of minimum weight codewords in C. Let w €
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Ca(n-2), once again by Lemma 4.1 we have that there exists g € Sy, such
that w9 = o/, for w,w’ € Cyn_g. So, the action of Aut(C) = S, on Cy(n2)
is transitive. Therefore |Ca(n—g)| = R—E% Now, since |Co(n_2)| = (3) (see
Table 1) for any n > 8, it follows that (3) = T(g'f'm and 50 |(Sp)w| = 2(n —
2)!. From these calculations we deduce that [Sn:(Sn)w] = sy = (3)-

Now the (3) minimum-weight codewords are the incidence vectors of
the blocks of the design D, so the design formed by taking the words of
minimum-weight as blocks is precisely the design D. Since S,, acts primi-
tively on the set of duads of Q and these are precisely the (3) points of D,
and since the minimum-weight codewords are the blocks of D, the maxi-
mality of (Sp)w in S, follows. Now by the Atlas [7] we have that a maximal
subgroup of Sy, of index (3) is isomorphic to the subgroup S—2 % 2, when-
ever n > 8 and even.

Finally for n = 6 we have that C is a [15,4, 8]2 binary code whose auto-
morphism group is the alternating group As. Here the set Cg of minimum-
weight codewords consists of (5) = 15 codewords. Using the above argu-

ment we have that 15 = R%%J.T,[ and so |(As)w| = 28 = 1344, and hence a

maximal subgroup of Ag (see Atlas [7]). From the list of maximal subgroups
of Ag we deduce that (As), = 23:L3(2). B

Remark: From Lemma 6.1 we observe that the minimum-weight code-
words are precisely the blocks of D and so it follows that Aut(C). is a
block stabilizer in D.

Lemma 6.2 Let w be a minimum-weight codeword in C. Then the stabi-
lizer (Sp)w is a mazimal subgroup of indez n in Sn. Moreover (Sp)w = Sn—1
for alln > 5 and odd.

Proof: First notice that the support of a codeword w of minimum-weight
in C is n—1, whenever n > 5 and odd, and that there are n such codewords.
That S, is transitive on C,—_; follows from Lemma 4.1. The maximality of
(Sp)w follows from the fact that |(Sp)w| = (r = 1)!. That (Sp)w = Sa-1
follows easily. B

Lemma 6.3 (Ayn)w is a mazimal normal subgroup of (Sp)w, for alln > 8
and even. If n =6 then S, is neither a mazimal nor a normal subgroup of
23:L3(2).

Proof: It is obvious that (Ap)w < (Sn)w. Since A, is a maximal subgroup
of S, so will (A,),, be a maximal subgroup of (S;)w. The normality of
(An)w in (Sy)w follows at once by finding the index of (An)w in (Sn)w.
Observe that [(Sn)w:(An)w] = 27’%’_‘—;72[)-' = 2, and so the result. For n =6
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we have that [(23:L3(2)):S4) = 56 and 23:L3(2) has no maximal subgroup
of index 56. Also S, is not a normal subgroup of 23:L3(2). In fact the
normal subgroups of 23:L3(4) are 1y, where H = 23:L3(2), an elementary
abelian group of type 23, and 23:L3(2), respectively.l

Lemma 6.4 (A,),, is a mazimal normal subgroup of (Sp)w, for alln >5
and odd.

Proof: The result follows using a similar argument to the first part of the
proof of Lemma 6.3. B

7 Observations

The determination of the stabilizers of the minimum-weight codewords gives
a new approach to constructing the maximal subgroups of both the alter-
nating groups and the symmetric groups for n > 5.
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