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Abstract

In Algebraic Graph Theory, Biggs{2] gives a method
for finding the chromatic polynomial of any connected
graph by computing the Tutte polynomial. It is used by
Biggs(2] to compute the chromatic polynomial of Peter-
son’s graph. In 1972 Sands[4] developed a computer al-
gorithm using matrix operations on the incidence matrix
to compute the Tutte Polynomial. In [1], Anthony finds
the worst-case time-complexity of computing the Tutte
Polynomial. This paper shows a method using group-
theoretical properties to compute the Tutte polynomial
for Cayley graphs which improves the time-complexity.

1 Introduction

Suppose G is a finite group, and S C G is a symmetric set of
generators for the group. We define I' = I'(G, S) to be a Cayley
Graph if for vertices g,h € G the edge (g,h) € T if g"'h € S.
We wish to find the chromatic polynomial of I' by computing
the Tutte polynomial. We define the chromatic polynomial

C(T,u) =Y m(D)u,

where m,(I') is the number of distinct color partitions into
r color classes of VT, the vertex set of I and u, is the complex
number u(u — 1)(u — 2)...(u — 7 + 1).
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Now we can, with the aid of a computer, find the chromatic
polynomial using the Tutte polynomial. Biggs[2] shows the de-
velopment leading to the result. To understand it however we
need some more definitions which will be shown in section 2.
Next we will see Biggs[2] contructions of the basic circuits in
section 3. Section 4 will show the construction of the Tutte
polynomial for Cayley graphs. Section 5 will show the time
complexity analysis.

2 Definitions and constructions for the
Tutte Polynomial

"This paper assumes readers know the definitions of Cayley graph,
circuit, tree, spanning tree and directed graph. We will use V
as an abbreviation of VT, the vertex set of I', and E as an
abbreviation of ET', the edge set of T.

An incidence matrix, D, of a directed graph I where |E| = m
and |V| = n is an n X m matrix where

Dli,j] = —1if v; € V is the negative end of edge j
JI= 1if v; € V is the positive end of edge j

IfI'=(V,E) and if V = VU V;, where Vi NV, =0, then a
cutset of I is the set of edges connecting V; and V5.

We call the circuit formed by adding the edge b € ET — ET,
to the spanning tree T, cir(T,b). We call the cutset of a € ET
with respect to the spanning tree T, cut(T,a). We notice that
forb¢ ET,a € ET,

a € cir(T,b) © b € cut(T,a).

If a connected graph I" has n vertices, m edges and 1 compo-
nent, the rank, (I'), is n — 1 and the corank, s(T'), ism—n+1.
If S C T we denote by < S > the edge-induced subgraph S of
r.
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We now impose some total ordering < on the edges of I'. An
edge is externally (internally) active with respect to I if it is the
first edge, with respect to < of the fundamental cycle (cutset)
containing it. The number of edges externally (internally) active
to T is the external (internal) activity of < T >. Denote by
Te(T?) the set of edges externally (internally) active to < T >.

Define t; ; to be the number of spanning trees with internal
activity 7 and external activity j. The Tutte polynomial of I',
with respect to < is the two-variable polynomial

T(D,<57,) = D tia'y
The Tutte polynomial is related to the chromatic polynomial
and we obtain

Theorem 2.1 (Biggs [2]) If T'is connected with n vertices, then

n-1
OT;u) = (1" u Y (1 - u)

where t;g 15 the number of spanning trees with internal activ-
ity © and external activity 0. :

For the development behind this result and the proof of it,
see Biggs|2)].

Now, we see to compute the Tutte polynomial we must com-
pute the internal and external activities of I'. To do so, we need
the circuits and cutsets of the graph. The next section shows
Biggs([2] method for doing so.

3 Biggs[2] Construction of Basic Cir-
cuits
If T has n vertices and m edges where the edges are ordered so

that ey, e, ..,e,_1 are the edges of a spanning tree T', we can
partition the incidence matrix of I'by
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_{ Dr Dy
p=(7 0 ™)
where Dr is the incidence matrix of the spanning tree T and
d, is the last row of D.

Let C' denote the matrix whose columns are the vectors rep-
resenting the elements of the circuit subspace of I. Then C can

be written as
Cr
C =
( Im—n+1 )

Since every column represents a circuit and thus belongs to
the kernel of D, we have DC = 0. Thus

Cr = —DEIDN

Similarly, K whose columns represent the elements of the
cutset subspace can be written as

— In—l
<= (%)

Since every column of K belongs to the orthogonal com-
plement of the circuit-subspace, we have CKT = 0, that is
Cr + K% =0. Thus

Kr = (D7'Dy)t

We now have a method for computing the chromatic num-
ber for a graph. However, this method involved many matrix
operations of large matrices for graphs with many vertices and
edges. The next section shows a way to cut down on the matrix
‘operations by using properties of the Cayley graphs.
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4 Finding the Tutte Polynomial for
Cayley Graphs

Lemma 4.1 If in a Cayley graph, T, we define a mapping

7 : VI — VT, where n(g) = gk, for g,k € VT, k fixed
then ™ maps spanning trees to spanning trees.

Proof.

By the properties of graph isomorphism, we need only show
that 7 is a graph isomorphism. We first see that this is a per-
mutation of the vertex set since gk =gk & g =7. Elementary
group theory properties tell us that for s € §

(g,h) € ET & g=sh &

gk = shk & (gk, hk) € ET

From now on we will call the circuits of a particular span-
ning tree, its associated circuits. We will call the cutsets of a
particular spanning tree the associated cutsets .

Lemma 4.2 7 maps the associated circuits of a spanning tree,
T, to the associated circuits of the spanning tree, m(T).

Proof.
Assume T has an associated circuit of length I. Let (g1, g2),
(92’ 93)7 ) (gl—la gl)
be the [ — 1 edges of this circuit in ET and then (g;, 1) is the

remaining edge which is not in ET’. Now let 7(g) = gk. Then
(g1,91) € ET but (g1,91) ¢ ET. For s € S,

g1 =501 & gik = sqik
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So (m(q1),(g1)) € ET but (n(g1), 7(g1)) ¢ 7(E(T)) by Lemma
4.1. So (gi,91) is an edge of an associated circuit in T and

(m(91),m(g1)) is an edge of an associated circuit in 7(T). To
complete the proof, we need see that for 1 < i <!

(9i+i, 9:) € T © (i1, 7(gi)) € 7(T)
which is true by the Lemma 4.1.

Lemma 4.3 7 maps the associated cutsets of a spanning tree,
T, to the associated cutsets of the spanning tree, n(T)

Proof.
We need to show that for

e¢T,feT,n(e) ¢ n(T),n(f) € n(T)
e € cut(T, f) & (e) € cut(n(T), n(f)).

ec€cut(T,f) & fecir(T,e) &
7(f) € cir(n(T), n(e)) < n(e) € cut(n(T), n(f)).

Lemma 4.4 We can find at most |V (T)| — 1 isomorphic span-
ning trees by the m mappings.

Proof.

This is clear since there are |V (I')| — 1 non-identity elements
in G.

We will define the canonical spanning trees as the spanning
trees obtained from the original spanning trees by replacing
edges in the cutsets. We will call the spanning trees obtained
by m mappings, mapped.

Theorem 4.5 In a Cayley graph, to use the Tutte polynomial
to color the vertices, we need only do matriz operations to find
associated circuits and cutsets of canonical spanning trees. The
others we can get by mapping.
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Proof.
This result follows from Lemmas 4.1,4.2,4.3 and 4.4.

5 Analysis

The major change is how the algorithm finds the circuit and
cutset spaces for all the spanning trees. Without the edge map-
pings, it does a matrix inverse of D and then a matrix multiply
by Dy. Dy is of dimension n—1 xn—1 and Dy is of dimension
n—1xm—(n—1). To find the circuit subspace the product
is negated and to find the cutset subspace it is transposed. The
change is to instead map edges from one spanning tree to an-
other and likewise map edges to find the circuits. So there is
a decrease by a factor of n — 1 in the number of computations
on spanning trees. Also there is still the time to compute the
internal and external activities.

It would seem that this time savings is offset by the mapping
of vertices to vertices. Since there are n vertices, we need to
calculate the product of each vertex by each other for a total of
n? operations. However this computation was already performed
when computing the edge set of the graph since an edge is in
the Cayley Graph if for g,h € G,g"'h € S.

Anthony[l] shows that the original algorithm can be per-
formed in worst-case c( n 1) n?m operations for ¢ some constant.
He shows that the time to find a spanning tree can be done in
2(n — 1)3 operations. The time to compute a fundamental cycle
associated with a spanning tree can be done in (n—1)%(m—n+1)
operations. And the time to find the external and internal ac-
tivities can be done in 4(m —n + 1)(n — 1) operatlons

We notice that (m—n+1)(n-1) < (n—-1)m < —m Since
the change shown in this paper affects finding spanning trees
and cycles, that part of the complexity in Anthony’s argument
is decreased by a factor of n — 1. By the above 1nequa11ty and
considering a constant ¢, the time-complexity is c(,™, ) 2
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