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ABSTRACT. In this paper the forcing domination numbers of the
graphs P, x P3 and Cn, x P3 are completely determined. This im-
proves the previous results on the forcing domination numbers of
Pn x Py and Cyp, x P,.

1. INTRODUCTION

A vertex v in a graph G is said to dominate all the vertices in its closed
neighborhood N([v]. A subset S of V(G) is a dominating set of G if
UyesN[v] = V(G); that is, every vertex in V(G)\ S is adjacent to a vertex
in S. The domination number y(G) is the minimum cardinality among the
dominating sets of G. A minimum dominating set of G is a dominating
set of cardinality 4(G). Consult [4] for domination in graphs. For graph
theory we follow the notation and terminology of [3].

Let S be a minimum dominating set of a graph G. A subset T of S
is called a forcing subset for S if S is the unique minimum dominating set
containing T. The forcing domination number f(S,v) of S is the mini-
mum cardinality of a forcing subset for S. The forcing domination number
J(G,7) of G is the smallest forcing number of a minimum dominating set
of G. It is clear that 0 < f(G,v) < ¥(G).

Consider the graphs H = P, x G and K = C,, x G, where G is a graph,
P, is a path of length » — 1, and C, is a cycle of length n. Let S be
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a dominating set in H or K. Suppose ¢;, for 1 < i < n, is the number
of common vertices between S and the ith copy of G in H or K. By a
component of S we mean a subsequence of the sequence ¢;,¢z2,¢3,...,¢n
with consecutive terms, say ¢, Ci+1, Ci+2,. - ., Ci+k, Such that ¢; = ¢iy2 =
Ciya = ... = Gk = 0 and 0 & {ci+1,Ci43,Cit5, - -, Cisk—1}. (Note that
a component of S starts with zero and ends at zero.) A component of S
is mazimal if it is not a proper subsequence of a component of S. An odd
(even) component of S is a component of S with an odd (even) number of
zero terms. For example, consider Py x P3 shown in Figure 1. Let S =
{vy,u3, w3, vs,u7, wr,v9}. Thencz =cy =ce =cg =0, =cs =cg =1
and cg = ¢7 = 2. Moreover, c3,¢3, . . ., Cg is & maximum even component of
S. Throughout this paper we use a labeling for the vertices of P, x G and
C, x G, where G = P3 or G = Cj, similar to that shown in Figure 1.

FIGURE 1. The graph Py x P3

In [1], the forcing domination numbers of several classes of graphs are
determined, including paths, cycles, ladders and prisms. The authors of [1]
prove the following results.

Lemma 1. For a graph G, the forcing domination number

f(G,v) =0 if and only if G has @ unique minimum dominatling set. More-
over, f(G,v) =1 if and only if G does not have a unique minimum domi-
nating set but some vertez of G belongs to ezactly one minimum dominating
set.

Corollary 2. For a graph G, the forcing domination number f(G,v) > 1
if and only if every vertez of each minimum dominating set belongs to al
least two minimum dominating sets.

Proposition 3. For every integer n > 2,

1 if nis odd
f(anP2'7)={ 9 if nis even.

Proposition 4. For every integer n > 3,

if n=0(mod 4)
if n=1 (mod 4)
if n =2 (mod 4)
if n =3 (mod 4)

J(Cn x Py,y) =

N W
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In Section 2 we deal with domination numbers for graphs. We prove
Y(Pnx P3) = (P xC3) = |24 |. (The domination number for the graph
P, x P3 was first found in [2]). We also prove y(Cp x P3) = ¥(C,, x C3) =
|'34—"] for every integer n > 3. In Sections 3 and 4 we find the forcing
numbers of P, x P; and C, x Pj, respectively.

2. MINIMUM DOMINATING SETS

In this section first we find a lower bound for the cardinality of a dominating
set of P, x G and C,, x G, where G is a non-empty simple connected graph.
Then we apply these results to determine the minimum dominating number
for the graphs P, x P3, P, x C3, C, x P3 and C,, x C3. We use a labeling
for the vertices of these graphs similar to that shown in Figure 1. Then
the vertices of the ith copy of P3 (C3) in P, x P3 or P, x C3 (Cy x Ps or
Cn x C3) become wu;, vi, w;.

Lemma 5. Let G be a non-empty simple connected graph. Then there
exists a minimum dominating set in H = P, x G (K = C, x G) such that

(1) it intersects the first copy of G in H (K ) and the last copy of G in

H
(2) if it does not intersect the ith copy of G it intersects the (i + 1)th
copy of G.

Proof. 1) Let S be a minimum dominating set in H (or K). Assume that
G, for 1 < i <, is the ith copy of G in H (or K). Define ¢; =| V(G:)NS |.
If § is a minimum dominating set in K with ¢; = 0 then by relabeling the
copies of G in K we can have c; # 0. If S is a minimum dominating set in
H with ¢; = 0 then since every vertex in G, is dominated by precisely one
vertex of Gy we have c; =| V(G3) |. Suppose that upvs € E(G3). Define
S = (S\{uw2})Uuyifn=2and §' = (S\ {ug,v2}) U {wr,v3} if n > 3,
where u; and v3 are the vertices corresponding to up and v; in G; and G3,
respectively. Now §’ is the required minimum dominating set in H. In
a similar fashion we use S’ to construct a minimum dominating set in H
which intersects both G, and G,..

2) Let S be a minimum dominating set in H (or K) and ¢; # 0. If
¢ = ¢i+1 = 0 for some 2 < i < n — 1, then, since every vertex of G; is
dominated by precisely one vertex of G;_;, we have ¢;—, =| V(C) |. Let
{ui-1,%i-1} be an edge in G;_,. Define §' = (S\ {u;_;}) U {u;} il i = 2
and 8’ = (S\ {ui-1,v:-1}) U {wi,vi—2} if i > 3. Then &’ is the required
minimum dominating set in H (or K). 0

Lemma 6. Let S be a dominating set in H = P, x G (K = C, x G),
where G = P3 or G = C3. Suppose that precisely r copies of G in H
(K) do not intersect S. If there are ry mazimal odd components in S then
|S|Z2n+(r —1)/2.
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Proof. Let G; be the ith copy of G in H (K) and ¢ =| SN V(G;) | for
1 < i < n. Without loss of generality (see Lemma 5) we can assume c; # 0
and there is no i in {1,2,...,n — 1} such that ¢; = ¢;41 = 0. First let S be
a dominating set in H. By Lemma 5 we may also assume c, # 0. Now let
¢; = 0 for some i. (Then we note that c;_; and ¢;4; cannot both be one.)
Since every vertex of G; is dominated by precisely one vertex of G;_; or
Gi41 it follows that ¢;—1 + ¢i41 = 3. So for a maximal odd component in
S, S&Y Ci, Ci41,Cit2, - - - » Citk, With a = (k + 2)/2 zero terms we obtain

2ci—1 +2ciy1 +2¢i43 + ...+ 2¢ik+1 2 3(a+ 1).

Similarly, for a maximal even component in S, say ¢;,Cj+1,Cj+2; - -+ Cjt+ms
with 8 = (m + 2)/2 zero terms we have

Cj-1+ 2Cj+1 + 2Cj+3 +...+ 2Cj+m—1 + Ciymy1 2 38.
Now since cj—; # 0 and ¢j1m+1 7 0 we obtain
2¢cj-1+ 2Cj+1 + 26j+3 +...+ 2Cj+m+1 >38+2.

Now let there be precisely r; maximal odd components in S with oy, ...,0r,
zero terms, respectively. Moreover, let there be precisely r2 maximal even
components in S with ey, ..., ey, zero terms, respectively. Define A =

{i| 2<i<n-land¢ #0,ci-1.cit1 =0}U{lifca = 0}u{nifcn—1 =0}
and B = {i | ¢; # 0} \ A. Then

= 23 eCi+23 a6
> 2ln-r—((or+1)+(02+1)...4+ (05, +1))—
((er+1)+(e2+ 1) +...+(er, + 1))+
3oy +...+or, + €1 +...+er,)+ 3r1 + 2]
> 2n—r—=r—-r1—r2)+3r+3r +2r2
> 2n—-r+ry.

Now let S be a dominating set in K. If there is an i such that ¢;,ci41 #0

then by relabeling the copies of G we may assume c¢;,c, # 0. Now an

argument similar to that described above proves that | S |> n+(r1 —7)/2.

Finally suppose that there is no i such that ¢;, ci+1 # 0. Then n is even and

we have cg;_1 # 0 and ¢p; = 0 for i = 1,2,...,n/2. So cai—1 + Co2i41 = 3

fori=1,2,...,n/2. This leads to 2¢) + 2c3 + ... + 2cn—1 = 3(n/2). So
2|8 |=2c1 +2c3+...+2¢a-1 2 3(n/2).

Now if n = 0 (mod 4) then r, = 0 and if n = 2 (mod 4) then 7, = 1. So
| S |>n+ (r1 —r)/2 as required. O

The proof of the following corollary can also be found in {2].

Corollary 7. Let G = P3 or G = C3. Then (P, xG) = |32E2 | for every
posilive integer n.
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Proof. Let S be a dominating set in P, x G. By Lemma 6 we have | S |>
n+(ry —)/2, where r and r; are as in Lemma 6 and 0 < r < [(n —2)/2].
If [(n — 2)/2] is odd (even) then the minimum of r, is one (zero). Now it
is straightforward to see that | S |> | 22t4].

Now we define a dominating set in P, x G with [1"—4'*”—4J vertices. Let
{ui,vi,w;} be the vertices of the ith copy of G in P, x G (see Figure 1).
Define

S = {4i43, Vaisr1, Wairs | 0 < i <k — 1} U {wgi} ifn=4k

S = {ugi+3, Vai+1, wair3 | 0 S i < k= 1} U {vgp41} ifn=4k+1

S = {ugi+3, Vai+1,wai43 | 0 <1 <k — 1} U {vgps1, vanso} ifn=4k+2

S= {U4,'+3,1)4,'+1, w43 | 0<i < k} if n =4k + 3.
Then S is a dominating set in P, x G with | 34 | vertices. m

Corollary 8. Let G = P3 or G = C3. Then v(Cp x G) = [:"T"] for every
integer n > 3.

Proof. Let S be a dominating set in C, x G. Using Lemma 6 it is easy to
see that | § |> [32].

Now we define a dominating set in C,, xG with [ :’;—"] vertices. Let {u;, v;,w;}
be the vertices of the ith copy of G in C,, x G (see Figure 1). Define

S = {u4it3, Vair1, wair3 | 0< i < k= 1} ifn=4k

S = {u4i+3, Vai+1,Wai+3 | 0 < i < k = 1} U {wgpqy)} ifn=4k+1

S = {u4i+3, Vai+1, Waiy3 | 0 < i < k= 1} U {vgpy1, vaksa} ifn =4k +2

S = {u4i43,Vais1, Waiy3 | 0 < i < k) ifn=4k+3.
Then S is a dominating set in C, x G with [ %] vertices. a

3. FORCING DOMINATION NUMBERS FOR P, x P

Throughout this section S is a minimum dominating set in P, x Ps. So by
Corollary 7 we have |S| = [34‘#]. We also assume that S has precisely c¢;
vertices in the ith copy of P3in P, x P for i =1,2,...,n.

Lemma 9. There is no i in {1,2,... y,n} such that ¢; = ¢i1q = 0.

Proof. Since the vertices of the first copy of P; can only be dominated by
the vertices of the second copy of P; it is impossible to have c1=cp=0.
Similarly, it is impossible to have c,_; = ¢, = 0. The reader can verify that
¢3 =3 =0 (ca—2 = oy = 0) is not possible either. Solet 3<i <n—3
and ¢; = ci4; = 0. Then ¢;— = ¢;;3 = 3. Moreover,

Po X Ps\Nfui—1, vy, i1, Uit2, Vig2, Wire] = (Pi_3 X P3)U(Po_i_3 x Ps),
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where u;,v;, w; are the vertices of the jth copy of Ps in P, x P3. Now by
Corollary 7 we have

S| > |-3(1.-3)+4'|_*_|.3(n--z4-3)+4J+6
3:—-5 3n-3i-5
> y -1+——4———1+6
_ 3n+6
= R
This is a contradiction. ]

Lemma 10. ¢; # 3 and ¢, # 3.

Proof. Let ¢; = 3. Consider the graph (P, x P3)\Nuy,v1, wy] = Pr_2x Ps.
By Corollary 7 we have

3(n—-2)+4
> (3n;é

3n+6
4

This is a contradiction. Similarly, we can prove ¢, # 3. O

sl = 1 J+3

~1)+3

Lemma 11. Ifn %0 (mod 4) then c; # 0 and cp # 0.

Proof. If ¢; = 0 then c; = 3. Consider the graph Pp x P3 \ Nlug,v2,ws]| =
P._3 x P3, where up,v,wy are the vertices of the second copy of P3 in
P, x P3. Now by Corollary 7 we have

3(n—-3)+4
IS| > l_(r‘_é)_+_J+3
3n —
> ("4 -1)+3
_ 3n+3
T

Since n # 0 (mod 4) this is a contradiction. Similarly, one can prove
en #0. O

Lemma 12. Ifn #0 (mod 4) then ¢; # 3 fori€ {1,2,...,n}.

Proof. For i =1 or n we apply Lemma 10. Let 2 <i<n-1 and ¢; = 3.
Consider the graph

(Pn x P3)\ N[u,-,vi,'w,-] = (Pi_o X P3)U (Pn—(i+l) x P3).

~
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Now by Corollary 7 we have

-2)+4 3 4
CENEE GRS LS. : DRSSP
: 3 3
(3242_1) (n 14 ~1)+3
_ 3n+3
= T
Since n # 0 (mod 4) this is a contradiction. g

We are now ready to determine the forcing number for P, x Ps.
Lemma 13.  f(Pyx,q1 %X P3,7)=0

Proof. Let S be a minimum dominating set in Psxy; X P3. By Corollary
7 we have |S| = 3k + 1. Applying Lemmas 6 and 9 we see that precisely

= 2k of the ¢;s must be zeros. Now by Lemmas 9 and 11 we have
c2=c4=...=cq=0. Weclaim that ¢; = 1. If ¢; > 1 then (P4 X
P3)\ N{uy,v1,w1] = Pyk—1)+3 X Ps. By Lemma 6 any dominating set for
this graph has at least 3k vertices. So |S| > 3k+2 which is a contradiction.
Therefore ¢; = 1. Similarly, cs¢+1 = 1. By Lemma 12 we have 0 < ¢; < 2
fori e {1,2,...,4k+1}. Nowsince ¢; = 1 and ¢y = 0 it follows that v; € S.
Moreover, to dominate the vertices uz and wy we must have {us, w3} € S.
So v3 & S since c3 < 2. Now since ¢4 = 0 it follows that v € S. It is also
easy to see that if cs = 2 then |S| > 3k+2 which is not possible. So c5 = 1.
Now a simple induction argument leads to

S = {u4i43, Vai41, Wair3 | 0 < i <k — 1} U {vgpes1}-

So there is a unique minimum dominating set in Py, x P3. Now by
Lemma 1 the result follows. O

Lemma 14.  f(Pyxr2 X P3,7) = 1.
Proof. First we note that

St = {v4i 43, Vai+1, Wai43 | 0 <4 < k — 1} U {vgp1, Vakr2}
and

S2 = {ugita, Vai+2, Waira | 0 <4 < k — 1} U {v1,v4p42)}

are two minimum dominating sets for Psx42 X Ps. So f(Pyri2 X P3,7) > 0
by Lemma 1. We prove that f(S2,7) = 1. Hence f(Psx.2x P3,v) = 1. We
claim that {v;} is a forcing subset for S». Let S3 be a minimum dominating
set in P12 x P3 containing v2. Let ¢; be the number of vertices of S5 in
the ith copy of P3 fori =1,2,...,4k+2. By Lemma 11 we have c;, ¢, # 0.

It is easy to see that ¢; +c2 = 2. So v; € S3. Now by Lemmas 6, 9 and
11 we have c3 = ¢c5 =... = cg; = 0. By Lemma 12 we have 0 < ¢; < 2
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forie {1,2,...,4k + 2}. Since {v1,v2} C S3,c2=1and c3 =01t follows
that {u4,wq} C S3 and hence ¢4 = 2. Now consider the following graph:

Pykio X P3\ N[{u,-,vi,w,- |i=1,2, 3,4}] = P4(k—l)+1 x Ps.

By Corollary 7 we need at least 3k — 2 vertices to dominate all the vertices
of the above graph. So by Lemma 13, Sy = {u4it4,vVai+2, Wai+a | 1 1 <
k—1}U{v4k+2} is the unique minimum dominating set for this graph. This
forces S4 C S3 and hence S3 = S2. Therefore {v;} is a forcing subset for
S». This completes the proof.

O

2 if k=01

Lemma 15.  f(Pik+3 X P3,7) = { 1if k>2

Proof. It is straightforward to see that every vertex of P3x Psand P, x P3
belongs to at least two minimum dominating sets. So f(P3 x Ps,7v) > 1
and f(P7 X Pa,'y) > 1. Now define S = {'u.4,-+3, V4i+1, Wei+3 | 0< i < k},
where k = 0, 1. Obviously, S is a minimum dominating set for Pyk+3 x Ps.
We show that {u4xi3, wak+3} is a forcing subset in S. Consider

Pir+3 % P3\ Nlugk+3,Vak+3, Wak+3] = Pak+1 X Ps.

Since f(Pak+1 X P3,7) = 0 by Lemma 13, it follows that S is the unique
minimum dominating set containing {uax+3, wak+3}. Hence, for k = 0,1,
we have f(Pak+1 X P3,7) =2.
Now let k > 2. It is easy to see that

S = {wy, u2,v3} U {ugis1,Vai43, Waig1 | 1 S <k}
is a minimum dominating set in Pyk+3 X Ps. We prove that {uz} is a forcing
subset in S. Let Sy be a minimum dominating set in Pyx4+3 X P3 containing
{uz}. As before, let ¢; be the number of vertices of S; in the ith copy
of P;. By Lemma 12 we have 0 < ¢; < 2 for i € {1,2,...,4k +3}. By
Lemma 11 we have ¢;, caxs3 # 0 and by Lemma 9 there is no ¢ such that
¢ = ciy1 = 0. It is also easy to see that ¢; +c2 < 2 and cgi+2 +C4k+3 < 2.
Soc; = ¢ = 1and caep3 = 1 or 2. We claim that cqe43 = 1. Let car+3 = 2.
Then c4x4+2 = 0. Consider

Pik+3 X P3 \ N([uak+3, vak+3, Wak+3] = Pak+1 X Ps.

Since f(Psk+1 X P3,7) = 0 by Lemma 13, we see that c; = 0. This is
a contradiction. So cqk+3 = 1. Now by Lemmas 6 and 9 we either have
63=C5=...=qu+1=001'64=05=...=C4k+2=0.

Case 1. c3 = ¢5 = ... = Cqr41 = 0. In this case it is easy to see that
{w1,v4,wa} C Sy. Moreover, since ¢cs = ¢7 = 0 we must have cg = 2. So
Z?=1 ¢i = 6. Consider

Pirs3 X Pa\ N[{ui, v, wi | 1 <1 <6} = Pype—1) x Ps.
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This forces S) to have at least 3k + 4 vertices which is a contradiction.

Case 2. ¢; =cg = ... = cap2 = 0. Since cgp+3 = 1 and cge42 = 0 we
must have vge+3 € S;. We also need to have ugei1, wak+1 € S to dominate
the vertices ugi+2 and wgky2. Now S; dominates vy only if vgx—1 € Si.
One can prove that csx..; = 1. In a similar manner we can prove that
{v3} U {vgis1, vai+3, wait1 | 1 <i < k} € S;. Now to dominate v; and wp
we must have w; € S). So S; = S. This completes the proof. 0

Lemma 16.  f(Py x P3,y) = 2.

Proof. It is easy to see that every vertex of Py x P3 is in at least two
minimum dominating sets. So f(P; x Ps,v) > 2. For K > 2 we consider
the following minimum dominating sets for Py x Ps.

S1 = {u4i43, 441, wai43 | 0 <2 <k — 1} U {vge}

Sy = {ugi+3,V4i11,wai43 |0 <1<k —2} U {wge—5|5=0,1,2,3}

S3 = {ugi+1,v4i+3,Wais1 |0 <1 <k —1} U {vai}

Ss = {ugir1, V4043, Waig1 |0 <P Sk — 2} U {vgk_4q, Vak, Uak—2, Wak—2}
Ss = {v1,%4i44, V0542, Waira | 0 <P <k — 2} U {vak—2, vak—1, vax}

Se = {v1,uai44, V4042, Waira | 0 < < k =2} U {vgk_2, vak—1, wak}

Sz = {v1,u4i+2, V4444, Wait2 [0 < i < k- 1}

Ss = {vi,wo,u3,v} U {ugit2,Vai1a, Waig2 |1 <i <k -1}

S = {v1,up, w3, v4} U {ugis2, vaita, waip2 |1 < i <k -1}

S; = {vak+1-m | um € Si} U {vak+1-m | vm € Si}U

{'w4k+l-m|'wmesi} i=1’2$37--'19'

Using these minimum dominating sets it is now straightforward to see that
every vertex of Py X P; is in at least two minimum dominating sets. So
S(Pax x P3) 2> 2. Now we prove f(Pyx x P3,7) = 2. Consider the minimum
dominating set

S = {ua,v2, w2, v4} U {wgi 42, Vaira, waiz2 | 1 <1 < k -1}

in Py x P3. We show that {ug, v} is a forcing subset in S. Let S; be a
minimum dominating set in Psx x P3 containing {ug,v2}. As before, let
¢; be the number of vertices of S; in the ith copy of P;. First note that
v1, w1 OF wa is in S otherwise w; is not dominated by S;. We show that
wep € S;. Consider

Py x P3\ Nlug,ve, w2] = Pyk-1)4+1 X Ps.
Since f(Py(k—1)+1 X Ps,7y) = 0 by Lemma 13, it follows that
S2 = {ugir2,vai, Waiz2 | 1 <4 <k =1} U {va} € Si.

Now the facts that |S;| = 4k + 1 and |S; U {ug,v2}| = 4k force wo € S;.
Therefore S; = S. This completes the proof. 0

Now we state the Main Theorem of this section.
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Theorem 17. For every integer n > 1 and n # 3,7,

0 if n=1(mod 4)
if n=2(mod 4)
if n=3(mod 4)
if n=0(mod 4).
Moreover, f(P3 x Ps,v) = f(Pr X P3,v) =2.

f(Pax P3,y) =

DN = s

4. FORCING DOMINATION NUMBERS FOR C, x P;

Throughout this section S is a minimum dominating set in C, x P3. So
by Corollary 8 we have | S| = [32]. We also assume that S has precisely ¢;
vertices in the ith copy of P3in C, x Ps fori=1,2,...,n.

Lemma 18. ¢; #3 forie€ {1,2,...,n}.
Proof. Let ¢; = 3 for some i. Consider the graph

Cn x P3\ N[u;,vi,w;) = Pp—3 x Ps.
By Corollary 7 we have

3(n —3) +4
S| > [__(_'_‘_gi |+3
3 —
| =1 +3.
3n
|"4—]-
But this is a contradiction by Corollary 8. a

Lemma 19. There is no i in {1,2,...,n} such that ¢; = ¢;41 = 0.

Proof. If ¢; = ¢i41 = 0 for some i then ¢;—; = 3 which is a contradiction
by Lemma 18. ' a

Lemma 20. Let n =0 or 1 (mod 4). Then there is no i in {1,2,...,n}
such that ¢; + ci1o > 4.

Proof. Let c; + ci+2 > 4 for some i. Consider the graph
Cp X Pa\N[{Uj,v_.,‘,'lUj |7 € {‘l - 1,i,i+1,i+2,i+3}}] = P,_s x Ps.
By Corollary 7 we have

IS 2 |

= |——]+4.
3'n.4
[-4—] since n =0 or 1 (mod 4).

But this is a contradiction by Corollary 8.
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Lemma 21. f(C, x P3,7) >0 forn > 3.
Proof. Let S; be a minimum dominating set for C, x P3. define
Sy = {u; |ui—y € S1}U {vi | vi—1 € S1}U {w; | wim1 € S1}.

It is easy to see that S) # S3 and S, is also a minimum dominating set for
Cn x P3. So by Lemma 1 we have f(C, x Ps,7) > 0. ]

We are now ready to determine the forcing number for C,, x Ps.
Lemma 22. f(Cy x P3,v)=1 fork >1.

Proof. By Lemma 21 we have f(Cyx x Ps,v) > 0. Now consider the min-
imum dominating set S = {u4i43,V4i+1,Wai+3 | 0 <1 < k — 1}. We prove
that {v} is a forcing subset in S. Let S; be a minimum dominating set in
Cai x P; containing v,. Let ¢; be the number of vertices of S; in the ith
copy of P3. By Lemma 18 we have ¢; # 3. Let ¢; = 2 and without loss of
generality let {u;,v,} € S;. Since |S;] = 3k, by Lemmas 6 and 19 precisely
2k of the ¢;s are zeros. So we must have cp = ¢4 = ... = ¢qp = 0. This
forces w3 € S;. Moreover, either uz € S) or vz € Sy, otherwise S; does not
dominate u3. Now we have c; + c3 > 4 which is a contradiction by Lemma
20. Therefore ¢; = 1. This forces u3, w3, vs € S;. Now by Lemma 20 we
have cs = 1. Repeating this procedure leads to S$ = 5. So S is the unique
minimum dominating set containing {v;}. This completes the proof. O

1 if k=1
2 if k>2°
Proof. First let k = 1. By Lemma 21 we have f(Cs x P3,v) > 0. It is

easy to see that {u3} is contained in the unique minimum dominating set

{vll ’U,3,'u)3,‘05}- So f(CS X P3: 7) =1
Now let k > 2. Consider the following minimum dominating sets.

Lemma 23.  f(Cak+1 x P3,7) = {

Si = {vi} U {uir4j43, Vitaj+1, Wiraj+3 |0 < 5 < k- 1},
for i = 1,2,...,4k + 1. It is straightforward to see that every vertex of
Cak+1 x Ps belongs to at least two of these sets. Therefore f (Cak+1 %
P3,7) > 2 by Corollary 2. Now we prove {v;,v,} is a forcing subset in 5.
Let S’ be a minimum dominating set in Cyx+1 x Ps containing v; and v,.
Let ¢; be the number of vertices of S in the ith copy of P;. By Lemma 18
we havec; #3 fori=1,2,...,4k+ 1. And by Lemmas 6 and 19 we obtain
€3 =c5 =...=Cgk+1 = 0. We claim that ¢; + ¢ < 3. Consider the graph

Cak+1 X P3\ N{uy, vy, wn, up,v2, wa) = Pyk_1)41 X Ps.

If e;+c2 > 4 by Corollary 6 we see that |S’| > 3k+2 which is a contradiction
by Corollary 8. So ¢; + ¢ < 3. Without loss of generality we can assume
¢z = 1. Now by Lemma 20 and the fact that S’ is a minimum dominating
set we see that us,wy € §’ and ¢4 = 2. So ¢g = 1 by Lemma 20 and
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vg € §’. Continuing this procedure leads to cai+2 =1fori=0,1,...,k—1
and ¢y = 2 for j = 1,...,k. Moreover, S\ {v;} C §’\ {v1}. Now since
|S| = |8’] and v; € SN S’ we must have S = S’. This completes the
proof. a

Lemma 24.  f(Cak+2 X P3,7v) =2 for every k > 1.

Proof. First let k = 1. It is straightforward to see that every vertex of
Cg x Ps is in at least two minimum dominating sets. So by Corollary 2 we
have f(Cs x P3,7v) = 2.

Now let k > 2. Consider the following minimum dominating sets.

Si = {vi, vir1} U {ipaie1)s Vit aj+2, Winaen) |0 ST S k= 1},

for i =1,2,...,4k + 2. It is straightforward to see that every vertex of
Cir+2 X Ps belongs to at least two Sis. Therefore f(Cskt2 x P3,7) 2 2
by Corollary 2. Now we prove {v;,v3} is a forcing subset in S;. Let S’ be
a minimum dominating set in Csc4+2 X P3 containing v, and v3. Let ¢; be
the number of vertices of S’ in the ith copy of P3. We claim that c; # 0.
Suppose that c; = 0. By Lemma 18 we have ¢;,c3 # 3. So without loss of
generality we may assume {v1,vs, u;, w3} C S’. Consider the graph

Cuk+2 X P3\ Nluy, vy, w1, u3,v3,ws] = Pyk—1)+1 X P3.

By Corollary 6 to cover the vertices of this graph we need at least 3k — 2
vertices. Since |S’| = 3k +2 this forces ¢4 = 0. Now by Lemma 13 we have
F(Pak—1)+1 x P3,7) = 0. Sovs € S’ and ¢cs = 1. Now w4 is not dominated
by S’ which is a contradiction. So we must have cz # 1. Similarly, we
cannot have ¢y +co +c3 > 4. Socy = 1 and v, € S’. By Lemma 6
precisely either 2k or 2k + 1 of the ¢;s are zeros. By Lemma 19 and the
fact that ¢; = c2 = c3 = 1 we must have ¢y = cg = ... = cqk4+2 = 0. Now
to dominate the vertices of the 4th and (4k + 2)th copies we must have
us, Ws, Ugk+1, Wak+1 € S'. If k = 1 then we obtain S = S’. For k > 2 we
consider

Cak+2 %X P\ N[{uak+3—is Vak+3—i, Wak+3—i,

uj,v5,wj | 1 <4 <2, 1 <5 <5} = Pyr—2)+1 X Ps.
Since f(Py(k-2)+1 X P3,7) = 0 by Lemma 13, we see that S’ = S;. This
completes the proof. O

Lemma 25. f(Cak+3 X P3,7) =2 for k > 0.

Proof. 1t is easy to see that every vertex of C3 x P is in at least two
minimum dominating sets. Moreover, {v,,v2} is a forcing subset for the
minimum dominating set {v;,v2,v3}. So f(C3 x P3,7) =2. Now let k > 1
and define the minimum dominating set

Si = {Uitaj+2, Vitajr Witajs2 | 0 < 5 <k},
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for:=1,...,4k+ 3. One can easily show that each vertex of Cyx;3 x P is
in at least two S;s. So f(Cak+3 x Pa,y) 2 2 by Corollary 2. For k =1 it is
easy to see that {u;,up} is a forcing subset in S = {u, up, w3, us, vs, wr}.
So f(C7 x Ps,v) = 2. For k > 2 we prove {u;,ws} is a forcing subset in
the minimum dominating set

S = {u), w2, Vak+3} U {Uaivs, Vaita, wairs |0 S i < k =1},

Let S’ be a minimum dominating set in Cyx43 X P3 containing 1, and ws.
Let c; be the number of vertices of S’ in the ith copy of P;. By Lemma 18 we
have ¢; # 3. Moreover, since S’ is a minimum dominating set, by Lemmas
6 and 19 precisely either 2k or 2k + 1 of the ¢;s are zeros. First assume
precisely 2k + 1 of the ¢;s are zeros. Then ¢z = c5 = ... = 4643 = 0 by
Lemma 19. Obviously, c; +c; < 3 otherwise, S’ has at least 3k +4 vertices
which is a contradiction. We claim that ¢;+c; #£3. Let ¢; = 1 and ¢ = 2.
Then wyx+2,v4r+2 € S’ and by 18 we have cqpy2 = 2. This forces cq = 2.
Now consider

Cak+3 X P3a\N[{ui,vj,w; |1 i< 20rdk <i < 4k+3}] = Py(k—2)4+3 x Ps.

Then we must have |S’] > 3(k—2)+3+7 = 3k+4 which is a contradiction.
Similarly, the Case ¢; = 2 and c; = 1 leads to a contradiction. So ¢; =
c2 = 1. This forces ¢; = cg = car = car+2 = 2. Hence, |G| > 10if k = 2
and |S| > 3k +4if k > 3. This is a contradiction. Therefore precisely 2k of
the ¢;s are zeros. Note that in this case there is no minimal odd component
in S’ by Lemma 6. Consider two cases.

Casel. c¢3 =0. Thencs = 0otherwise S’ has a minimal odd component.
Now we consider two subcases.

Subcase 1.1  c¢q43 7# 0. Obviously ¢; + ¢3 + c443 < 4 otherwise S’ has
at least 3k + 4 vertices which is impossible. Let ¢; + ¢ + caer3 = 4. We
claim that ¢o = 2. If c; = 1 then ¢4 = 2. Consider

C4k+3 X P3\N[{u,-,v,-,w,- |= 1,2,3,4,4’C+3}] = Pd(k—l) X P3-

By Corollary 6 to cover the vertices of this graph we need at least 3k — 2
vertices. So we must have |S’| > 3k +4 which is a contradiction. Therefore
c2 = 2 and cak+3 = 1. In a similar fashion it is proved that csrro = 1.
This forces c3 = ¢ = ... = ¢4 = 0. Now to dominate the vertices of the
(4k + 1)th copy of P3 we must have cqx = 2. Consider

Capa X Ps\N[{u,-,v,',wi [1<€i<20r4k<i< 4k+3}] = P4(k__2)+3 x Ps.
Then |S’| > 3(k — 2) + 3 + 7 = 3k + 4 which is a contradiction. Therefore
€1+ c2+ Carys = 3. So ¢1 = ¢2 = cars3 = 1. We claim that cgrrg = 0.
If cakq2 # O then ¢3 = cs = ... = caky1 = 0. This forces cy = ¢ = 2
and cak + cak+2 > 3. Now it is easy to see that [S’| > 3k + 4 which is
a contradiction. So cqk+2 = 0. Since S’ has no minimal odd component
we obtain cqr = 0. It is now easy to see that these conditions lead to
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|S’| > 10 when k = 2 which is impossible. Now assume k > 3. Since
€3 = C5 = Cgr = Cart2 = 0 and c2 = cap+3 = 1 we must have ¢ = cae+1 = 2
and cg, cax—1 7 0. Consider

Car+3x Ps\N[{uj,vi,wi |1 <i<4ordk+1<i < 4k+3}) = P4(;¢_2)+2XP3.

By Lemma 6 and Corollary 7 it is necessary that 2(k — 2) copies of P; in
Py(k-2)+2 X P3 be zeros. Therefore we must havec; = cg = ... =cg-3 =0
orcg=cyo=...= Cg—2=0. First let c; = ¢cg = ... = c4x—3 = 0. Then
we must have ¢4 = cg = cqr4+1 = 2. Consider

C4k+3xP3\N[{u,-,v,-,w,- I 1<i<6ordk+1<1< 4k+3}] = P4(k_2) x Ps.

By Corollary 7 we need at least 3k — 5 vertices to cover all the vertices
of this graph. So |S’| > 3k + 4 which is a contradiction. Secondly, let
cg = Cig = ... = Cgg—2 = 0. Then we have ¢4 = cqp+1 = 2 and ¢ 2> 1.
Consider

Cuk+3xX Ps\N[{ui,vi,wi | 1 i< 5or 4k+1 < i < 4k+3}] = Pq(k_2)+1XP3

and apply Lemma 13 to obtain v7 € S’. This implies ¢ + c7 > 3. So
|S’] > 3k + 4 which is impossible.

Subcase 1.2 c4k+3 = 0. Then car+1 = 0, otherwise S’ has a minimal
odd component. Obviously ¢; + ¢c2 < 3, otherwise S’ has at least 3k + 4
elements which is impossible. We claim that ¢; = c; = 1. Let ¢; = 1 and
¢y = 2. Then vggi2, weks2 € S'. Consider

Cak+3 X B3\ N[{u;,vi,wi |i=1,2,4k + 2,4k +3}] = P4(k._1)+1 % Ps.

Let z € {uz,v2}. By Corollary 7 we see that S’\ {u;,ws, Z,V4k+2, Wak+2} IS
a minimum dominating set for this graph. So v4,v4x € S’ and ¢y = cax =1
by Lemma 13. But in this case the vertex usx+1 is not covered by S’ which
is a contradiction. If ¢; = 2 and ¢ = 1 then ¢4 = 2. Now consider

C4k+3 X P3 \ N[{u.-,vi,w; I 1= 1,2, 3,4}] = P4(k_1)+1 X P3

and proceed as above to show that S’ cannot be a dominating set which
is a contradiction. So ¢; = ¢y = 1. This forces uy, vg, Vag+2, Wak+2 € S’
Consider

Cak+s x P3\ N[{ui,vi,wi | 1=1,2,8,4,4k + 2,4k + 3}] = Pak-2)+3 X Ps.

By Corollary 7 we see that S’ \ {u1, w2, %4, V4, Vak+2, Wak+2} IS a minimum
dominating set for this graph. So by Lemma 11 we have cg # 0 and cqx # 0.
If cg + cax > 4 then |S’| > 3k + 4 which is not possible. So cg + cqx < 3.
Let cg = 1. Then wg € S’ and so uy € S’. Now consider

Cuik+3 X P3\ N[{ui,vi,w; |1=1,2,3,4,4k + 2,4k + 3}] = Pyk-2)+3 X Ps.

By Lemma 15, {u7} is a forcing subset for S'\ {u1, w2, u4, v4, Vak+2, Wak+2}.
Moreover, v4x € S’ and ¢ = 1. Now we see that vertex ugxy; is not
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covered by S’ which is a contradiction. Similarly, the case cqx = 1 leads to
a contradiction. This completes Case 1.

Case 2. c¢3 # 0. A method similar to that described in Case 1 shows
that cqx+3 # 0. Now since precisely 2k of the ¢;s are zeros we must have
cg=cg=...=Cap42=0. If 1 + ¢ + €3 + 4543 > 6 then |S'| > 3k + 4
which is not possible. If ¢; + ¢ + ¢3 + c4x+3 = 5 we consider

Caks+3 X Ps\ N[{u;, v, w; |1=1,2,3,4k + 3}] = Pye_1)41 X P3

and apply Lemma 13 to obtain ¢s = c4e+1 = 1. But this forces ¢z =
C4k+3 = 2 and so ¢ + ¢z + ¢3 + cak+3 > 6 which is not possible. So
€ = Cp = €3 = C443 = 1. Now if ug € S’ then since ¢4 = 0 we must
have vs,ws € S’ and so ¢y = 2. Now this implies |S’| > 3k + 4 which is
impossible. So v3 € §’. Similarly, vak+3 € S’. Now since v3 € S’ and
cs = 0 we have {us,ws} € $’. So vs € S’ since cs < 2 by Lemma 18.
Therefore v7 € S’ since cg = 0. It is straightforward to see that ¢; = 1.
Now one can apply a simple induction argument to prove that $' = S,
This completes the proof. O

Now we state the Main Theorem of this section.

Theorem 26. For ecvery integer n > 3 and n # 5,

if n=1(mod 4)
if n=2(mod 4)
if n=3(mod 4)
if n=0(mod 4).

f(c‘n XP3)7)=

- N NN

Moreover, f(Cs x P3,v) = 1.
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