THE FORCING DOMINATION NUMBERS OF SOME GRAPHS

ABDOLLAH KHODKAR
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WEST GEORGIA
CARROLLTON, GA 30118
AKHODKAROWESTGA. EDU

S.M. SHEIKHOLESLAMI*
DEPARTMENT OF MATHEMATICS
AZARBAIJAN UNIVERSITY OF TARBIAT MOALLEM
TABRIZ, IRAN
S.M.SHEIKHOLESLAMI@AZARUNIY.EDU

ABSTRACT. In this paper the forcing domination numbers of the graphs $P_n \times P_3$ and $C_n \times P_3$ are completely determined. This improves the previous results on the forcing domination numbers of $P_n \times P_2$ and $C_n \times P_2$.

1. Introduction

A vertex v in a graph G is said to dominate all the vertices in its closed neighborhood N[v]. A subset S of V(G) is a dominating set of G if $\bigcup_{v \in S} N[v] = V(G)$; that is, every vertex in $V(G) \setminus S$ is adjacent to a vertex in S. The domination number $\gamma(G)$ is the minimum cardinality among the dominating sets of G. A minimum dominating set of G is a dominating set of cardinality $\gamma(G)$. Consult [4] for domination in graphs. For graph theory we follow the notation and terminology of [3].

Let S be a minimum dominating set of a graph G. A subset T of S is called a *forcing subset* for S if S is the unique minimum dominating set containing T. The forcing domination number $f(S, \gamma)$ of S is the minimum cardinality of a forcing subset for S. The *forcing domination number* $f(G, \gamma)$ of G is the smallest forcing number of a minimum dominating set of G. It is clear that $0 \le f(G, \gamma) \le \gamma(G)$.

Consider the graphs $H = P_n \times G$ and $K = C_n \times G$, where G is a graph, P_n is a path of length n - 1, and C_n is a cycle of length n. Let S be

^{*} Research supported by the Research Office of Azarbaijan University of Tarbiat Moallem.

a dominating set in H or K. Suppose c_i , for $1 \le i \le n$, is the number of common vertices between S and the ith copy of G in H or K. By a component of S we mean a subsequence of the sequence $c_1, c_2, c_3, \ldots, c_n$ with consecutive terms, say $c_i, c_{i+1}, c_{i+2}, \ldots, c_{i+k}$, such that $c_i = c_{i+2} = c_{i+4} = \ldots = c_{i+k} = 0$ and $0 \notin \{c_{i+1}, c_{i+3}, c_{i+5}, \ldots, c_{i+k-1}\}$. (Note that a component of S starts with zero and ends at zero.) A component of S is maximal if it is not a proper subsequence of a component of S. An odd (even) component of S is a component of S with an odd (even) number of zero terms. For example, consider $P_9 \times P_3$ shown in Figure 1. Let $S = \{v_1, u_3, w_3, v_5, u_7, w_7, v_9\}$. Then $c_2 = c_4 = c_6 = c_8 = 0$, $c_1 = c_5 = c_9 = 1$ and $c_3 = c_7 = 2$. Moreover, c_2, c_3, \ldots, c_8 is a maximum even component of S. Throughout this paper we use a labeling for the vertices of $P_n \times G$ and $C_n \times G$, where $G = P_3$ or $G = C_3$, similar to that shown in Figure 1.

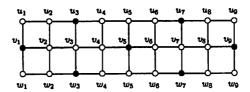


FIGURE 1. The graph $P_9 \times P_3$

In [1], the forcing domination numbers of several classes of graphs are determined, including paths, cycles, ladders and prisms. The authors of [1] prove the following results.

Lemma 1. For a graph G, the forcing domination number $f(G,\gamma)=0$ if and only if G has a unique minimum dominating set. Moreover, $f(G,\gamma)=1$ if and only if G does not have a unique minimum dominating set but some vertex of G belongs to exactly one minimum dominating set.

Corollary 2. For a graph G, the forcing domination number $f(G,\gamma) > 1$ if and only if every vertex of each minimum dominating set belongs to at least two minimum dominating sets.

Proposition 3. For every integer $n \geq 2$,

$$f(P_n \times P_2, \gamma) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even.} \end{cases}$$

Proposition 4. For every integer $n \geq 3$,

$$f(C_n \times P_2, \gamma) = \begin{cases} 1 & \text{if } n \equiv 0 \pmod{4} \\ 2 & \text{if } n \equiv 1 \pmod{4} \\ 3 & \text{if } n \equiv 2 \pmod{4} \\ 2 & \text{if } n \equiv 3 \pmod{4} \end{cases}$$

In Section 2 we deal with domination numbers for graphs. We prove $\gamma(P_n \times P_3) = \gamma(P_n \times C_3) = \lfloor \frac{3n+4}{4} \rfloor$. (The domination number for the graph $P_n \times P_3$ was first found in [2]). We also prove $\gamma(C_n \times P_3) = \gamma(C_n \times C_3) = \lceil \frac{3n}{4} \rceil$ for every integer $n \geq 3$. In Sections 3 and 4 we find the forcing numbers of $P_n \times P_3$ and $C_n \times P_3$, respectively.

2. MINIMUM DOMINATING SETS

In this section first we find a lower bound for the cardinality of a dominating set of $P_n \times G$ and $C_n \times G$, where G is a non-empty simple connected graph. Then we apply these results to determine the minimum dominating number for the graphs $P_n \times P_3$, $P_n \times C_3$, $C_n \times P_3$ and $C_n \times C_3$. We use a labeling for the vertices of these graphs similar to that shown in Figure 1. Then the vertices of the *i*th copy of P_3 (C_3) in $P_n \times P_3$ or $P_n \times C_3$ ($C_n \times P_3$ or $C_n \times C_3$) become u_i, v_i, w_i .

Lemma 5. Let G be a non-empty simple connected graph. Then there exists a minimum dominating set in $H = P_n \times G$ $(K = C_n \times G)$ such that

- (1) it intersects the first copy of G in H (K) and the last copy of G in H;
- (2) if it does not intersect the ith copy of G it intersects the (i+1)th copy of G.

Proof. 1) Let S be a minimum dominating set in H (or K). Assume that G_i , for $1 \le i \le n$, is the ith copy of G in H (or K). Define $c_i = |V(G_i) \cap S|$. If S is a minimum dominating set in K with $c_1 = 0$ then by relabeling the copies of G in K we can have $c_1 \ne 0$. If S is a minimum dominating set in H with $c_1 = 0$ then since every vertex in G_1 is dominated by precisely one vertex of G_2 we have $c_2 = |V(G_2)|$. Suppose that $u_2v_2 \in E(G_2)$. Define $S' = (S \setminus \{u_2\}) \cup u_1$ if n = 2 and $S' = (S \setminus \{u_2, v_2\}) \cup \{u_1, v_3\}$ if $n \ge 3$, where u_1 and v_3 are the vertices corresponding to u_2 and v_2 in G_1 and G_3 , respectively. Now S' is the required minimum dominating set in H. In a similar fashion we use S' to construct a minimum dominating set in H which intersects both G_1 and G_n .

2) Let S be a minimum dominating set in H (or K) and $c_1 \neq 0$. If $c_i = c_{i+1} = 0$ for some $2 \leq i \leq n-1$, then, since every vertex of G_i is dominated by precisely one vertex of G_{i-1} , we have $c_{i-1} = |V(G)|$. Let $\{u_{i-1}, v_{i-1}\}$ be an edge in G_{i-1} . Define $S' = (S \setminus \{u_{i-1}\}) \cup \{u_i\}$ if i = 2 and $S' = (S \setminus \{u_{i-1}, v_{i-1}\}) \cup \{u_i, v_{i-2}\}$ if $i \geq 3$. Then S' is the required minimum dominating set in H (or K).

Lemma 6. Let S be a dominating set in $H = P_n \times G$ $(K = C_n \times G)$, where $G = P_3$ or $G = C_3$. Suppose that precisely r copies of G in H (K) do not intersect S. If there are r_1 maximal odd components in S then $|S| \ge n + (r_1 - r)/2$.

Proof. Let G_i be the *i*th copy of G in H (K) and $c_i = |S \cap V(G_i)|$ for $1 \le i \le n$. Without loss of generality (see Lemma 5) we can assume $c_1 \ne 0$ and there is no i in $\{1, 2, \ldots, n-1\}$ such that $c_i = c_{i+1} = 0$. First let S be a dominating set in H. By Lemma 5 we may also assume $c_n \ne 0$. Now let $c_i = 0$ for some i. (Then we note that c_{i-1} and c_{i+1} cannot both be one.) Since every vertex of G_i is dominated by precisely one vertex of G_{i-1} or G_{i+1} it follows that $c_{i-1} + c_{i+1} \ge 3$. So for a maximal odd component in S, say $c_i, c_{i+1}, c_{i+2}, \ldots, c_{i+k}$, with $\alpha = (k+2)/2$ zero terms we obtain

$$2c_{i-1}+2c_{i+1}+2c_{i+3}+\ldots+2c_{i+k+1}\geq 3(\alpha+1).$$

Similarly, for a maximal even component in S, say $c_j, c_{j+1}, c_{j+2}, \ldots, c_{j+m}$, with $\beta = (m+2)/2$ zero terms we have

$$c_{j-1} + 2c_{j+1} + 2c_{j+3} + \ldots + 2c_{j+m-1} + c_{j+m+1} \ge 3\beta.$$

Now since $c_{i-1} \neq 0$ and $c_{i+m+1} \neq 0$ we obtain

$$2c_{j-1}+2c_{j+1}+2c_{j+3}+\ldots+2c_{j+m+1}\geq 3\beta+2.$$

Now let there be precisely r_1 maximal odd components in S with o_1, \ldots, o_{r_1} zero terms, respectively. Moreover, let there be precisely r_2 maximal even components in S with e_1, \ldots, e_{r_2} zero terms, respectively. Define A =

$$\{i \mid 2 \le i \le n-1 \text{ and } c_i \ne 0, c_{i-1}.c_{i+1} = 0\} \cup \{1 \text{ if } c_2 = 0\} \cup \{n \text{ if } c_{n-1} = 0\}$$
 and $B = \{i \mid c_i \ne 0\} \setminus A$. Then

Now let S be a dominating set in K. If there is an i such that $c_i, c_{i+1} \neq 0$ then by relabeling the copies of G we may assume $c_1, c_n \neq 0$. Now an argument similar to that described above proves that $|S| \geq n + (r_1 - r)/2$. Finally suppose that there is no i such that $c_i, c_{i+1} \neq 0$. Then n is even and we have $c_{2i-1} \neq 0$ and $c_{2i} = 0$ for i = 1, 2, ..., n/2. So $c_{2i-1} + c_{2i+1} \geq 3$ for i = 1, 2, ..., n/2. This leads to $2c_1 + 2c_3 + ... + 2c_{n-1} \geq 3(n/2)$. So

$$2 \mid S \mid = 2c_1 + 2c_3 + \ldots + 2c_{n-1} \ge 3(n/2).$$

Now if $n \equiv 0 \pmod{4}$ then $r_1 = 0$ and if $n \equiv 2 \pmod{4}$ then $r_1 = 1$. So $|S| \ge n + (r_1 - r)/2$ as required.

The proof of the following corollary can also be found in [2].

Corollary 7. Let $G = P_3$ or $G = C_3$. Then $\gamma(P_n \times G) = \lfloor \frac{3n+4}{4} \rfloor$ for every positive integer n.

Proof. Let S be a dominating set in $P_n \times G$. By Lemma 6 we have $|S| \ge n + (r_1 - r)/2$, where r and r_1 are as in Lemma 6 and $0 \le r \le \lceil (n-2)/2 \rceil$. If $\lceil (n-2)/2 \rceil$ is odd (even) then the minimum of r_1 is one (zero). Now it is straightforward to see that $|S| \ge \lfloor \frac{3n+4}{4} \rfloor$.

Now we define a dominating set in $P_n \times G$ with $\lfloor \frac{3n+4}{4} \rfloor$ vertices. Let $\{u_i, v_i, w_i\}$ be the vertices of the *i*th copy of G in $P_n \times G$ (see Figure 1). Define

$$S = \{u_{4i+3}, v_{4i+1}, w_{4i+3} \mid 0 \le i \le k-1\} \cup \{v_{4k}\}$$
 if $n = 4k$

$$S = \{u_{4i+3}, v_{4i+1}, w_{4i+3} \mid 0 \le i \le k-1\} \cup \{v_{4k+1}\}$$
 if $n = 4k+1$

$$S = \{u_{4i+3}, v_{4i+1}, w_{4i+3} \mid 0 \le i \le k-1\} \cup \{v_{4k+1}, v_{4k+2}\}$$
 if $n = 4k+2$

$$S = \{u_{4i+3}, v_{4i+1}, w_{4i+3} \mid 0 \le i \le k\}$$
 if $n = 4k+3$.

Then S is a dominating set in $P_n \times G$ with $\lfloor \frac{3n+4}{4} \rfloor$ vertices.

Corollary 8. Let $G = P_3$ or $G = C_3$. Then $\gamma(C_n \times G) = \lceil \frac{3n}{4} \rceil$ for every integer $n \geq 3$.

Proof. Let S be a dominating set in $C_n \times G$. Using Lemma 6 it is easy to see that $|S| \ge \left\lceil \frac{3n}{4} \right\rceil$.

Now we define a dominating set in $C_n \times G$ with $\lceil \frac{3n}{4} \rceil$ vertices. Let $\{u_i, v_i, w_i\}$ be the vertices of the *i*th copy of G in $C_n \times G$ (see Figure 1). Define

$$S = \{u_{4i+3}, v_{4i+1}, w_{4i+3} \mid 0 \le i \le k-1\}$$
 if $n = 4k$

$$S = \{u_{4i+3}, v_{4i+1}, w_{4i+3} \mid 0 \le i \le k-1\} \cup \{v_{4k+1}\}$$
 if $n = 4k+1$

$$S = \{u_{4i+3}, v_{4i+1}, w_{4i+3} \mid 0 \le i \le k-1\} \cup \{v_{4k+1}, v_{4k+2}\}$$
 if $n = 4k+2$

$$S = \{u_{4i+3}, v_{4i+1}, w_{4i+3} \mid 0 \le i \le k\}$$
 if $n = 4k+3$.

Then S is a dominating set in $C_n \times G$ with $\begin{bmatrix} \frac{3n}{4} \end{bmatrix}$ vertices.

3. Forcing domination numbers for $P_n \times P_3$

Throughout this section S is a minimum dominating set in $P_n \times P_3$. So by Corollary 7 we have $|S| = \lfloor \frac{3n+4}{4} \rfloor$. We also assume that S has precisely c_i vertices in the *i*th copy of P_3 in $P_n \times P_3$ for i = 1, 2, ..., n.

Lemma 9. There is no i in $\{1, 2, ..., n\}$ such that $c_i = c_{i+1} = 0$.

Proof. Since the vertices of the first copy of P_3 can only be dominated by the vertices of the second copy of P_3 it is impossible to have $c_1=c_2=0$. Similarly, it is impossible to have $c_{n-1}=c_n=0$. The reader can verify that $c_2=c_3=0$ ($c_{n-2}=c_{n-1}=0$) is not possible either. So let $3\leq i\leq n-3$ and $c_i=c_{i+1}=0$. Then $c_{i-1}=c_{i+2}=3$. Moreover,

$$P_n \times P_3 \setminus N[u_{i-1}, u_{i-1}, u_{i-1}, u_{i+2}, u_{i+2}, w_{i+2}] = (P_{i-3} \times P_3) \cup (P_{n-i-3} \times P_3),$$

where u_j, v_j, w_j are the vertices of the jth copy of P_3 in $P_n \times P_3$. Now by Corollary 7 we have

$$|S| \geq \lfloor \frac{3(i-3)+4}{4} \rfloor + \lfloor \frac{3(n-i-3)+4}{4} \rfloor + 6$$

$$> \frac{3i-5}{4} - 1 + \frac{3n-3i-5}{4} - 1 + 6$$

$$= \frac{3n+6}{4}.$$

This is a contradiction.

Lemma 10. $c_1 \neq 3$ and $c_n \neq 3$.

Proof. Let $c_1 = 3$. Consider the graph $(P_n \times P_3) \setminus N[u_1, v_1, w_1] = P_{n-2} \times P_3$. By Corollary 7 we have

$$|S| \ge \lfloor \frac{3(n-2)+4}{4} \rfloor + 3$$

> $(\frac{3n-2}{4}-1)+3$
= $\frac{3n+6}{4}$.

This is a contradiction. Similarly, we can prove $c_n \neq 3$.

Lemma 11. If $n \not\equiv 0 \pmod{4}$ then $c_1 \neq 0$ and $c_n \neq 0$.

Proof. If $c_1 = 0$ then $c_2 = 3$. Consider the graph $P_n \times P_3 \setminus N[u_2, v_2, w_2] = P_{n-3} \times P_3$, where u_2, v_2, w_2 are the vertices of the second copy of P_3 in $P_n \times P_3$. Now by Corollary 7 we have

$$|S| \ge \lfloor \frac{3(n-3)+4}{4} \rfloor + 3$$

> $(\frac{3n-5}{4}-1)+3$
= $\frac{3n+3}{4}$.

Since $n \not\equiv 0 \pmod{4}$ this is a contradiction. Similarly, one can prove $c_n \neq 0$.

Lemma 12. If $n \not\equiv 0 \pmod{4}$ then $c_i \not\equiv 3$ for $i \in \{1, 2, \ldots, n\}$.

Proof. For i = 1 or n we apply Lemma 10. Let $2 \le i \le n - 1$ and $c_i = 3$. Consider the graph

$$(P_n \times P_3) \setminus N[u_i, v_i, w_i] = (P_{i-2} \times P_3) \cup (P_{n-(i+1)} \times P_3).$$

Now by Corollary 7 we have

$$|S| \geq \lfloor \frac{3(i-2)+4}{4} \rfloor + \lfloor \frac{3(n-i-1)+4}{4} \rfloor + 3$$

$$> (\frac{3i-2}{4}-1) + (\frac{3n-3i+1}{4}-1) + 3$$

$$= \frac{3n+3}{4}.$$

Since $n \not\equiv 0 \pmod{4}$ this is a contradiction.

We are now ready to determine the forcing number for $P_n \times P_3$.

Lemma 13.
$$f(P_{4k+1} \times P_3, \gamma) = 0.$$

Proof. Let S be a minimum dominating set in $P_{4k+1} \times P_3$. By Corollary 7 we have |S| = 3k+1. Applying Lemmas 6 and 9 we see that precisely r=2k of the c_i s must be zeros. Now by Lemmas 9 and 11 we have $c_2=c_4=\ldots=c_{4k}=0$. We claim that $c_1=1$. If $c_1>1$ then $(P_{4k+1}\times P_3)\setminus N[u_1,v_1,w_1]=P_{4(k-1)+3}\times P_3$. By Lemma 6 any dominating set for this graph has at least 3k vertices. So $|S|\geq 3k+2$ which is a contradiction. Therefore $c_1=1$. Similarly, $c_{4k+1}=1$. By Lemma 12 we have $0\leq c_i\leq 2$ for $i\in\{1,2,\ldots,4k+1\}$. Now since $c_1=1$ and $c_2=0$ it follows that $v_1\in S$. Moreover, to dominate the vertices u_2 and u_2 we must have $\{u_3,u_3\}\in S$. So $u_3\not\in S$ since $c_3\leq 2$. Now since $c_4=0$ it follows that $v_5\in S$. It is also easy to see that if $c_5=2$ then $|S|\geq 3k+2$ which is not possible. So $c_5=1$. Now a simple induction argument leads to

$$S = \{u_{4i+3}, v_{4i+1}, w_{4i+3} \mid 0 \le i \le k-1\} \cup \{v_{4k+1}\}.$$

So there is a unique minimum dominating set in $P_{4k+1} \times P_3$. Now by Lemma 1 the result follows.

Lemma 14. $f(P_{4k+2} \times P_3, \gamma) = 1.$

Proof. First we note that

$$S_1 = \{u_{4i+3}, v_{4i+1}, w_{4i+3} \mid 0 \le i \le k-1\} \cup \{v_{4k+1}, v_{4k+2}\}$$

and

$$S_2 = \{u_{4i+4}, v_{4i+2}, w_{4i+4} \mid 0 \le i \le k-1\} \cup \{v_1, v_{4k+2}\}$$

are two minimum dominating sets for $P_{4k+2} \times P_3$. So $f(P_{4k+2} \times P_3, \gamma) > 0$ by Lemma 1. We prove that $f(S_2, \gamma) = 1$. Hence $f(P_{4k+2} \times P_3, \gamma) = 1$. We claim that $\{v_2\}$ is a forcing subset for S_2 . Let S_3 be a minimum dominating set in $P_{4k+2} \times P_3$ containing v_2 . Let c_i be the number of vertices of S_3 in the *i*th copy of P_3 for $i = 1, 2, \ldots, 4k+2$. By Lemma 11 we have $c_1, c_n \neq 0$. It is easy to see that $c_1 + c_2 = 2$. So $v_1 \in S_3$. Now by Lemmas 6, 9 and 11 we have $c_3 = c_5 = \ldots = c_{4k+1} = 0$. By Lemma 12 we have $0 \le c_i \le 2$

for $i \in \{1, 2, ..., 4k + 2\}$. Since $\{v_1, v_2\} \subseteq S_3$, $c_2 = 1$ and $c_3 = 0$ it follows that $\{u_4, w_4\} \subseteq S_3$ and hence $c_4 = 2$. Now consider the following graph:

$$P_{4k+2} \times P_3 \setminus N[\{u_i, v_i, w_i \mid i = 1, 2, 3, 4\}] = P_{4(k-1)+1} \times P_3.$$

By Corollary 7 we need at least 3k-2 vertices to dominate all the vertices of the above graph. So by Lemma 13, $S_4 = \{u_{4i+4}, v_{4i+2}, w_{4i+4} \mid 1 \leq i \leq k-1\} \cup \{v_{4k+2}\}$ is the unique minimum dominating set for this graph. This forces $S_4 \subseteq S_3$ and hence $S_3 = S_2$. Therefore $\{v_1\}$ is a forcing subset for S_2 . This completes the proof.

Lemma 15.
$$f(P_{4k+3} \times P_3, \gamma) = \begin{cases} 2 & \text{if } k = 0, 1 \\ 1 & \text{if } k \ge 2. \end{cases}$$

Proof. It is straightforward to see that every vertex of $P_3 \times P_3$ and $P_7 \times P_3$ belongs to at least two minimum dominating sets. So $f(P_3 \times P_3, \gamma) > 1$ and $f(P_7 \times P_3, \gamma) > 1$. Now define $S = \{u_{4i+3}, v_{4i+1}, w_{4i+3} \mid 0 \le i \le k\}$, where k = 0, 1. Obviously, S is a minimum dominating set for $P_{4k+3} \times P_3$. We show that $\{u_{4k+3}, w_{4k+3}\}$ is a forcing subset in S. Consider

$$P_{4k+3} \times P_3 \setminus N[u_{4k+3}, v_{4k+3}, w_{4k+3}] = P_{4k+1} \times P_3.$$

Since $f(P_{4k+1} \times P_3, \gamma) = 0$ by Lemma 13, it follows that S is the unique minimum dominating set containing $\{u_{4k+3}, w_{4k+3}\}$. Hence, for k = 0, 1, we have $f(P_{4k+1} \times P_3, \gamma) = 2$.

Now let $k \geq 2$. It is easy to see that

$$S = \{w_1, u_2, v_3\} \cup \{u_{4i+1}, v_{4i+3}, w_{4i+1} \mid 1 \le i \le k\}$$

is a minimum dominating set in $P_{4k+3} \times P_3$. We prove that $\{u_2\}$ is a forcing subset in S. Let S_1 be a minimum dominating set in $P_{4k+3} \times P_3$ containing $\{u_2\}$. As before, let c_i be the number of vertices of S_1 in the ith copy of P_3 . By Lemma 12 we have $0 \le c_i \le 2$ for $i \in \{1, 2, \ldots, 4k+3\}$. By Lemma 11 we have $c_1, c_{4k+3} \ne 0$ and by Lemma 9 there is no i such that $c_i = c_{i+1} = 0$. It is also easy to see that $c_1 + c_2 \le 2$ and $c_{4k+2} + c_{4k+3} \le 2$. So $c_1 = c_2 = 1$ and $c_{4k+3} = 1$ or 2. We claim that $c_{4k+3} = 1$. Let $c_{4k+3} = 2$. Then $c_{4k+2} = 0$. Consider

$$P_{4k+3} \times P_3 \setminus N[u_{4k+3}, v_{4k+3}, w_{4k+3}] = P_{4k+1} \times P_3.$$

Since $f(P_{4k+1} \times P_3, \gamma) = 0$ by Lemma 13, we see that $c_2 = 0$. This is a contradiction. So $c_{4k+3} = 1$. Now by Lemmas 6 and 9 we either have $c_3 = c_5 = \ldots = c_{4k+1} = 0$ or $c_4 = c_6 = \ldots = c_{4k+2} = 0$.

Case 1. $c_3 = c_5 = \ldots = c_{4k+1} = 0$. In this case it is easy to see that $\{w_1, v_4, w_4\} \subseteq S_1$. Moreover, since $c_5 = c_7 = 0$ we must have $c_6 = 2$. So $\sum_{i=1}^{6} c_i = 6$. Consider

$$P_{4k+3} \times P_3 \setminus N[\{u_i, v_i, w_i \mid 1 \le i \le 6\}] = P_{4(k-1)} \times P_3.$$

This forces S_1 to have at least 3k + 4 vertices which is a contradiction.

Case 2. $c_4 = c_6 = \ldots = c_{4k+2} = 0$. Since $c_{4k+3} = 1$ and $c_{4k+2} = 0$ we must have $v_{4k+3} \in S_1$. We also need to have $u_{4k+1}, w_{4k+1} \in S_1$ to dominate the vertices u_{4k+2} and w_{4k+2} . Now S_1 dominates v_{4k} only if $v_{4k-1} \in S_1$. One can prove that $c_{4k-1} = 1$. In a similar manner we can prove that $\{v_3\} \cup \{u_{4i+1}, v_{4i+3}, w_{4i+1} \mid 1 \le i \le k\} \subseteq S_1$. Now to dominate v_1 and v_2 we must have $v_1 \in S_1$. So $v_2 \in S_1$. This completes the proof.

Lemma 16.
$$f(P_{4k} \times P_3, \gamma) = 2.$$

Proof. It is easy to see that every vertex of $P_4 \times P_3$ is in at least two minimum dominating sets. So $f(P_4 \times P_3, \gamma) \ge 2$. For $K \ge 2$ we consider the following minimum dominating sets for $P_{4k} \times P_3$.

```
S_1
                                                     \{u_{4i+3}, v_{4i+1}, w_{4i+3} \mid 0 \le i \le k-1\} \cup \{v_{4k}\}
S_2
                                                     \{u_{4i+3}, v_{4i+1}, w_{4i+3} \mid 0 \le i \le k-2\} \cup \{v_{4k-i} \mid j=0,1,2,3\}
                                                    \{u_{4i+1}, v_{4i+3}, w_{4i+1} \mid 0 \le i \le k-1\} \cup \{v_{4k}\}
S_3
                       = \{u_{4i+1}, v_{4i+3}, w_{4i+1} \mid 0 \le i \le k-2\} \cup \{v_{4k-4}, v_{4k}, u_{4k-2}, w_{4k-2}\}
S_4
S_5
                                                     \{v_1, u_{4i+4}, v_{4i+2}, w_{4i+4} \mid 0 \le i \le k-2\} \cup \{v_{4k-2}, v_{4k-1}, v_{4k}\}
                                                  \{v_1, u_{4i+4}, v_{4i+2}, w_{4i+4} \mid 0 \le i \le k-2\} \cup \{v_{4k-2}, u_{4k-1}, w_{4k}\}
S_6
S_7 = \{v_1, u_{4i+2}, v_{4i+4}, w_{4i+2} \mid 0 \le i \le k-1\}
S_8 =
                                                   \{v_1, w_2, u_3, v_4\} \cup \{u_{4i+2}, v_{4i+4}, w_{4i+2} \mid 1 \leq i \leq k-1\}
S_9 =
                                                   \{v_1, u_2, w_3, v_4\} \cup \{u_{4i+2}, v_{4i+4}, w_{4i+2} \mid 1 \le i \le k-1\}
S'_{\cdot}
                                                   \{u_{4k+1-m} \mid u_m \in S_i\} \cup \{v_{4k+1-m} \mid v_m \in S_i\} \cup \{v_{4k+1-m} \mid v_{4k+1-m} \mid v_{4k
                                                    \{w_{4k+1-m} \mid w_m \in S_i\} \quad i = 1, 2, 3, \dots, 9.
```

Using these minimum dominating sets it is now straightforward to see that every vertex of $P_{4k} \times P_3$ is in at least two minimum dominating sets. So $f(P_{4k} \times P_3) \ge 2$. Now we prove $f(P_{4k} \times P_3, \gamma) = 2$. Consider the minimum dominating set

$$S = \{u_2, v_2, w_2, v_4\} \cup \{u_{4i+2}, v_{4i+4}, w_{4i+2} \mid 1 \le i \le k-1\}$$

in $P_{4k} \times P_3$. We show that $\{u_2, v_2\}$ is a forcing subset in S. Let S_1 be a minimum dominating set in $P_{4k} \times P_3$ containing $\{u_2, v_2\}$. As before, let c_i be the number of vertices of S_1 in the *i*th copy of P_3 . First note that v_1 , w_1 or w_2 is in S_1 otherwise w_1 is not dominated by S_1 . We show that $w_2 \in S_1$. Consider

$$P_{4k} \times P_3 \setminus N[u_2, v_2, w_2] = P_{4(k-1)+1} \times P_3.$$

Since $f(P_{4(k-1)+1} \times P_3, \gamma) = 0$ by Lemma 13, it follows that

$$S_2 = \{u_{4i+2}, v_{4i}, w_{4i+2} \mid 1 \le i \le k-1\} \cup \{v_{4k}\} \subseteq S_1.$$

Now the facts that $|S_1| = 4k + 1$ and $|S_2 \cup \{u_2, v_2\}| = 4k$ force $w_2 \in S_1$. Therefore $S_1 = S$. This completes the proof.

Now we state the Main Theorem of this section.

Theorem 17. For every integer $n \ge 1$ and $n \ne 3, 7$,

$$f(P_n \times P_3, \gamma) = \begin{cases} 0 & \text{if } n \equiv 1 \pmod{4} \\ 1 & \text{if } n \equiv 2 \pmod{4} \\ 1 & \text{if } n \equiv 3 \pmod{4} \\ 2 & \text{if } n \equiv 0 \pmod{4}. \end{cases}$$

Moreover, $f(P_3 \times P_3, \gamma) = f(P_7 \times P_3, \gamma) = 2$.

4. Forcing domination numbers for $C_n \times P_3$

Throughout this section S is a minimum dominating set in $C_n \times P_3$. So by Corollary 8 we have $|S| = \lceil \frac{3n}{4} \rceil$. We also assume that S has precisely c_i vertices in the *i*th copy of P_3 in $C_n \times P_3$ for i = 1, 2, ..., n.

Lemma 18. $c_i \neq 3 \text{ for } i \in \{1, 2, ..., n\}.$

Proof. Let $c_i = 3$ for some i. Consider the graph

$$C_n \times P_3 \setminus N[u_i, v_i, w_i] = P_{n-3} \times P_3.$$

By Corollary 7 we have

$$|S| \geq \lfloor \frac{3(n-3)+4}{4} \rfloor + 3$$

$$= \lfloor \frac{3n-5}{4} \rfloor + 3.$$

$$> \lceil \frac{3n}{4} \rceil.$$

But this is a contradiction by Corollary 8.

Lemma 19. There is no i in $\{1, 2, ..., n\}$ such that $c_i = c_{i+1} = 0$.

Proof. If $c_i = c_{i+1} = 0$ for some i then $c_{i-1} = 3$ which is a contradiction by Lemma 18.

Lemma 20. Let $n \equiv 0$ or $1 \pmod{4}$. Then there is no i in $\{1, 2, ..., n\}$ such that $c_i + c_{i+2} \geq 4$.

Proof. Let $c_i + c_{i+2} \ge 4$ for some i. Consider the graph

$$C_n \times P_3 \setminus N[\{u_j, v_j, w_j \mid j \in \{i-1, i, i+1, i+2, i+3\}\}] = P_{n-5} \times P_3.$$

By Corollary 7 we have

$$|S| \geq \lfloor \frac{3(n-5)+4}{4} \rfloor + 4$$

$$= \lfloor \frac{3n-11}{4} \rfloor + 4.$$

$$> \lceil \frac{3n}{4} \rceil \text{ since } n \equiv 0 \text{ or } 1 \pmod{4}.$$

But this is a contradiction by Corollary 8.

Lemma 21. $f(C_n \times P_3, \gamma) > 0$ for $n \ge 3$.

Proof. Let S_1 be a minimum dominating set for $C_n \times P_3$. define

$$S_2 = \{u_i \mid u_{i-1} \in S_1\} \cup \{v_i \mid v_{i-1} \in S_1\} \cup \{w_i \mid w_{i-1} \in S_1\}.$$

It is easy to see that $S_1 \neq S_2$ and S_2 is also a minimum dominating set for $C_n \times P_3$. So by Lemma 1 we have $f(C_n \times P_3, \gamma) > 0$.

We are now ready to determine the forcing number for $C_n \times P_3$.

Lemma 22.
$$f(C_{4k} \times P_3, \gamma) = 1$$
 for $k \ge 1$.

Proof. By Lemma 21 we have $f(C_{4k} \times P_3, \gamma) > 0$. Now consider the minimum dominating set $S = \{u_{4i+3}, v_{4i+1}, w_{4i+3} \mid 0 \leq i \leq k-1\}$. We prove that $\{v_1\}$ is a forcing subset in S. Let S_1 be a minimum dominating set in $C_{4k} \times P_3$ containing v_1 . Let c_i be the number of vertices of S_1 in the ith copy of P_3 . By Lemma 18 we have $c_1 \neq 3$. Let $c_1 = 2$ and without loss of generality let $\{u_1, v_1\} \in S_1$. Since $|S_1| = 3k$, by Lemmas 6 and 19 precisely 2k of the c_i s are zeros. So we must have $c_2 = c_4 = \ldots = c_{4k} = 0$. This forces $w_3 \in S_1$. Moreover, either $u_3 \in S_1$ or $v_3 \in S_1$, otherwise S_1 does not dominate u_3 . Now we have $c_1 + c_3 \geq 4$ which is a contradiction by Lemma 20. Therefore $c_1 = 1$. This forces $u_3, w_3, v_5 \in S_1$. Now by Lemma 20 we have $c_5 = 1$. Repeating this procedure leads to $S = S_1$. So S is the unique minimum dominating set containing $\{v_1\}$. This completes the proof. \Box

Lemma 23.
$$f(C_{4k+1} \times P_3, \gamma) = \begin{cases} 1 & \text{if } k = 1 \\ 2 & \text{if } k \ge 2 \end{cases}$$
.

Proof. First let k=1. By Lemma 21 we have $f(C_5 \times P_3, \gamma) > 0$. It is easy to see that $\{u_3\}$ is contained in the unique minimum dominating set $\{v_1, u_3, w_3, v_5\}$. So $f(C_5 \times P_3, \gamma) = 1$.

Now let $k \geq 2$. Consider the following minimum dominating sets.

$$S_i = \{v_i\} \cup \{u_{i+4j+3}, v_{i+4j+1}, w_{i+4j+3} \mid 0 \le j \le k-1\},\$$

for $i=1,2,\ldots,4k+1$. It is straightforward to see that every vertex of $C_{4k+1}\times P_3$ belongs to at least two of these sets. Therefore $f(C_{4k+1}\times P_3,\gamma)\geq 2$ by Corollary 2. Now we prove $\{v_1,v_2\}$ is a forcing subset in S_1 . Let S' be a minimum dominating set in $C_{4k+1}\times P_3$ containing v_1 and v_2 . Let c_i be the number of vertices of S' in the ith copy of P_3 . By Lemma 18 we have $c_i\neq 3$ for $i=1,2,\ldots,4k+1$. And by Lemmas 6 and 19 we obtain $c_3=c_5=\ldots=c_{4k+1}=0$. We claim that $c_1+c_2\leq 3$. Consider the graph

$$C_{4k+1} \times P_3 \setminus N[u_1, v_1, w_1, u_2, v_2, w_2] = P_{4(k-1)+1} \times P_3.$$

If $c_1+c_2\geq 4$ by Corollary 6 we see that $|S'|\geq 3k+2$ which is a contradiction by Corollary 8. So $c_1+c_2\leq 3$. Without loss of generality we can assume $c_2=1$. Now by Lemma 20 and the fact that S' is a minimum dominating set we see that $u_4, w_4\in S'$ and $c_4=2$. So $c_6=1$ by Lemma 20 and

 $v_6 \in S'$. Continuing this procedure leads to $c_{4i+2} = 1$ for $i = 0, 1, \ldots, k-1$ and $c_{4j} = 2$ for $j = 1, \ldots, k$. Moreover, $S \setminus \{v_1\} \subseteq S' \setminus \{v_1\}$. Now since |S| = |S'| and $v_1 \in S \cap S'$ we must have S = S'. This completes the proof.

Lemma 24. $f(C_{4k+2} \times P_3, \gamma) = 2$ for every $k \ge 1$.

Proof. First let k=1. It is straightforward to see that every vertex of $C_6 \times P_3$ is in at least two minimum dominating sets. So by Corollary 2 we have $f(C_6 \times P_3, \gamma) \geq 2$.

Now let $k \geq 2$. Consider the following minimum dominating sets.

$$S_i = \{v_i, v_{i+1}\} \cup \{u_{i+4(j+1)}, v_{i+4j+2}, w_{i+4(j+1)} \mid 0 \le j \le k-1\},\$$

for $i=1,2,\ldots,4k+2$. It is straightforward to see that every vertex of $C_{4k+2}\times P_3$ belongs to at least two S_i s. Therefore $f(C_{4k+2}\times P_3,\gamma)\geq 2$ by Corollary 2. Now we prove $\{v_1,v_3\}$ is a forcing subset in S_1 . Let S' be a minimum dominating set in $C_{4k+2}\times P_3$ containing v_1 and v_3 . Let c_i be the number of vertices of S' in the *i*th copy of P_3 . We claim that $c_2\neq 0$. Suppose that $c_2=0$. By Lemma 18 we have $c_1,c_3\neq 3$. So without loss of generality we may assume $\{v_1,v_3,u_1,w_3\}\subseteq S'$. Consider the graph

$$C_{4k+2} \times P_3 \setminus N[u_1, v_1, w_1, u_3, v_3, w_3] = P_{4(k-1)+1} \times P_3.$$

By Corollary 6 to cover the vertices of this graph we need at least 3k-2 vertices. Since |S'|=3k+2 this forces $c_4=0$. Now by Lemma 13 we have $f(P_{4(k-1)+1}\times P_3,\gamma)=0$. So $v_5\in S'$ and $c_5=1$. Now u_4 is not dominated by S' which is a contradiction. So we must have $c_2\neq 1$. Similarly, we cannot have $c_1+c_2+c_3\geq 4$. So $c_2=1$ and $v_2\in S'$. By Lemma 6 precisely either 2k or 2k+1 of the c_i s are zeros. By Lemma 19 and the fact that $c_1=c_2=c_3=1$ we must have $c_4=c_6=\ldots=c_{4k+2}=0$. Now to dominate the vertices of the 4th and (4k+2)th copies we must have $u_5, w_5, u_{4k+1}, w_{4k+1} \in S'$. If k=1 then we obtain S=S'. For $k\geq 2$ we consider

$$C_{4k+2} \times P_3 \setminus N[\{u_{4k+3-i}, v_{4k+3-i}, w_{4k+3-i}, u_j, v_j, w_j \mid 1 \le i \le 2, \ 1 \le j \le 5\}] = P_{4(k-2)+1} \times P_3.$$

Since $f(P_{4(k-2)+1} \times P_3, \gamma) = 0$ by Lemma 13, we see that $S' = S_1$. This completes the proof.

Lemma 25. $f(C_{4k+3} \times P_3, \gamma) = 2 \text{ for } k \ge 0.$

Proof. It is easy to see that every vertex of $C_3 \times P_3$ is in at least two minimum dominating sets. Moreover, $\{v_1, v_2\}$ is a forcing subset for the minimum dominating set $\{v_1, v_2, v_3\}$. So $f(C_3 \times P_3, \gamma) = 2$. Now let $k \ge 1$ and define the minimum dominating set

$$S_i = \{u_{i+4j+2}, v_{i+4j}, w_{i+4j+2} \mid 0 \le j \le k\},\$$

for $i=1,\ldots,4k+3$. One can easily show that each vertex of $C_{4k+3}\times P_3$ is in at least two S_i s. So $f(C_{4k+3}\times P_3,\gamma)\geq 2$ by Corollary 2. For k=1 it is easy to see that $\{u_1,u_2\}$ is a forcing subset in $S=\{u_1,u_2,w_3,u_5,v_5,w_7\}$. So $f(C_7\times P_3,\gamma)=2$. For $k\geq 2$ we prove $\{u_1,w_2\}$ is a forcing subset in the minimum dominating set

$$S = \{u_1, w_2, v_{4k+3}\} \cup \{u_{4i+5}, v_{4i+3}, w_{4i+5} \mid 0 \le i \le k-1\}.$$

Let S' be a minimum dominating set in $C_{4k+3} \times P_3$ containing u_1 and w_2 . Let c_i be the number of vertices of S' in the ith copy of P_3 . By Lemma 18 we have $c_i \neq 3$. Moreover, since S' is a minimum dominating set, by Lemmas 6 and 19 precisely either 2k or 2k+1 of the c_i s are zeros. First assume precisely 2k+1 of the c_i s are zeros. Then $c_3=c_5=\ldots=c_{4k+3}=0$ by Lemma 19. Obviously, $c_1+c_2\leq 3$ otherwise, S' has at least 3k+4 vertices which is a contradiction. We claim that $c_1+c_2\neq 3$. Let $c_1=1$ and $c_2=2$. Then $w_{4k+2}, v_{4k+2} \in S'$ and by 18 we have $c_{4k+2}=2$. This forces $c_{4k}=2$. Now consider

$$C_{4k+3} \times P_3 \setminus N[\{u_i, v_i, w_i \mid 1 \le i \le 2 \text{ or } 4k \le i \le 4k+3\}] = P_{4(k-2)+3} \times P_3.$$

Then we must have $|S'| \ge 3(k-2)+3+7=3k+4$ which is a contradiction. Similarly, the Case $c_1=2$ and $c_2=1$ leads to a contradiction. So $c_1=c_2=1$. This forces $c_4=c_6=c_{4k}=c_{4k+2}=2$. Hence, $|S|\ge 10$ if k=2 and $|S|\ge 3k+4$ if $k\ge 3$. This is a contradiction. Therefore precisely 2k of the c_i s are zeros. Note that in this case there is no minimal odd component in S' by Lemma 6. Consider two cases.

Case 1. $c_3 = 0$. Then $c_5 = 0$ otherwise S' has a minimal odd component. Now we consider two subcases.

Subcase 1.1 $c_{4k+3} \neq 0$. Obviously $c_1 + c_2 + c_{4k+3} \leq 4$ otherwise S' has at least 3k + 4 vertices which is impossible. Let $c_1 + c_2 + c_{4k+3} = 4$. We claim that $c_2 = 2$. If $c_2 = 1$ then $c_4 = 2$. Consider

$$C_{4k+3} \times P_3 \setminus N[\{u_i, v_i, w_i \mid = 1, 2, 3, 4, 4k + 3\}] = P_{4(k-1)} \times P_3.$$

By Corollary 6 to cover the vertices of this graph we need at least 3k-2 vertices. So we must have $|S'| \ge 3k+4$ which is a contradiction. Therefore $c_2=2$ and $c_{4k+3}=1$. In a similar fashion it is proved that $c_{4k+2}=1$. This forces $c_3=c_5=\ldots=c_{4k+1}=0$. Now to dominate the vertices of the (4k+1)th copy of P_3 we must have $c_{4k}=2$. Consider

 $C_{4k+3} \times P_3 \setminus N[\{u_i, v_i, w_i \mid 1 \le i \le 2 \text{ or } 4k \le i \le 4k+3\}] = P_{4(k-2)+3} \times P_3.$ Then $|S'| \ge 3(k-2)+3+7=3k+4$ which is a contradiction. Therefore $c_1+c_2+c_{4k+3}=3$. So $c_1=c_2=c_{4k+3}=1$. We claim that $c_{4k+2}=0$. If $c_{4k+2} \ne 0$ then $c_3=c_5=\ldots=c_{4k+1}=0$. This forces $c_4=c_6=2$ and $c_{4k}+c_{4k+2}\ge 3$. Now it is easy to see that $|S'| \ge 3k+4$ which is a contradiction. So $c_{4k+2}=0$. Since S' has no minimal odd component we obtain $c_{4k}=0$. It is now easy to see that these conditions lead to

 $|S'| \ge 10$ when k=2 which is impossible. Now assume $k \ge 3$. Since $c_3=c_5=c_{4k}=c_{4k+2}=0$ and $c_2=c_{4k+3}=1$ we must have $c_4=c_{4k+1}=2$ and $c_6,c_{4k-1}\ne 0$. Consider

 $C_{4k+3} \times P_3 \setminus N[\{u_i, v_i, w_i \mid 1 \le i \le 4 \text{ or } 4k+1 \le i \le 4k+3\}] = P_{4(k-2)+2} \times P_3.$

By Lemma 6 and Corollary 7 it is necessary that 2(k-2) copies of P_3 in $P_{4(k-2)+2} \times P_3$ be zeros. Therefore we must have $c_7 = c_9 = \ldots = c_{4k-3} = 0$ or $c_8 = c_{10} = \ldots = c_{4k-2} = 0$. First let $c_7 = c_9 = \ldots = c_{4k-3} = 0$. Then we must have $c_4 = c_6 = c_{4k+1} = 2$. Consider

 $C_{4k+3} \times P_3 \setminus N[\{u_i, v_i, w_i \mid 1 \le i \le 6 \text{ or } 4k+1 \le i \le 4k+3\}] = P_{4(k-2)} \times P_3.$

By Corollary 7 we need at least 3k-5 vertices to cover all the vertices of this graph. So $|S'| \ge 3k+4$ which is a contradiction. Secondly, let $c_8 = c_{10} = \ldots = c_{4k-2} = 0$. Then we have $c_4 = c_{4k+1} = 2$ and $c_6 \ge 1$. Consider

 $C_{4k+3} \times P_3 \setminus N[\{u_i, v_i, w_i \mid 1 \le i \le 5 \text{ or } 4k+1 \le i \le 4k+3\}] = P_{4(k-2)+1} \times P_3$ and apply Lemma 13 to obtain $v_7 \in S'$. This implies $c_6 + c_7 \ge 3$. So $|S'| \ge 3k + 4$ which is impossible.

Subcase 1.2 $c_{4k+3}=0$. Then $c_{4k+1}=0$, otherwise S' has a minimal odd component. Obviously $c_1+c_2\leq 3$, otherwise S' has at least 3k+4 elements which is impossible. We claim that $c_1=c_2=1$. Let $c_1=1$ and $c_2=2$. Then $v_{4k+2}, w_{4k+2}\in S'$. Consider

$$C_{4k+3} \times P_3 \setminus N[\{u_i, v_i, w_i \mid i = 1, 2, 4k + 2, 4k + 3\}] = P_{4(k-1)+1} \times P_3.$$

Let $z \in \{u_2, v_2\}$. By Corollary 7 we see that $S' \setminus \{u_1, w_2, z, v_{4k+2}, w_{4k+2}\}$ is a minimum dominating set for this graph. So $v_4, v_{4k} \in S'$ and $c_4 = c_{4k} = 1$ by Lemma 13. But in this case the vertex u_{4k+1} is not covered by S' which is a contradiction. If $c_1 = 2$ and $c_2 = 1$ then $c_4 = 2$. Now consider

$$C_{4k+3} \times P_3 \setminus N[\{u_i, v_i, w_i \mid i = 1, 2, 3, 4\}] = P_{4(k-1)+1} \times P_3$$

and proceed as above to show that S' cannot be a dominating set which is a contradiction. So $c_1 = c_2 = 1$. This forces $u_4, v_4, v_{4k+2}, w_{4k+2} \in S'$. Consider

 $C_{4k+3}\times P_3\setminus N[\{u_i,v_i,w_i\mid i=1,2,3,4,4k+2,4k+3\}]=P_{4(k-2)+3}\times P_3.$

By Corollary 7 we see that $S' \setminus \{u_1, w_2, u_4, v_4, v_{4k+2}, w_{4k+2}\}$ is a minimum dominating set for this graph. So by Lemma 11 we have $c_6 \neq 0$ and $c_{4k} \neq 0$. If $c_6 + c_{4k} \geq 4$ then $|S'| \geq 3k + 4$ which is not possible. So $c_6 + c_{4k} \leq 3$. Let $c_6 = 1$. Then $w_6 \in S'$ and so $u_7 \in S'$. Now consider

 $C_{4k+3} \times P_3 \setminus N[\{u_i, v_i, w_i \mid i=1, 2, 3, 4, 4k+2, 4k+3\}] = P_{4(k-2)+3} \times P_3.$

By Lemma 15, $\{u_7\}$ is a forcing subset for $S'\setminus\{u_1, w_2, u_4, v_4, v_{4k+2}, w_{4k+2}\}$. Moreover, $v_{4k}\in S'$ and $c_{4k}=1$. Now we see that vertex u_{4k+1} is not

covered by S' which is a contradiction. Similarly, the case $c_{4k} = 1$ leads to a contradiction. This completes Case 1.

Case 2. $c_3 \neq 0$. A method similar to that described in Case 1 shows that $c_{4k+3} \neq 0$. Now since precisely 2k of the c_i s are zeros we must have $c_4 = c_6 = \ldots = c_{4k+2} = 0$. If $c_1 + c_2 + c_3 + c_{4k+3} \geq 6$ then $|S'| \geq 3k + 4$ which is not possible. If $c_1 + c_2 + c_3 + c_{4k+3} = 5$ we consider

$$C_{4k+3} \times P_3 \setminus N[\{u_i, v_i, w_i \mid i = 1, 2, 3, 4k + 3\}] = P_{4(k-1)+1} \times P_3$$

and apply Lemma 13 to obtain $c_5 = c_{4k+1} = 1$. But this forces $c_3 = c_{4k+3} = 2$ and so $c_1 + c_2 + c_3 + c_{4k+3} \ge 6$ which is not possible. So $c_1 = c_2 = c_3 = c_{4k+3} = 1$. Now if $u_3 \in S'$ then since $c_4 = 0$ we must have $v_5, w_5 \in S'$ and so $c_7 = 2$. Now this implies $|S'| \ge 3k + 4$ which is impossible. So $v_3 \in S'$. Similarly, $v_{4k+3} \in S'$. Now since $v_3 \in S'$ and $c_4 = 0$ we have $\{u_5, w_5\} \in S'$. So $v_5 \notin S'$ since $c_5 \le 2$ by Lemma 18. Therefore $v_7 \in S'$ since $c_6 = 0$. It is straightforward to see that $c_7 = 1$. Now one can apply a simple induction argument to prove that S' = S. This completes the proof.

Now we state the Main Theorem of this section.

Theorem 26. For every integer $n \geq 3$ and $n \neq 5$,

$$f(C_n \times P_3, \gamma) = \begin{cases} 2 & \text{if } n \equiv 1 \pmod{4} \\ 2 & \text{if } n \equiv 2 \pmod{4} \\ 2 & \text{if } n \equiv 3 \pmod{4} \\ 1 & \text{if } n \equiv 0 \pmod{4}. \end{cases}$$

Moreover, $f(C_5 \times P_3, \gamma) = 1$.

Acknowledgement. The authors would like to thank Professor E.S. Mahmoodian for supplying the references for this research.

REFERENCES

- G. Chartrand, H. Gavlas, R. C. Vandell and F. Harary, The forcing domination number of a graph, Journal of Combinatorial Mathematics and Combinatorial Computing 25 (1997), 161-174.
- [2] T. Y. Chang, W.E. Clark and E. O. Hare, Domination numbers of complete grid graphs, I, Ars Combinatoria 38 (1994), 97-111.
- [3] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
- [4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs. Marcel Dekker, Inc., New York, 1998.