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ABSTRACT. For any h € N, agraph G = (V, E) is said to be h-magic
if there exists a labeling ! : E(G) = Zj, — {0} such that the induced
vertex set labeling [T : V(G) - Z; defined by

I*v) = z Huw)
uv€EE(G)

is a constant map. When this constant is 0 we call G a zero-sum
h-magic graph. The null set of G is the set of all natural numbers
h € N for which G admits a zero-sum h-magic labeling. In this
paper we will identify several classes of zero sum magic graphs and
will determine their null sets.
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1. INTRODUCTION

For an abelian group A, written additively, any mapping ! : E(G) —
A — {0} is called a labeling. Given a labeling on the edge set of G one can
introduce a vertex set labeling [*:V(G) = A by

Fo)y= Y luw).
uwv€E(G)
A graph G is said to be A-magic if there is a labeling ! : E(G) = A - {0}
such that for each vertex v, the sum of the labels of the edges incident
with v are all equal to the same constant; that is, [*(v) = ¢ for some
fixed ¢ € A. In general, a graph G may admit more than one labeling to
become A-magic; for example, if 4| > 2 and | : E(G) — A — {0} is a magic
labeling of G' with sum ¢, then A : E(G) = A — {0}, the inverse labeling of
I, defined by A(uv) = —I(uwv) will provide another magic labeling of G with
sum —c. A graph G = (V, E) is called fully magic if it is A-magic for every
abelian group A. For example, every regular graph is fully magic. A graph
G = (V, E) is called non-magic if for every abelian group A, the graph is not
A-magic. The most obvious example of a non-magic graph is P, (n > 3),

ARS COMBINATORIA 82(2007), pp. 41-53



the path of order n. As a result, any graph with a path pendant of length
n > 3 would be non-magic. Here is another example of a non-magic graph:
Consider the graph H Figure 1. Given any abelian group A, a typical
magic labeling of H is illustrated in that figure. Since {*(u) = z # 0 and
I*(v) =0, H is not A-magic. This fact can be generalized as follows:

Lemma 1.1. Every even cycle C, with 2k + 1(< n) consecutive pendants
is non-magic.

Lemma 1.2. Every odd cycle C, with 2k (< n) consecutive pendants is
non-magic.

FIGURE 1. An example of non-magic graph.

Certain classes of non-magic graphs are presented in [1].
The original concept of A-magic graph is due to J. Sedlacek [11, 12], who
defined it to be a graph with a real-valued edge labeling such that

(1) distinct edges have distinct nonnegative labels; and
(2) the sum of the labels of the edges incident to a particular vertex is
the same for all vertices.

Jenzy and Trenkler (4] proved that a graph G is magic if and only if every
edge of G is contained in a (1-2)-factor. Z-magic graphs were considered
by Stanley [13, 14], who pointed out that the theory of magic labeling can
be put into the more general context of linear homogeneous diophantine
equations. Recently, there has been considerable research articles in graph
labeling, interested readers are directed to [3, 15]. For convenience, the
notation 1-magic will be used to indicate Z-magic and Z ,-magic graphs
will be referred to as h-magic graphs. Clearly, if a graph is h-magic, it is
not necessarily k-magic (h # k).

Definition 1.3. For a given graph G the set of all positive integers h for
which G is h-magic is called the integer-magic spectrum of G and is denoted
by IM(G).

Since any regular graph is fully magic, then it is h-magic for all positive
integers h > 2; therefore, IM(G) = IN. On the other hand, the graph
H, Figure 1, is non-magic, hence IM(H) = . The integer-magic spectra
of certain classes of graphs resulted by the amalgamation of cycles and
stars have already been identified [5}, and in [6] the integer-magic spectra
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of the trees of diameter at most four have been completely characterized.
Also, the integer-magic spectra of some other graphs have been studied in
[7, 8,9, 10).

FIGURE 2. The graph K(2,3) is h-magic (Vh > 3).

Definition 1.4. An h-magic graph G is said to be h-zero-sum (or just zero-
sum) if there is a magic labeling of G in Z ), that induces an edge labeling
with sum 0. The graph G is said to be strictly zero-sum if any magic labeling
of G induces 0 sum.

Clearly, a graph that has an edge pendant is not zero-sum. Here is an
example of strictly zero-sum graph:

Lemma 1.5. The complete bipartite graph K(2,3) is strictly zero-sum
magic graph.

Proof. Since the degree set of K(2,3) is {2,3}, it is not 2-magic. On the
other hand, the labeling presented in Figure 2 indicates that the integer-
magic spectrum of K(2,3) is IN — {2} with sum being 0. Now we wish to
show that O is the only possible sum. Consider an arbitrary labeling of
K(2,3), as illustrated in Figure 3.

FIGURE 3. An arbitrary labeling of K(2,3).

For K(2,3) to be h-magic, we require that

a+b =e+f (modh);
a+c+e =a+b (mod h);
b+d+f =a+b (mod h).

If we add these equations, we get ¢c+d = 0. Hence, the induced sum cannot
be nonzero. (]
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Definition 1.6. The null set of a graph G, denoted by N(G), is the set of
all natural numbers h € IN such that G is h-magic and admits a zero-sum
labeling in Zj,.

One can introduce a number of operations among zero-sum graphs which
produce magic graphs. Frucht and Harary [2] introduced the corona of two
G and H, denoted by G@©H, to be the graph with base G such that each
vertex v € V(G) is joined to all vertices of a separate copy of H.

Observation 1.7. If G has zero-sum in Z, then GOK, is h-magic.

A graph G with a fixed vertex u € V(G) will be denoted by the order pair
(G, u). Given two ordered pair (G,u) and (H,v), one can construct another
graph by linking these two graphs through identifying the vertices u and
v. We will use the notation (G, u) ¢ (H,v) for this constrauction or simply
G o H if there is no ambiguity about the choices of u and v.

Definition 1.8. Givenn graphs G;i =1,2--- ,n, the chain G10G30: - -0G,
is the graph in which one of the vertices of G; is identified with one of the
vertices of Giy1. If G; = G, we use the notation oG™ for the n-link chain
all of whose links are G.

Observation 1.9. If graphs G; have zero sum, so does the chain G 0G2 ¢
.-« 0 Gp, hence it is a magic graph. Moreover, if G; = G, then the null set
of the chain oG™ is the same as N(G).

FIGURE 4. A 7-link chain whose links are K4

With the notation in 1.8, if we further identify one of the vertices of G,
by another vertex of G;, the resulting graph is a necklace. Similarly, all
the bids of this necklace can be the same graph G, for which we have the
following observation:

Observation 1.10. If the graphs G; have zero sum, so does the necklace
formed by these graphs. Moreover, if G; = G, then the null set of this
necklace is the same as N(G).

These are just a few operations among the graphs that preserve the magic
property, when the graphs are zero-sum. In magic labeling of graphs, know-
ing the components of a graph and the null sets of the components will be
extremely helpful. For example, consider the graph G illustrated in Fig-
ure 5. This graph is constructed by five copies of Ky4. In the next section,



FIGURE 5. Find the integer-magic spectrum of this graph!!!

(theorem 2.1), it is shown that the null set of Ky is IV — {2}. With this in-
formation and the fact that the applied construction preserves the zero-sum
property, one can easily see that N(G) = IM(G) = IN — {2}.

In the following sections the null sets of a few well known classes of graphs
will be characterized.

2. NuLL SETS oF COMPLETE GRAPHS

Complete graphs being regular are fully magic, hence their integer-magic
spectrum is IN. In this section we will determine the null sets of these
graphs. Note that K3 = C; and N(K3) = 2IN. In what follows we will
assume that n > 4.

N if n is odd;

Theorem 2.1. Ifn > 4, then N(K,) = { N —{2} ifniseven

Proof. Let uj, ua, --- ,uy be the vertices of K, and assume that they are
arranged counterclockwise around a circle. If n is even, then deg(u;) is
odd and K, cannot have zero sum in Z,. Also, with the following con-
vention, we will use u; as one of the vertices even if j # 1,2,---,n : Let
u-—{ uj—n ifj>n;
7 Uj4n if] < 0.
lowing five cases, in each case we will introduce an appropriate labeling
l: E(K,) > Z3 with sum 0.
Case 1. n is odd and n = 4p + 1. In this case, labeling of the edges are
done by

To prove the theorem, we will consider the fol-

v 1 i j=itrQ<r<p)y
Huiuj) _{ —1 otherwise.

Since the deg(u;) = n — 1 = 4p, there are 4p edges that are incident with
vertex u;, half of which are labeled 1 and the other half —1. Therefore,
I"(y;)=0foralli=1,2,,--- ,n.
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Case 2. n is odd and n = 4p + 3. In this case, we label the edges by

2 if j=i+l;

l(uiuj) = 1 if j=i+r (2<r<p);
-1 otherwise.

Since the deg(u;) = n—1 = 4p+2, there are 4p+ 2 edges incident with this

vertex, two edges are labeled 2, 2p—2 edges are labeled 1, and the remaining

2p + 2 edges are labeled —1. Therefore, I*(u;) =0 forall i = 1,2,,--- ,n.

This labeling is illustrated in table (2.1).

Uy U2 U3 U4 Us Us U7
Uy *x 2 -1 -1 -1 -1 2
Uus 2 * 2 -1 -1 -1 -1
u3f{—-1 2 *x 2 -1 -1 -1
ug [ -1 -1 2 = 2 -1 -1
us | -1 -1 -1 2 x 2 -1
u | -1 -1 -1 -1 2 * 2
Uy 2 -1 -1 -1 -1 2 *

(2.1)

Case 3. n is even and n = 6p + 4. In this case, we label the edges by

2 if j—i=3p+2;
luu;) =< 2 if j=i+r (1<r<p);
—1 otherwise.

Note that u;u; (j —i = 3p+ 2) are the opposite vertices, uu; (j =i +7)
are on the left of u;, and u;u; (j = i —r) are on the right of u;. Since the
deg(u;) =n — 1= 6p+ 3, there are 6p + 3 edges incident with this vertex.
We label 2p+1 of them by 2 (opposite, p on the left, and p on the right) and
the remaining 4p + 2 by —1. Therefore, I*(u;) =0foralli =1,2,,- - ,n.
Case 4. n is even and n = 6p + 2. In this case, we label the edges by

2 if j-i=3p+2

2 if j=ixr(2<r<p)
1 if j=i+];

—1 otherwise.

l(uiu;) =

Since the deg(u;) = n—1 = 6p+ 1, there are 6p+ 1 edges incident with this
vertex. We label 2p — 1 of them by 2 (opposite, p — 1 on the left, and p—1
on the right), two edges by 1 (immediate left and right), and the remaining
4p by —1. Therefore, i*(u;) =0 foralli=1,2,,---,n.

Case 5. n is even and n = 6p. In this case, we label the edges by
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2 if j-i=3p+2;

2 fj=ixr(2<r<p)
1 if j=i+1(@E=2r-1)
—1 otherwise.

) (u,-uj) =

Since the deg(u;) = n — 1 = 6p — 1, there are 6p — 1 edges incident with
this vertex. We label 2p — 1 of them by 2 (opposite, p — 1 on the left, and
p—1 on the right), one edges by 1, and the remaining 4p by —1. Therefore,
I*(u;) =0foralli =1,2,,--- ,n. This labeling is illustrated in table (2.2).

u Uy U3 U4 Us Ug
U1 * 1 -1 2 -1 -1
U 1 *x =1 -1 2 -1
(2.2) us -1 =1 % 1 -1 2
Ugq 2 -1 1 * —1
Us -1 2 -1 -1 *
w -1 -1 2 -1 1

* P~ N

3. NULL SETS oF COMPLETE BIPARTITE GRAPHS
Theorem 3.1. Let m,n > 2. Then

_ [ N if m+n is even;
N(K(m,n))—{ N -{2} if m+n isodd

Proof. Let S = {u1,ug,-+ ,um} and T = {v;,v2,-- ,v,} be the two par-
tite sets. In labeling of edges u;v;, with elements of Z, (h > 3), we will
consider three cases:

Case I. m, n are both even. We label the edges by I(u;v;) = (—1)*4. This
will result in I+ = 0.

Case II. m is even and n is odd. We label the edges by

2(-1) if j=1
Wuivj) = (1) if j=2,3
(-1)*+9 otherwise

This labeling is illustrated in table (3.1).
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n V2 V3 V4 ... Vn

uy 2 -1 -1(-1 ... 1

Ug -2 1 1 1 ... -1

u3 2 -1 -1{-1 ... 1

(3.1) ug -2 1 1| 1 ... =1
Um—1 2 -1 -1(-1 ... 1

Um -2 1 1 1 ... -1

Case III. m, n are both odd. We label the edges by using the following
table (8):

Vi V2 VY3 | Vg U5 R
Uy 2 -1 -1 2 -2 oo =2
up | =1 2 -1]-1 1 1
ug [-1 -1 2|-1 1 1
(3'2) U4 2 -1 -1

Us -2 1 1
. . . . (—l)i"'j

Um 2 -1 -1

Finally, we observe that if m,n have different parity, the graph would not
be 2-magic. a

4. NuLL SETS OF CYCLE RELATED GRAPHS

There are different classes of cycle related graphs that have been studied
for variety of labeling purposes. J. Gallian [3] has a nice collection of such
graphs. In this section, the null sets of some of the cycle related graphs are
investigated. First, one useful observation:

Observation 4.1. In any magic labeling of of a cycle the edges should
alternatively be labeled the same elements of the group.

Proof. Let u;, ua, us, and u4 be the four consecutive vertices of a cy-
cle. The requirement of l(ujuz) + l(ugus) = l(uous) + {(usu,) implies that
l(uyug) = l{uszug). ]

Since a cycle is a 2-regular graph, it is fully magic. Therefore, its integer-
magic spectrum is IN. For the null-set of C,, we have the following theorem:

N if n is even;

Theorem 4.2. N(C,) = { 2N ifn is odd .
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Proof. If n is even, then there are even number of edges and we label every
other edge by 1 and —1. If n is odd, then in any magic labeling of Cy, all
the edges are labeled the same element of € Zj. As a result, for Cogyq
to be zero-sum, one needs 2z = 0 (mod k) or 2|h. On the other hand, if
h = 2r, then the choice of z = r will result to the zero-sum magic labeling
of 02k+1 . 0O

A eycles with a Py chord is a cycle with the path P; joining two noncon-
secutive vertices of the cycle. Since the degree set of these graphs is {2, 3},
they are not 2-magic. Based on Observation 4.1, it is enough to consider
the cases when k£ = 2,3. The chord P; splits C,, into two subcycles. De-
pending on the number of edges of these subcycles, we will have different
results for the null set. The next lemma is about cycles with a P, chord:

Lemma 4.3. Let G, be the cycle Cn with a P, chord. Then
_ | IN—{2}  both subcycles are even;
N(Gno) = { 2IN — {2} otherwise .

Proof. Since the degree set of Gy, 2 is {2, 3}, the graph is not 2-magic. Now
based on the observation 4.1, it is enough to consider C3 and Cj as the two
subcycles.

1 1% 1 b ¢ a
- - - I z+b
1[ 1 I 1 11 z2+a b Iz a I

FIGURE 6. G, consists of two even subcycles.

Case I. Both subcycles are even. The labeling illustrated in Figure 6,
proves that the integer-magic spectrum of G, 2 is the same as its null set;
tha.t is, N(Gn,2) = IM(Gn,,z) = N - {2}.

[+ b z‘\’ 0 b 1:“'& -1
d i a %y a <7 1
FIGURE 7. G, 2 consists of two odd subcycles.

Case II. Both subcycles are odd. The typical labeling of Gp 2 in Zj is
illustrated in Figure 7. The requirement a+2+d = ¢c+d and b+2+c=c+d
imply that ¢c = a+ 2 and d = b+ 2. Also, a + b = ¢ + d will result to
2z = 0 (mod h) or 2|h. On the other hand, if h = 2r, then the choice
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of z =17, a =1, and b = -1 provides a zero sum result. Therefore,
IM(Gpn2) = N(Gn2) =2N - {2}.

Case III. Subcycles have different parities. The typical labeling of G, 2 in
Z, is illustrated in Figure 8. The condition a + = + z = a + y + 2 implies
z = y. Also, the requirements a + 2+ = 2z will result to 2 = z — a
and b = 2z — a. Therefore, given z € Z, — {0}, we need another nonzero
element @ # z, 2z, hence h > 4. Therefore, the integer-magic spectrum of
such graphs would be IV — {2, 3}, while the null set is 2IV — {2}. O

] a
O O Y @ O T
b 2z- a
O o 2R ® Yy T
a a

FIGURE 8. Gy, 2 consists of one odd and one even subcycles.

Corollary 4.4. C,, with a P, chord is not uniformly null.

Lemma 4.5. Let G, 3 be the cycle Cy, with a P; chord. Then
_ | IN-{2}  both subcycles are even;
N(Gn3) = { 2IN — {2} otherwise .

Proof. Based on the observation 4.1, it is enough to consider Cy and Cs as
the two subcycles.

FIGURE 9. G, 3 consists of two even subcycles.

Case I. Both subcycles are Cy. The labeling illustrated in Figure 9, shows
that the integer-magic spectrum of G, 3 is the same as its null set; that is,
N(Gn3) = IM(Gns) = N — {2).

Case II. Both subcycles are Cs. The typical magic labeling of G, 3 in
Zy, is illustrated in Figure 10, which has sum 2z. Here, given z € Zj,
one needs another nonzero element a # z, —z. Hence, the graph cannot be
3-magic, and its integer-magic spectrum is IN — {2,3}. However, for the
graph to have zero sum, we need 2z = 0 (mod k); that is, h has to be
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FIGURE 10. Gp 3 consists of two odd subcycles.

even. Therefore, its null set in contained in 2IN — {2}. On the other hand,
if h = 2r, then the choices of z = r and a = 1 provide a zero sum result.
Therefore, N(Gp 3) = 2IN — {2}.

Case III. Subcycles have different parities. The typical magic labeling
of Gn3 in Z, is illustrated in Figure 8. For the graph to be magic, we
need 3a+c+z =a+c+z or 2a =0 (mod h); that is, h is even and the
integer-magic spectrum of the graph would be 2IV — {2}. For the graph to
have zero sum, we need the additional condition a + ¢ + z = 0 (mod k),
that is always possible. One such labeling has been provided in Figure 11.
Thus IM(G,3) = N(Gn3) = 2IN — {2}. 0O

Corollary 4.6. C,, with a P; chord is not uniformly null.
We summarize the above 4.3 and 4.5 in the following theorem:

Theorem 4.7. Let G i be the cycle C,, with a Py chord. Then
_J IN-{2}  both subcycles are even;

N(Gni) = { 2N - {2} otherwise .

Moreover, G, is not ¢ uniformly null graph.

FIGURE 11. G, 3 consists of one odd and one even subcycles.

When k copies of C,, share a common edge, it will form an n-gon book of k
pages and is denoted by B(n, k).
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N n is even, k is odd;
IN — {2} n and k are both even;
2IN — {2} n is odd, k is even;
2N n and k both are odd.

Proof. Depending on whether n is even or odd it will be enough to consider
C4 and Cj, respectively.

If n is even and k is odd, we will label the common edge by —1 and top
edges 1, —1 alternatively. This is a zero sum magic labeling.

If n and k are both even, we will label the common edge by —1 and one
top edge by 2 the remaining top edges —1, 1 alternatively. This provides a
zero sum magic labeling. Note that, in this case, the degrees of vertices do
not have the same parity and the book is not 2-magic.

Suppose n is odd (C3). We label the common edge by z and the it* cycle
edges by a;, —a; as illustrated in Figure 12.

Theorem 4.8. N(B(n,k)) =

v a4

FIGURE 12. A typical zero sum magic labeling of B(3, k).

The requirements I+ (u) = I*(v) = 0 will lead us to the equations 2+Y_ a; =
z—Y a; =0or 2z =0 (mod h), which implies that h is even (z # 0). On
the other hand if h = 2r is even, then we consider two cases:

case I. If k is odd, we label all the edges by r which results in a zero sum
magic labeling.

FIGURE 13. A zero sum magic labeling of B(3, 2k).

case IL. If k iseven, we choose ¢ =r -1, ap=l,and z=a; =7 (i > 3),
as illustrated in Figure 13.
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Finally, we observe that when n is odd and k is even, the book cannot be
2-magic. Therefore, the null space would be 2IV — {2}. O

There are many other classes of cycle related graphs. Wheels W, = C, + K
and Fans (also known as Shells) are among them. When n — 3 chords in
cycle C,, share a common vertex, the resulting graph is called Fan (or Shell)
and is denoted by F;,, which is isomorphic to P,_; + K;. We conclude this
paper by the following problems:

Problem 4.9. Find the null sets of Wy, and F,.

Problem 4.10. In 1.5 it was shown that K (2,3) is strictly zero-sum graph.
Identify a class of graphs whose elements are strictly zero-sum.
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Determining a permutation from its set of reductions

by John Ginsburg

ABSTRACT For any positive integer n, let S, denote the set of all
permutations of the set {1,2,...,n}. We think of a permutation just as an
ordered list. For any pin S, and for any i < n, let p | ¢ be the permutation
on the set {1,2,...,n — 1} obtained from p as follows: delete i from p and
then subtract 1 in place from each of the remaining entries of p which are
larger than i. For any p in S, we let R(p) = {q € Sp-1 : ¢ =p | i for some
i < n}, the set of reductions of p. It is shown that, for n > 4, any p in S,
is determined by its set of reductions R(p).

Key words and phrases: permutation, reduction, set of reductions,
reconstruction

For any positive integer n, let S, denote the set of all permutations of
the set {1,2,...,n}. We think of a permutation just as an ordered list, and
a permutation is displayed simply by listing its entries in order, sometimes
with commas between them for clarity.

Let n > 2, and let p € S,,. For any 7 < n, let p | i be the permutation
on the set {1,2,...,n — 1} obtained from p as follows: delete ¢ from p and
then subtract 1 in place from each of the remaining entries of p which are
larger than . Thus p { 7 is an element of S,_;, which we call the ’th
reduction of p.

To illustrate, let n = 5 and let p = 53412. We then have
pd1=4231, p|l 2=4231, pl 3=4312, pl 4=4312, pl 5 = 3412,

This example shows that the reductions of a permutation are not nec-
essarily all distinct.

For any p in S, we let R(p) = {q € Sp~1 : ¢ = p | i for some i < n}.
The set R(p) is called the set of reductions of p.

For our example above, with p = 53412, we have R(p) = {4231, 4312, 3412}.

The main question we consider in this paper is the following:

Is a permutation determined by its set of reductions?

We will show that the answer is yes for n > 4, and we will describe a
simple procedure for determining p from its set of reductions R(p).

We note that this result fails for n = 4. If we let p = 3142 and ¢ = 2413,
then p and ¢q are two different permutations with the same set of reductions
R(p) = R(q) = {213,231,312,132}.
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Deleting one entry 1, in all possible ways, from a permutation on {1,2, ...,n},
to create various n — 1-permutations, is of course a very commonly used
idea. Recent papers in coding theory [7] and permutation graphs [4], [5]
use these one-element deletions. By subtracting 1 from each of the entries
which are larger than ¢, we are just creating a standardized version of the
one-element deletion, so that it becomes an n — 1-permutation on the “stan-
dard n — 1-element set” {1,2,...,n —1}. The n reductions of a permutation
on {1,2,...,n} can be thus be thought of as being the n one-element dele-
tions, up to isomorphism. This form of reduction is employed in [11], pages
85-86, in an inductive description of the Schensted correspondence.

The problem we are considering here can be viewed as a simple type
of reconstruction problem, in which one attempts to reconstruct an object
from its one-element deleted sub-objects. While this type of problem is
perhaps most familiar for graphs(see [1]) and ordered sets(see [10]), a re-
cent paper on reconstructing subsets of the plane [9] includes references to
reconstructing codes, sets of real numbers, sequences and geometries. We
refer the reader to [2], [6] and [8] for interesting recent work on reconstruct-
ing sequences from subsequences.

Before proceeding further, we emphasize that we are not considering
here the multiset of reductions of a permutation p, in which each reduction
would be included as many times as it occursin thelist p | 1,p | 1,...,p L n.

In our proof that a permutation p is determined by its set of reductions
R(p), there are two basic steps: we show that the position of the entry n
in p is determined by the set R(p), and, letting p — n denote the element of
Sn-1 obtained by deleting n from p, we show that the set of reductions of
p—n is also determined by R(p). The result then follows by induction. We
will establish these facts by means of a number of lemmas. In connection
with part (vi) of Lemma 1 below, we note that, for any p in S,, and for
any t <n, pliisan element of S;,_; and so (p | %) | j is defined for all
j £ n—1. We will usually omit the brackets in referring to this iterated
reduction, denoting it simply by plil j.

As basic notation for exhibiting a permutation p € S, we will write
P(1),p(2), ...,p(n) or alternately pyps - - - pn to indicate the entries of p. In
using such notation, we thus write p(¢) = k or p~1(k) = i to express the
fact that the integer k occurs in the #’th position of p. We will also let
P°PP denote the permutation obtained by listing the entries in the opposite
order from which they are listed in p. Thus, for p = 35124 in S5, we have
poPP = 42153.
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Lemma 1. Let n > 2 and let p € S,.
(i) Let 1 € i < n. Then we have p°?P | i = (p | ©)°PP.

(i) pln=p-n.
(iii) Let 1 < 7 < n and suppose that ¢ and i + 1 occur consecutively in p.
Thenpli=pl (i+1).

(iv) Let ¢ and j be positive integers such that 4,7 <n. Thenpli=plj
if and only if the segment of p from ¢ to j (including ¢ and j) is either
an increasing sequence of consecutive integers or a decreasing sequence of
consecutive integers.

(v) Let ¢ = |{k : p(k) and p(k + 1) are consecutive integers}|. Then

|R()| =n—c.

(vi) For any positive integers 7 and j with ¢ < j < n, we have
plili=plil(i-1).

Proof: (i) and (ii) are obvious. To verify (iii), note that, if ¢ and 7 + 1 occur
consecutively in p, then both p | i = p | (i + 1) can be described as follows:
replace the pair of entries {i,7 + 1} by the single entry ¢ and then subtract
1 from all other entries which are larger than i.

The implication from right to left in (iv) follows from (iii). For the con-
verse, assume that i < j and that p | i = p | j. By part (i), it is sufficient
to consider the case when i is to the left of j in p. Suppose ¢ = p(k) and
j = p(l) where k < I. Note that the k’th entry of p | j is . Therefore the
k’th entry of p | i is i. But this latter entry is either p(k+1) or p(k+1) -1,
depending on whether or not p(k+ 1) is larger than i. Since p(k + 1) is not
i, we must have { = p(k + 1) — 1, and we see that the entry immediately
following 7 in p is ¢ + 1. Continuing in this way (or, equivalently, using
induction on the number of entries of p between ¢ and j), we see that the
segment of p from i to j consists of an increasing sequence of consecutive
integers.

To verify (v), consider the equivalence relation ~ defined on the set
{1,2,..,n} by i ~ j < the segment of p from 4 to j is either an in-
creasing sequence of consecutive integers or a decreasing sequence of con-
secutive integers. Suppose there are exactly ¢ different equivalence classes
C1,Cs,...,Cs. By (iv) we have |R(p)| =t. Let S = {k : p(k) and p(k + 1)
are consecutive integers }. For any r, the class C; contains exactly |C,| -1
elements of S. Summing over r gives the size of S, namely n —¢.

(vi) Suppose i < j. By part (i), it is sufficient to consider the case
when ¢ is to the left of j in p. In the following illustrations, we will let
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z1,%2 and z3 denote integers which are > j, and we will let 3,72 and y3
denote integers which are between 7 and j. When the operations p | ¢ and
p | j are applied, it is only integers which are larger than > j and integers
which are between ¢ and j which are reduced. In illustrating the result of
applying two operations successively below, we consider the three segments
into which p is divided by 7 and j. In each segment, we illustrate only
entries z for which z > j and entries y for which { < y < j. Note that
any of the three segments of p may contain none or one or both types of
entries. Also note that, in each segment, any z’s and y’s which appear can
be in any relative order. For our purposes, the order in which these entries
appear is not important — it is how these entries change in place. All the
other entries of p are left in place unchanged. We will use the symbol o
to indicate an empty spot from which an entry has been deleted. In the
following illustration, we show p in the top row and then the result of first
applying | j and then | i.

N R cogn ceej oexg ceeys
li

TS B coii eeZg =1 eeetp cei0 ceezg—1 eeeyg
li

ey =2 cooyp—1 -0 ceixp =2 coeyp—=1 o0 cioxg—-2 ...y3—1

Similarly we next illustrate the result of first applying | ¢ to p and then
1 (j = 1). As we see, the result is the same.

- Ty <o PR SERREY 23 creyo -.-j ERRY ) cie¥ys

li

ceezy —1 ...yl_l cov0 coexg—1 ...y2_l ...j_l cevzg—1 ...ys_l

li=1

..z|_2 ...y]_l “.e.0 ...3;2_2 ...yz_l .Y ...33_2 ...ya_l
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Lemma 2. Let n > 5 and let p and g be elements of S, such that
R(p) = R(g). Then the entry n occurs in the same position in p as it
does in q.

Proof: Equivalently, we show that the position of n in p can be determined
from the set R(p). Let us first make some preliminary observations on the
possible positions which the entry n — 1 might occupy among the various
members of R(p). We will let Z, = {¢}(n - 1) : ¢ € R(p)}. Obviously
the set Z, is determined by the set R(p).

If p~'(n) = 1 then n — 1 is the first entry of p i for i = 1,2, ...,n - 1,
and, in p | n, the position of n — 1 is one smaller than its position in p.
So in this case we either have Z, = {1} (when n — 1 is the second entry
of p), or Z, = {1, 5} for some j > 1(when n — 1 is not the second entry of
p). Similarly, when n i$ the last entry of p, we either have Z, = {n — 1} or
Z, = {j,n — 1} for some j <n —1.

Suppose n is neither the first nor last entry of p, but occurs in position
r for some integer r such that 1 < r < n. If { is any integer which lies to
the left of n in p, then n — 1 is in position 7 — 1 in the reduction p | . If
i is any integer which lies to the right of n in p, then n — 1 is in position 7
in the reduction p | i. The position of n — 1 in p | n is either the same as
the position of n — 1 in p (when n — 1 is to the left of n in p), or one less
than that position (when n — 1 is to the right of n in p). So in this case, we
either have Z, = {r -~ 1,7} for some r with 1 <r <n, or Z, = {j,r— 1,7}
for some r with 1 < r < n and for some j distinct from both r and » — 1.

Thus for any p in S,, Z, must be one of the following sets: {1},{n —
1},{1,n—-1},{1,j} for some j with 1 < j < n—1, {j,n—1} for some j with
1<j<n-=1,{r=1,r} for somer such that 2 < r <n-1,{j,r — 1,7}
for some r with 1 < r < n and for some j distinct from both r and r — 1.
These possibilities are listed so as to be mutually exclusive. To show that
p~1(n) is determined by the set R(p), we proceed as follows: given the set
R(p), we find the corresponding set Z,. It will be one of the 7 kinds of sets
just listed. We will show that the position of n in p can be determined in
each case.

The case when Z, is a one-element set requires very little thought. If
Zp = {1} then n must be the first entry of p - if n was in any other position,
the above remarks show that Z, would have to be one of the other 6 kinds
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of sets. Similarly, if Z, = {n — 1} then n must be the last entry of p.

Next, suppose Z, has two elements. We distinguish several possibilities
here. If Z, = {1,j} for some j with 2 < j < n — 1, then n must be the
first entry of p : n could not be the last entry in p because n — 1 is not
an element of Z, and n could not occupy a position r with 1 < r < n,
since, as remarked above, in this eventuality the set Z, would contain two
consecutive integers.

If Z, = {1,2} then n could not be in any position 7 in p with r > 2.
This is clear for r = n, because n — 1 is not an element of Z,. If n were
in position r for some r such that 2 < r < n then r would be an element
of Z,. This isn’t possible, since 7 > 2. So n must be the first or second
element of p. We have to show that one of these two positions is ruled out.
Inspecting the elements of set R(p), we determine in how many of these the
entry n — 1 is in the first position. Let s denote the number of elements of
R(p) in which the entry n — 1 is in the first position. Note that s > 1.

If s =1, then n must be in position 2 of p. To see this, we just need to
show that it could not be in position 1 in p: if it were, then n — 1 would be
the first entry in every one of the reductions p | i, for ¢ < n. Since s =1,
these reductions must all be equal to one another, which implies, by part
(iii) of Lemma 1, that the last n — 1 entries of p are either in consecutive
increasing order or consecutive decreasing order. But n — 1 could not be
the last entry of p, because n — 1 is not an element of Z,, and n — 1 could
not be the second entry of p, because this would imply that Z, = {1}.

Now suppose that s > 1. Now, let us show that n must be the first entry
of p. To see this, we only need to show that n could not be the second entry
of p. Suppose it was. Well, then n — 1 could not be the first entry of p: if
p=n-—1,n,p;3,.... then, for any i ¢ {n — 1,n}, n — 1 is not the first entry
of p | 7, and so the only elements of R(p) in which n — 1 is the first entry
areplnandpln—-1 Butpln=pln-1,sincen and n — 1 are
consecutive in p. So there is only one element of R(p) with this property.
This is contrary to s > 1. So the first entry of p would be some integer m
with m # n — 1. But then the only integer i for which n — 1 is the first
entry of p | ¢ is ¢ = m, which is again contrary to s > 1.

By applying the preceding arguments to p°?? we see that the position
of n in p is also determined when Z, is {j,n — 1} for some j such that
1<j<n-2and when Z, = {n—-2,n-1}.

Let us next consider the case when Z, = {1,n — 1}. In this case, n
cannot occupy any position r in p for which 1 < r < n, since the set Z,
does not contain two consecutive integers r,7 — 1. So n is either the first
or last entry of p. This accounts for one element of the set Z,. The second
element of Z,, is the position of n — 1 in p l n = p —n. So, in order to have
Z, = {1,n — 1}, we must either have n first in p and n — 1 last in p, or
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vice-versa. We need to show that one of these(and therefore the position
of n in p) is determined by the set R(p). Clearly |R(p)| > 2. If |R(p)| > 2
then either there are 2 elements of R(p) in which n — 1 is the first entry or
2 elements of R(p) in which n — 1 is the last entry. If it is the former, then
n must be the first entry of p: the only other possibility is to have n — 1
first and n last in p. But this would imply that the only element of the set
R(p) in which n — 1 is the first entry is p | n, contrary to our assumption
that two such elements exist. Similarly, if there are 2 elements of the set
R(p) in which n — 1 is the last entry then n must be the last entry of p.
On the other hand, what if |R(p)| = 2? In this case, Lemma 1(v)
implies that n — 2 consecutive pairs of integers occur in the permuta-
tion. We know that {n — 1,n} is not one of these pairs, and so the
integers {1,2,...,n — 1} must all be consecutive. So p must be either
n,1,2,3,..,n—1 or n—1,n-2,..3,2,1,n. We can easily determine
which(and therefore the position of n) from the set R(p): if R(p) has an
element in which the entry n — 2 is last, then p must be =,1,2,3,...,n—1.

The last remaining possibility to consider when Z, is a two-element set
is when Z, = {r — 1,r} for some r such that 2 < r < n —1. In this case, n
must be in position r in p. For any position other than r, it is clear that
Z, would be a set different from {r — 1,7}.

Finally, we consider the case when Z, is a three-element set. As we saw
above, in this case we have Z, = {j,r — 1,7} for some r with 1 <7 <n
and for some j distinct from both r and 7 — 1. Here r is the position of n
in p and j is either the position of n — 1 in p (when n — 1 is to the left of n
in p), or one less than that position (when n — 1 is to the right of n in p).
So Z, is a three-element set which contains two consecutive integers and a
third integer which may or may not be consecutive with the other two. If
Z, does not consist of three consecutive integers, then the position of n in
p is easily determined: it is the larger of the two consecutive integers in Zp.
So let us assume that Z, = {i — 1,4, + 1} for some integer 7. The position
of n in p must either be 7 or i + 1. We need to show that one of these is
determined by the set R(p). If the position of n is i, p would have the form

(1) ""z’n::‘hn_la"
If the position of n is i + 1, p would have the form
(2) "’,"—1,93,71,%"'

In both cases the displayed elements denote four distinct, consecutive ele-
ments of p.

In (1), there are at most two elements in the set R(p) in which n —2 is
to the left of n — 1, possibly p { n and p | n— 1. Similarly, in (2), there are
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at most two elements in the set R(p) in which n — 2 is to the right of n — 1.
So, if we inspect the set R(p) and find there are at least 3 elements in R(p)
in which n — 2 is to the left of n — 1, the position of n in p is determined to
be i + 1, the largest element of Z,. And if we inspect the set R(p) and find
there are at least 3 elements in R(p) in which n — 2 is to the right of n — 1,
the position of n in p is determined to be %, the middle element of Z,. If
|R(p)| > 4, one of these two will apply by the pigeonhole principle. So we
may assume that |R(p)| < 4. Now |R(p)| > 3, since |Z,| = 3. Therefore
either |R(p)| = 3 or |R(p)| = 4.

If |R(p)| = 3 then in (1) we must have y = n — 2, since otherwise the
four reductions p L z,p L n,p l y,p J n — 1 would be four distinct elements
of R(p) by part (iii) of Lemma 1. Similarly, in (2), we would have z = n—2.
So we need to see that, in this case, the set R(p) distinguishes between
a --,znn-2n-1,--- and

2y - ,n-1,n-2,n,y,---

In (1'), in two of the three elements of R(p) we have n — 1 to the left of
n—2(plzand pln—2), whereas in (2'), in two of the three elements
of R(p) we have n — 1 to the right of n — 2 (p L y and p | n — 2). So R(p)
determines the position of n accordingly.

Finally, we consider the case when |R(p)| = 4. As noted above, if R(p)
has three elements having n — 1 and n — 2 in the same relative order, then
the position of n can be determined. So we may as well suppose that n — 1
is to the left of n — 2 in two of the elements of R(p), and to the right of
n — 2 in the other two elements of R(p). This implies that (1) above could
only occur with y # n — 2. For, if y were equal to n — 2, then p | n would
be the one and only element of R(p) in which n — 1 is to the right of n — 2.
Similarly, (2) above can occur only with z # n — 2. Thus we have either
1y --,z,nyn-1,--- withy#n-2or

2 ---y,n-lz,n,y, - withz#n-2.

Since R(p) has exactly 4 elements, in both cases we have R(p) = {p ! z,p |
n,pl y,p 1 n — 1}. Reading from left to right, the positions occupied by
n — 1 in each of these four elements of R(p) are i — 1,7 + 1,4,7 in (1) and
1,4 — 1,1+ 1,7. Note that n — 1 has the smallest position only once, and
the largest position only once.

In (1) the two elements of R(p) where n—1 is to the right of n —2 must
beplnand pl n—1. Since y # n — 2, this implies that n — 2 must be
to the left of n. Now, since |R(p)] = 4, Lemma. 1(v) implies that p consists
of 4 segments of consecutive integers. Since we know that n,y and n — 1
are not adjacent to any integers consecutive to themselves, these individ-
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ual integers constitute 3 of the segments. Thus the remaining integers are
consecutive and y must be 1. It follows that there are two configurations
possible for p in (1):

(1a) [2,3,---,n=2,n,1,n-1] or (1b) [m-2,n-3,---,2,n,1,n—1]
In a similar way we see there are two configurations possible for p in (2):

(2a) [n-1,1,n,2,3,---,n—2] or (2b) [n-1,1,n,n—2,n-3,---,2].

We only need to show that R(p) distinguishes (1) from (2). To see this,
note that, since n > 4, n — 1 could never occur as the first entry in any
of the elements of R(p) if (1a) or (1b) applied, whereas it clearly does in
both (2a) and (2b). So in this case, we simply check whether 1 does or
does not belong to Z,. O

Lemma 3. Let n > 3 and let p and g be elements of S,,. Let p’ =p—-n
and let ¢’ = ¢ — n. If R(p) = R(q) then R(p') = R(¢').

Proof: Using formula (vi) of Lemma 1 we have

R(p)={t€ Sp—2 : t=p' | iforsomei<n—-1}
={t€Sp—2:t=(pln)liforsomei<n~1}
={t€Sp—2:t=(pli)ln—1forsomei<n-1}.

Since (again using formula (vi) in Lemmal)plnln-1=pln-1}n-1,
we have

R(@') = {t€Sn—2 :t=(pli)ln—1forsomei<n}

= {t € Sp—2 : t =8l n—1for some s € R(p)}

= {t€Sp—2 : t=8ln-1for somes € R(g)} = R(¢'). O

Lemma 4. Let p and ¢ be elements of Ss such that R(p) = R(g).
Then p=gq.

Proof: One can, of course, execute a simple computer program to verify
this statement, which we have done using GAP(3]). We can also argue di-
rectly. First of all, by Lemma 2, we can assume that 5 occurs in the same
position in p and ¢q. And secondly, by (i) of Lemma. 1, we can assume that
this common position is either first, second or third. Similar arguments can
be made in all three cases. We will include the details for the first two of
these cases and leave the third to the reader.

In the first case, we would have p = 5p2pspsps and g = 5g2q9394¢s, and
R(p) = R(g). This implies that papspsps € R(g) and so popspsaps = q { i for
some i < 5. If this occurs for i = 5 we are done. So we can suppose i # 5.
This implies that ¢ | 7 begins with 4 and so po = 4. Thus p = 54pspsps.
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So every element of R(p) begins with 4. Since the same must be true for
R(q), we see that go = 4, and so g = 54¢3qs4gs. If 4pspaps is equal to g ¢
for i = 4 or i = 5, this would clearly imply that p = g, so we can suppose
that 4pspsps = q | 7 for some 7 < 3. But, for any ¢ < 3, the first two entries
of ¢ | ¢ are 43, and so this implies that p3 = 3, and so p = 543psps. This
implies that every element of R(p) begins with 43. Since the same must be
true of the elements in R(q), we must also have g3 = 3. Thus ¢ = 543¢4¢s.
Finally, since R(54321) # R(54312), we infer that p = gq.

In the second case, we would have p = p5pspsps and ¢ = q15¢3494¢s,
and R(p) = R(g). As in the first case, we can assume that ppspsps =g |
for some i # 5. For any such i, either the first or second element of ¢ | 7 is
4, so either p; = 4 or p3 = 4. We consider two subcases:

(i) p = 45p3paps, and (ii) p = p154paps.

In subcase (i), every element of R(p) begins with either 3 or 4, so the same
holds for the elements of R(g). Therefore we must have ¢ = 4, and so
q = 45g3q4q5. Now we have 4pspsps = q | ¢ for some i. Since q | ¢ does
not begin with 4 for i < 4, we must have 4pgpsps = ¢ L i for ¢ = 4 or
5. This implies that p = ¢g. In the second subcase, p = p;54psps. We
cannot have ¢, = 4, because this would imply that every element of R(q)
begins with 4 or 3, which is clearly not the case for all elements of R(p).
Now R(p) has an element which begins 43. Therefore R(g) does too, and,
since ¢ # 4, this implies that g3 = 4. Thus ¢ = ¢;54¢4g5. Now we must
have pydpsps = g | 7 for some i. If ¢ = 4 or 5, this implies p = ¢ as
desired. Clearly p14paps # ¢ 4 q1, and so either py4psps = ¢ | ¢4 or
P14psps = q | ¢5. Either way, we must have py = 3. Thus p = p;543ps.
This implies that, in every element of R(p), 3 is either second or third.
Therefore the same is true of the elements of R(g). This implies that 3 can-
not be the first or the last element of ¢, and so ¢4 = 3. Thus g = ¢,543¢s.
And since R(15432) # R(25431), we infer that p=g¢q. O

Our theorem now follows directly from the preceding lemmas by induction
on n.

Theorem. Let n > 5. Then any p € S, is determined by its set of
reductions R(p). Equivalently, if p and g are elements of S,, and

R(p) = R(q), then p=gq.

The proof of our theorem leads to a straightforward recursive proce-
dure for reconstructing a permutation p from its set of reductions R(p). At
the bottom, we tabulate the 120 different sets R(p) corresponding to the
elements p in S5. The GAP program (3] is very well-suited to this task.



For any n > 5, if we are given the set R(p) for some p € Sy, we first ap-
ply the method used in the proof of Lemma 2 to find the position of n in
p. Then, as in the proof of Lemma 3, letting ¢ = p — n, we find the set
R(g) =R(p—n)={t € Sp—2 : t =35l n-1for some s € R(p)}. From
this set we reconstruct g. We then insert n into ¢ so that it occupies the
position it must occupy.

Example. Here is an illustration for n = 7. Suppose we are given that
the set of reductions for p is R = {536412, 542631, 543612, 546312, 653412}.
The set of positions of n — 1 = 6 in the reductions is then Z, = {1,3,4}.
Since the three elements in Z, are not all consecutive, the proof of Lemma
2 shows that the position of 7 in p must be the larger of the consecutive pair
in Z,, namely 4. We now let g be p— 7. The set of reductions of q is the set
{t€Ss : t=5]6 for some s € R(p)} = {s—6 : s € R(p)}. So we simply
delete 6 from each of the permutations belonging to R. We get the set
R’ = {54231,53412, 54312}. To find the position of the entry 6 in ¢, we ap-
ply the method in the proof of Lemma 2 to the set R’. The set of positions
of 6 — 1 =5 in the reductions belonging to R' is Z, = {1}. Thus (as in the
proof of Lemma 2) 6 must be the first entry of g. Now, let r = ¢ — 6. The
set of reductions of r is found simply by deleting 5 from each of the permu-
tations belonging to R'. We get the set R" = {3412,4231,4312}. From the
example at the beginning of this paper, r is given by r = 53412. We insert 6
into r to form g so that 6 is the first entry. We get ¢ = 653412. Finally, we
insert 7 into q to find p, so that 7 is the fourth entry. We get p = 6537412. O

To conclude, we would like to suggest two possible directions for fu-
ture work related to our theorem. In recent work on reconstructing an
n-sequence s from its multiset of k-subsequences, significant progress has
been made in finding a function f(n), having as small an order as possible,
so that s can be reconstructed from its k-subsequences as long as k > f(n).
We refer the reader to [2], [6] and [8]. Analogously, it would be interesting
to know how many reductions of a permutation are needed to reconstruct
it. Can we find a non-trivial function f(n) so that, for n sufficiently large,
if I is any subset of {1,2,...,n} with |I| > f(n), then any permutation p
in Sy, can be reconstructed from the set of reductions relative to I, that is,
from the set R/(p) = {g € Sn—1 : ¢ =p | i for some i € I} ? We have
made no useful progress on this question.

Secondly, one can consider variations on the notion of “reduction”.
After one entry 7 of a permutation on {1, 2, ...,n} is deleted from it, there are
many natural ways to view the result as a permutation on {1,2,...,n — 1}.
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Instead of reducing by 1, in place, all entries of p which are larger than i,
we could instead, for ¢ # n, replace the entry n by i. This gives another
type of “reduction”, and one can again consider the set of all such reduc-
tions over all i < n. Can p be reconstructed from this set of reductions? A
more general inquiry may be useful. One might attempt to define a general
notion of “reduction” along the following lines. Let P,_; denote the set of
all n — 1-permutations of the n-element set {1,2,...,n}. For any p € S,, and
i < n, let p—1 be the element of P,_; obtained by deleting ¢ from p. Then
any function F': P,_; — S,_; gives rise to a type of “reduction set” for p,
namely the set Rp(p) = {F(p—1) : i =1,2,...,n}. Is there a large, natu-
ral class of functions F for which p can always be reconstructed from Rr(p)?
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