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Abstract

Only the rotational tournament U for odd n > 5, has the cycle
C., as its domination graph. To include an intemnal chord in Ci,, it
is necessary for one or more arcs to be added to Uy, in order to cre-
ate the extended tournament U;F. From this, the domination graph
of U;t, dom(U;t), may be constructed where Cx, 3 < k < n,isa
subgraph of dom(U,). This paper explores the characteristics of
the arcs added to U, that are required to create an internal chord in
Ch.

Keywords: tournament, regular tournament, rotational tour-
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1 Introduction

A tournament T, is a digraph on n vertices where there exists exactly one arc
between every pair of vertices in the vertex set of T,, V(Ty,). Foru,v € V (Ty),
u # v, u is said to dominate, or beat, a vertex v, denoted by u — v, if the arc
(u,v) € A(T,), the set of all arcs in T,,. The out-set of a vertex u, O(u), is the set
of all vertices that u beats. The out-degree of a vertex u is d+ (u) = |O(u)|. The
domination graph of T,,, dom (T},) , has V (dom (T,,)) = V (T}), with an edge
between every pair of vertices in 7, that together beat all other vertices. Fisher, et
al. [8], [9] introduced the domination graph of a tournament. This initial work led
to the study of domination graphs with nontrivial components [5] and with isolated
vertices [6]. Other research addressed tournaments with connected domination
graphs [7], [10]. Of particular interest to this paper, Cho, et al. [1], [2] presented
results on the domination graphs of regular tournaments. More recently, work on
the domination graphs of subdigraphs of tournaments [4] has been presented.
The concepts of extended tournaments and partial domination graphs were
introduced in [3]. A partial domination graph is a domination graph in the clas-
sical sense. An extended tournament T;} is a tournament with at least one tie arc.
An extended tournament is a loopless semi-complete digraph. A tie between two
vertices u,v € V (T;}) is represented by arcs (u,v), (v,u) € A(T}). For the
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purpose of discussing results involving tournaments with ties T}, its domination
graph is denoted as dom (T;}).

Note that adding an arc to a tournament 7, may or may not generate a new
edge in dom (T}}). It could still be true that E (dom (T,)) = E (dom (Ti})).
So, in general, E (dom (T,,)) C E (dom (T;})). For example, let T4 be a tour-
nament where A (T4) = {(1’ 2): (2: 3)) (274)1 (3s 1)‘) (31 4)) (41 1)} and V (T4) =
{1,2,3,4}. See Figure 1 where A (T;}) = A(Ty) U (2,1) and E(dom (Ty)) =
E (Pdom (T7)).

1 ig 2 1 2
4 3 4 3
Figure 1: Extended tournament T, where dom(T}) = dom (T3)

In Factor and Factor [3], extended tournaments T;} where dom (T}F) = K,,,
the complete graph on n vertices, were completely characterized. They proved
the following theorem and corollaries:

Theorem 1.1 [3] Let T;} be an extended tournament. If dom (T;}) = K,,, then
T;} has at least () — n ties.

Corollary 1.2 [3] Let T;} be an extended tournament. Ifdom (T}) = K., then
T} has at most n non-tie arcs.

Corollary 1.3 [3] Cj is the induced subgraph of an extended tournament.

This last corollary is an interesting contrast to the fact that there does not exist
any tournament T, that generates an even cycle as a subgraph in dom (T}, ), proven
by Cho, Kim, and Lundgren [2].

In view of the above results, what can be said about the nature of the arcs
added to T, creating T}, in regard to how they generate internal chords and
hence subgraphs in dom (T;})? Here we explore this question in the context of
rotational tournaments.
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2 The Rotational Tournament U,

A tournament T, is regular if n is an odd integer and for all u € V (T5,), d*(u) =
251 The domination graph of a regular tournament (n > 3) is either an odd
cycle or a forest of paths [2]. Regular tournaments whose domination graphs are
odd cycles will be considered here. A regular tournament T'(S) can be defined as
the rotational tournament with symbol S whose vertices are labeled by elements
of Z,(the integers mod n), for odd integer n > 3, with arc (,5) ifj —i = s,
wheres € Sand Sisa "T‘l-set contained in Z, where 0 ¢ S and 8, + s # 0
for all s, s2 € S. Specifically, S’ = {1,3,5, ...,n — 2}, where odd = satisfies
0 ¢ S and s; + 32 # 0forall s, 30 € S’. Define the rotational tournament
U, = T(S') forodd n > 3. U, has vertices labeled by consecutive numbers
{0,1,2,...,n— 1} and has arcs (i, 7) if j — ¢ = s(mod n) where s € S’ and (j,%)
otherwise. Consequently, d* (i) = 252 foralli € V (Us,).

In the following discussion, vertices will be labeled 0,1,...,n — 1. Without
loss of generality, it will be assumed to be a consecutive labeling in the clockwise
direction in U,,. An example of a rotational tournament for » = 5 using this
labeling is shown in Figure 2, where V (Us) = {0,1,2,3,4}, $' = {1,3}, and
dt(i) =2foralli € V (Us).

0

00)={1,3)
] L 0M=04
0Q)={3,0)
0()={4, 1}
0()=0.2)

Figure 2: The rotational tournament Us

Throughout the remainder of this paper, it will be assumed in all proofs and
discussions that 7 + p means (i + p) modn foroddn > 3,p € Z.

The following lemma describes the vertices that are not beaten by the pair of
vertices ,% -+ k in U,, when k& is odd, and gives the number of vertices they do not
dominate. These characteristics are significant for the rest of the paper.

Lemma2.l Giveni € V(U,), n > 3, and k odd wherel < k < n — 2, the
vertices not beaten by either i or i+k are of the form i+d, whered = 2,4, ..., k—1.

: i 7o k=1
The number of vertices not beaten by the pair is =3=.
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Proof: By definition of Uy, % — i + k only for k € {1,3,...,n — 2}, and
i + k does not beat any vertex of the form i + 2g where 0 < g < %21 for each k.
Therefore, the only vertices not beaten by i and i + k are of the form i + d where
d=2,4,...,.k — 1, and there exist £5 of these. O

Note that given ¢ € V (U,), only vertices i and ¢ + k, where & is odd, are
considered in Lemma 2.1. Consider the following proposition below, which ad-
dresses the vertices i and ¢ + 2p, where 0 < p < 251,

Proposition 2.2 When considering all i,i+k € V (Uy,), n > 3, the case where
k is odd gives all possible pairings of vertices in V (U,).

Proof:  Leti € V (Uy,). Consider the vertices i and i +2p where 0 < p <
251 The distance clockwise from vertex i to vertex i -+ 2p is even. Since 7 is
odd, the distance clockwise from  + 2p to i must be odd. Thus, when j =i+ 2p
and j + k = i, where k is the odd clockwise distance from i + 2p to i, the pair is
obtained. O

From Proposition 2.2, it follows that given ¢ € V (U,), n > 3, it is only
necessary to consider vertices ¢ and i + k, where k is odd, in order to produce all
possible pairs of vertices in U,,.

3 Internal Chords in dom (U})

Let C,, be a cycle on n vertices. For odd n > 3, all of the edges in C,, are
considered external and come from the definition of U,,, where dom (U,) = C,
by Fisher, et al. [8]. Let U} be an extended tournament where i,5 € V (U7),
i # j, and let m be a nonnegative integer. A tie arc is an arc that creates a tie
in U} when added to U,. Any new arc added to U, creates a tie in U;}. Edge
{4,7} is an m-tie chord in dom (U;}) if a minimum of m tie arcs must be added to
Uy, in order to produce the edge {z, j} in the domination graph. This m-tie chord
need not be the only chord created by the m arcs. Note if m = 0, then edge
{4,3} is referred to as a O-tie chord. This means that {i, j} is an external chord
in dom (U;}), and is part of the original domination graph dom (U,,). Thus, no
new arcs must be added to U, in order to create this graph. If m > 0, the m-tie
chord is referred to as an m-tie internal chord, where the generated edge {1, j} is
an internal chord in dom (U;}), and is not part of the original domination graph.

The following propositiens follow directly from the definition of regular tour-
naments.

Proposition 3.1 Leti,j € V (Uy,), 1 # j, forn 2 3. |0(E) NO(j)| = m ifand
only ifn — 1 —0(i) U O(j)| = m.
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Proposition3.2 Leti,j € V(Uy,), i # J, forn > 3. There are the same
number of common vertices that i and j beat as there are the number of vertices
that neither i nor j beat. Furthermore, this count does not include the vertices 1
andj.

Remark 1 Consider consecutive vertices i,i +1 € V (Uy), for n > 3, where
0<i<n=L1L VU, =0@G)UO (i +1)U{i} where O (i)NO (i + 1) = @. By
Proposition 3.1, |0 (i) N O (i + 1)| = 0 impliesm = 0 and |O(1)) UO(i + 1)| =
n — 1. Therefore, {i,i + 1} is a O-tie chord. As such, it is an external chord in
dom (U;}), since no new arcs must be added to Uy,.

Proposition 3.3 Leti,j € V (Uy,), i £ j. forn 2 3. Ifn-1-|0 () U0 (j)| =
m or |0 (i) N O (§)| = m, then {i,5} is an m-tie chord in dom (U;}) for some
Ur.

Proof: Leti,j € V(U,), ¢ # j,forn > 3andm > 0. By Proposition
3.1,|0() N O(j)| = mif and only if n — 1 — |O(é) U O(j)| = m. Suppose that
n — 1— |0 (¢) U O (§)] = m. This means that there exists m vertices not beaten
by i or j, excluding i and j. So a minimum number of m arcs must be added to
U, to create some U" which has {7, 7} as an edge in its domination graph. Thus
{4, 7} is an m-tie chord in dom (U;}). O

Suppose U, is a rotational tournament for n > 5 where i € V (U,). By
Lemma 2.1, if k = 3, then the vertices not beaten by ¢ or (¢ + 3) are of the form
(i + 2). Results from Factor and Factor [3] involving arcs added to U, from
vertices that beat the vertex (i + 2) and form a tie in U, are as follows.

Proposition 3.4 [3] dom (U, U (i +3,i+2)) =Cp U {4,i + 3}.

Proposition 3.5 [3] dom (U, U (3,i +2)) = C, U {3,% + 3}.

In either case, we see that {i,i + 3} is a 1-tie internal chord in dom (U}),
since U;} is created by adding a minimum of one arc to Uy, creating one tie in
U;t. Note that when either arc (¢ + 3,7 + 2) or arc (3,7 4 2) or both are added to
Uy, giving U7, only the one internal chord {3, + 3} is generated. This is true
for each of the n vertices i € V (U;}).

A natural question that arises is whether an m-tie internal chord can be created
without producing additional chords. If {2, j} is an m-tie internal chord, it is easy
to see that adding arcs from ¢ to each of the m vertices not beaten by either i
or j will produce the chord {7, 7} in the domination graph. However, it is not
guaranteed that only the one chord will be produced in this manner. For example,
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leti € V (U,) where i = 0 and n = 5. By definition of Us, 0 beats 1, and 0 beats
3. Add arcs (0,2) and (0,4) to generate U . Since 0 beats all vertices then so
will any other vertex paired with 0. Therefore, {0, 3}and {0, 4} are generated in
dom (Ug). Thus, there is a need to characterize a set of arcs whose addition to
A (Uy) will generate exactly the one edge {4, 5} in dom (U7). As a first step in
this process, the following results characterize the vertices comprising an m-tie
internal chord in dom (U;}) and enumerate the additional vertices that must be
added to the set O (i) U O () in U, with corresponding tie arcs in U}

Lemma3.6 Letis# j€ V(Uy,) suchthat j =i+ k forkoddandl < k <
n — 2. Then {3, j} is an m-tie chord in dom (U,}) if and only if m = %31,

Proof: (=) Leti # j € V(Uy), such that j = i + k, for k odd and
1 <k < n-2.Let{s,j} be an m-tie chord in dom (U;}). Therefore, a minimum
of m-tie arcs must be added to U, in order to create {i,;j} in dom (U}). By
Lemma 2.1, the only vertices not beaten in U, by {i,i + k}, kodd,1 < k < n—2,
are of the form i + d where d = 2, 4, ..., k — 1, and there are "—;1 of these vertices.
Therefore, m = £51.

(«)Leti#j € V(Uy,),suchthat j =i+ k, forkoddand1 < k <n-—2.
By definition of U,,, i beats j and n — 1— |O (¢) U O (5)| is the number of vertices
not beaten by < or j, excluding the pair. By Lemma 2.1, the number of vertices
that neither ¢ nor i + k beat is 551, Letm = %51 Proposition 3.3 states that
{i,i + k} is an m-tie chord in dom (U;}) for some U}.0)

From Lemma 3.6, it follows that there are different types of m-tie chords pos-
sible in the same domination graph of an extended rotational tournament. For
example, letn = 9. Then {4,4 + 1} is a O-tie chord, {z,i + 3} is a 1-tie internal
chord, {1, + 5} is a 2-tie internal chord, and {3, i + 7} is a 3-tie internal chord in
dom (Ug) fori € V (Ug). Figure 3 illustrates this, where i = 0.

—— (-tie
------ I-tie
----- 2-tie
seccvce 3_tie

Figure 3: Different m-tie chords in dom (Uy)
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Corollary 3.7 Leti,j € V(U,), n > 3 wherej >i. j=i+2m+1 for
0 <m < 252 ifand only if {i, 7} is an m-tie chord in dom (U}}).

Proof: Notethatm = 51 & k=2m + L. Leti,j € V(Ua),n > 3,
where j > i. By Lemma3.6,j =i +2m+1,0 <m < 233 ifand only if {3, j}
is an m-tie chord in dom (U;}). O

Theorem 3.8 Let U be the extended rotational tournament for n > 5. Then
there are exactly n distinct m-tie internal chords in dom (U}) for each m where
1<m< 253

Proof: Letn>5and1 < m < 253, By Corollary 3.7, {i,i +2m + 1}
is an m-tie internal chord for each ¢ € V (Uy,). Further, if j = ¢ + 2m + 1, then
i # j+2q+ 1 for any integer g, since an even number must be added to j in order
to obtain i when n is odd. Thus {i,i4+2m +1} # {j, j +2m + 1} forall i # j,
and as there are n ways to choose %, there exist exactly n distinct m-tie internal
chords. O

Table 1 makes use of Corollary 3.7 and Theorem 3.8.

Number of internal chords

None

Five 1-tie internal chords

Seven each 1- and 2- tie internal chords
Nine each 1-, 2-, and 3-tie internal chords

Ol v Wi
UJN'—'OE

Table 1: n distinct m-tie internal chords

The following lemma characterizes the m-tie internal chords {i, 7}, =i+ &,
indom (U;}) forn > 5, where kisodd,3 <k <n-—2.

Lemma3.9 Leti,j € V(Un), n>5 wherej >iand1 <m < 233 Then
{3, 3} is an m-tie internal chord in dom (U}) if and only ifi + d ¢ O () U O (j)
inUpandi+deO(@F)VO0 () inU}, ford € {2,4,...,2m}.

Proof:  (=>)Leti,j € V (Uy,),n > 5, wherej > i. Let {2, j} be an m-tie
internal chord in dom (U;}). By Corollary 3.7, j =i+2m +1,1 <m < 253,
Letting k = 2m + 1 in Lemma 2.1 we see that i +d ¢ O (?) UO(j) ford €
{2,4,...,2m}. By assumption, {3, 3} is an m-tie internal chord of dom (U;}), so
i and j must beat these m vertices in U;}. Consequently,i+d € O (i)UO (j) in
Ut.
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(¢=) Leti,j € V (Un),n > 5, where j > i. Assumei+d ¢ O (¢)UO(5)in
Un,andi+d € O ())UO (j) in U ford € {2,4,...,2m}, where1 < m < 253,
This exhibits m vertices not dominated by ¢ or j and hence at least m arcs must be
added to Uy, to create some U with {3, 5} an edge in dom (U;¥). Since (i + d) €
O()UO () inUf ford € {2,4,...,2m}, then {i,i +2m + 1} = {3,5} and
{2, 7} is an m-tie internal chord in dom (U}). O

Note that if n = 3 and k¥ = 1, then m = 0, and all edges are external on
dom (U§) = C;. Consequently, there are no internal chords (i.e., they are all
O-tie chords). By Lemma 3.9, if ¢, § € V (Uy,), n > 5, where j = i + k for each
k € {3,5,..,n — 2}, {i,i+ k} is an m-tie internal chord in dom (U;}), where
m = %51, if and only if the vertices i and i + k together beat vertices {i + 2,
i+4,..,t+k~3,i+k— 1}, foreach i € V (U}). The form of the m-tie
internal chord in dom (U;}), where m = 252, is {i,i + n — 2}. Further, vertices
i and £ + n — 2 must additionally beat vertices {i + 2,% + 4,...,i +n — 3}, for
eachi € V (U}).

In the specific case where n = 3 and m = 0 (no internal chords), vertex i beats
vertex ¢ + 1 in the definition of U3. Thus, dom (Us") = dom (Us) = C for any

number of tie arcs that might be added to Us in order to form U;". Again, this is
an example where arcs can be added to U,, that create a U;}* where the domination
graph of Uy, is the same as the domination graph of U}

Recall from Proposition 2.2, given i € V (Uy,), n > 3, it is only necessary
to consider vertices 7 and i + k, where k is odd, in order to generate all possible
pairings in Uy,. This is also true for all possible pairings of vertices in dom (U;}),
since V (U,) = V(U}). This fact along with Corollary 3.7 motivates the fol-
lowing definition of the set X, for the specific U}, for each odd n > 3, and all
0<m< 253,

X3t ={{i,5} | j =%+ k where k = 2m + 1 and {3, j} is an m-tie chord in
some dom (U;F)}

Note that for m = 0, X9 is the set of external chords. For m > 0, X is the
set of possible m-tie internal chords in dom (U;}) of the form {3, + 2m + 1},
i€ V(U}) foreachn > 3.

Combining the preceding results and using the definition for X™, the follow-
ing lemma and theorem are obtained for the case where dom (U}) = K,,,n > 3.

Lemma 3.10 For each oddn > 3, let M = 252 and dom (U}) = K,.. Then
the following are true:

L |X™| = n for eachm, where0 < m < M.

2. Form; #mp, 0<my,me <M, X" NXM2 =g,
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Proof:  Foreachoddn > 3, let M = 252, dom (U;}) = K, and X7 be
defined as above, where 0 < m < 273, By 'Iheorem 3.8, the number of dlstmct
m-tie chords is n, so | X7*| = n for each m where 0 < m < M, giving the first
result. For the second result, where m; # mg , note that X" consists of chords
of the form {%,¢ + k; } where k; = 2m; + 1, and X7** consists of chords of the
form {7,% + ko} where ky = 2mgy + 1, forall ¢ € V (U;}). Since m; # ma, for
0 < my,my < M, then k, # ko. Consequently, X™ NX™ =@. O

Lemma 3.10 proves that for a given odd » > 3, the set of n distinct m;-tie
internal chords has no chords in common with the set of n distinct mg-tie internal
chords in dom (U;}), for all m; # my where 0 < my,mp < 253,

Theorem 3.11 For each oddn > 3, let M = %52 and dom (U+) = Kp. Then

M . I3
U X7 consists of all chords in dom (UF). Further, (3) = mL._J.OX,'{‘ i

Proof: By Corollary 3.7 and Lemma 3.10, for each odd n > 3, every edge
. M
of dom (U}) is in X}, for some 1 < i < 252 So, ImUOX,'{‘I = |E(K.)| = (3)-
O

Given any edge in K, that edge must be some m-tie chord of dom (U;}) for
some U;}. This is addressed in the following corollary.

Corollary 3.12 If {i,j} is an edge in K, odd n > 3, then there exists an
extended tournament U;S such that for a certain m, 0 <m< ""3 , {i,3} €
E (dom (U;})) is an m-tie chord. Further, there are 23~ 1 distinct types of m-tie
chords possible.

Proof: The first part follows directly from Theorem 3.11. Further, there
are 253 types of internal chords and one type of external chord, giving a total of
""1 distinct types of m-tie chords possible. O

4 Tie-Arcs in U}

This section characterizes how the tie arcs added to U,, are chosen in order to
create an extended tournament U,} whose domination graph will contain specific
m-tie internal chords, where n > 5,1 < m < 232, without any additional
chords.

Proposition 4.1 Leti,j € V (Uy)forn > 51<m < 252 andj = i+2m+1.

There exist exactly 2™ possible sets of m arcs that each when added to U, to
produce the m-tie internal chord {i, j} in dom (U}).
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Proof: Leti,j € V(U,)forn>51<m<23andj=i+2m+1
{i,7} ¢ E(dom (Uy,)) since j # i + 1 ori 4+ 2n + 1. One arc from vertex i or
vertex j to each of these vertices to make U, will create {4, j} in dom (U}) by
or j, by Lemma 3.9. There are 2™ such collections of exactly m arcs. O

By Proposition 4.1, for m = 1, n > 5, there are 2 sets, with 1 arc each, either
of which will create a 1-tie internal chord of the form {i,i + 3} in dom (U;}).
Propositions 3.4 and 3.5 show that {i,i+ 3} is unique for either of the 2'arcs
(3,2+2) or (i + 3,% + 2) added to Uy, fori € V (U,).

Proposition 4.2 Leti,j €V (Uy)forn > 7,1 <m < %52 andj = i+2m+1.
There exists at least one collection of m arcs that when added to U,, produces
{%,7} and at least one other internal chord in dom (U}). Furthermore, exactly
m internal chords can be created that are incident with i in dom (U;}).

Proof: Leti,jeV(Up)forn>7,1<m<23andj=i+2m+1.
By Corollary 3.7, {, 7} is an m-tie internal chord in dom (U}). Consider the
set constructed by allowing i to beat all m of the vertices i 4+ 2, ¢ + 4,..., i +
2m. Thus, using Lemma 3.6 and Lemma 3.9, the 1-tie internal chord {i,% + 3} is
formed when i beats vertex ¢ + 2 and the 2-tie internal chord {%,¢ + 5} is created
when i also beats vertex i + 4. Continuing in this manner, the m-tie internal
chord {z,% + 2m + 1} is created when 7 also beats vertex i 4+ 2m. Therefore,
exactly m internal chords can be created that are incident with i in dom (U;}).
Consequently, dom (U;}) has at least one other internal chord created by a set of
m arcs added to A (U,,). O

Figure 4: Different sets of 3 arcs added to Uy produce different internal chords in
dom (U")
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From the above proposition, different sets of m arcs added to U, can each
produce a different number of internal chords in dom (U;}) forn > 7. For
example, let n = 9 and some i € V (Up) and m = 3. By the method used
in Proposition 4.2, if (i, + 2), (4,i+4), and (3,7 +6) € A (Uy"), then there
are exactly 3 internal chords, each of a different type, created in dom (Ug"): the
3-tie internal chord {i,% + 7}, the 2-tie internal chord {i,% + 5}, and the 1-tie
internal chord {¢,% + 3}. For i = 0, see Figure 3. Note, that it is even possible
to generate more than 3 internal chords by adding only 3 arcs to Us. Consider,
if (4,4 +2), (,4+4), and (s + 7,i + 6) € A(Uy), then there are four internal
chords created in dom (U ): the 3-tie internal chord {i,% + 7}, the 2-tie internal
chord {i,7+ 5}, and the two 1-tie internal chords {¢,% + 3} and {¢ + 4, + 7}.
This phenomenon is shown in Figure 4(a) where ¢ = 0. If, however, the three arcs
(6 +7,i+2), (,i+4), and (4,5 +6) € A (Uy), only the single 3-tie internal
chord {,% + 7} is produced in dom (Ug"). Fori = 0, this is illustrated in Figure
4(b).

Proposition 4.1 states that for odd = > 5, there exist exactly 2™ possible ways
to produce an m-tie internal chord using exactly m arcs in dom (U;}) for any ¢ €
V (Ug). By Proposition 4.2, foroddn > 7,1 < m < 252, there exists at least
one collection of m arcs that when added to Uy, will create the m-tie internal chord
{i,i+ 2m + 1} and at least one additional chord in dom (U;}). The following
theorem shows that there is at least one set of m arcs that when added to U, will
uniquely generate an m-tie internal chord in dom (U;}), creating no additional
chords (i.e., dom (U}) = dom (U,,) U {3, 7} for any given <, j € V (Uy,)).

Theorem 4.3 Leti,j € V(Up) forn 25 1<m < 232 andj=1i+2m+
1. Then the following set of m arcs when added to U,, produces only the m-tie
internal chord {i,i + 2m + 1} indom (U}):

I.  Forn>5andm=1, {(i+3,i+2)}.

2 Forn>Tand2 <m < 232 {(i,i+d) | d = 4,6,..,2m} U

{G+2m+1,i+2)}.

Proo: Leti,j € V(U,)forn > 5,1 <m < 2%, andj =i+
2m + 1. InCase 1,n > 5and m = 1. As a consequence of Proposition
3.4, only the additional chord {i,i + 3} is created in dom (U;}) when U} =
Un U (i +3,i+2).

Now consider Case 2. Foroddn > 7and2 < m < 1‘—2‘—3, the set of m arcs
addedto U, is {(¢,i + d) | d = 4,6, ...,2m}U{(: + 2m + 1,i + 2)}. By Lemma
3.9, {4,% 4 2m + 1} is an m-tie internal chord in dom (U;}). Now it remains to
be shown that no other chord is produced by these m arcs in dom (U;}) other
than {i,i+ 2m + 1}. Suppose that there is another r-tie internal chord created
in dom (U7}) by the given set of m arcs. Note 1 < r < m since there are only
m arcs added. By Lemma 3.6 and Lemma 3.9, letting k& = 2r + 1, the vertices
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i and i + k must together beat the vertices (i + 2), (i + 4),..., (¢ + k£ — 1) for
everyi € V(Uy,). Note, (i +2) — (i 4+2r+1)=2-2r—1=-2r4+1=
n — 2r + 1(mod n) which is even. Therefore, (i + k,i+2) ¢ A(U,) and is
unique in A (U7). Since the only arc whose head is i + 2 which is unique to
A(UF)is (i +2m+ 1,7+ 2), then it follows that r = m. But r must be less
than m, which gives the contradiction. Therefore, only the one internal chord
{i,44+ 2m + 1} is generated in dom (U;}). O

Corollary4.4 Foroddn 2 5, m = 1%3 is the maximum number of m~tie arcs
that must be added to U, to create only a specific internal chord in dom (U;}).

Consider forn > 7,4 € V (Uy), if the arcs {(i,4+d) | d = 4,6,...,n — 3}
are added to Uy, then the only vertex not beaten by i is ¢ + 2. By Theorem 4.3,
forany 1 <m < 253, ifi+2m+1beats i +2and the arc (i + 2m + 1,4 + 2) is
added to the above collection of arcs creating U}, then the edge {i,i + 2m + 1}
is an m-tie internal chord in dom (U}). Note M = 233 is the number of arcs
added to U, to create U;} and this set of M arcs generates dom (U}) = C, U
{i,i+2m+ 1} forany1 <m < M andi € V (U,). Recall from Proposition
22, it is only necessary to consider vertices ¢, i + k € V (Uy,), where k is odd,
in order to produce all possible pairs in Uy, and consequently in dom (U;}), since
V(Un) = V(UJ). Becauseall i+ k € V (Up), k = 2m + 1, are defined by
1<m< %‘—3, then any chord can be created without producing any additional
chords in dom (U;}) with M arcs. This result is stated in the following corollary.

Corollary 4.5 For oddn > 5, there exists exactly “T"" arcs that can be added
to Uy, to produce only a specific internal chord in dom (U}).

Proof: By Theorem 4.3 and Proposition 2.2. O

Theorem 4.6 For oddn > 5, i € V (Uy,), any set of internal chords can be
created in dom (U}) by adding to U, the arcs {(i,i +d) | d = 4,6,..,n — 3}
and J{(i +2m + 1,1+ 2)}, where L C {meZ|1<m< 253}, such that

none of these sets of arcs will create any extraneous chords in dom (U;}).

Proof: Foroddn > 5, i € V (Uy), by Corollary 4.5, exactly 252 arcs
can be added to U, to create any specific internal chord in dom (U;}). In particu-
lar, add the arcs {(%,% + d) | d = 4,6, ...,n — 3} and the arc ( + 2m; + 1,1 + 2)
to U, to create Uf, forany 1 < m; < 253 andi € V (U,). Then, fori €
V(Un)andm, € {m € Z| 1 < m < 252}, dom (U}) = CaU{i,i+2m,y +1}.
By Theorem 4.3, no additional chords are produced in dom (U;}). This remains
true forall L C {m € Z | 1 < m < 253} since each of the added arcs in U} are
all of the form ( + 2m + 1,¢ + 2), i.e., t + 2m + 1 always beats the vertex i + 2.
0
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5 Cycles in dom (U})

Recall that there is no tournament T;, that generates an even cycle as a subgraph
in dom (T;,) [2). The following lemma shows that there exist extended tourna-
ments, namely U}, for which even cycles of length A, 4 < A < (n — 1), exist as
subgraphs of dom (U;}) for every n > 5.

Lemma 5.1 For oddn > 5, by properly adding arcs to Upto create U, there
exists an even cycle of length ) for all X € {4,6,...,n — 1} indom (U}).

Proof: For each odd n > 5, consider U, and 2 € V (U,). By Theorem
4.3, there exists a distinct set of m arcs that can be added to U,, to produce only the
m-tie internal chord {i,3+ 2m + 1} for 1 < m < 232 in dom (U;}). For each
odd k, there exists k edges plus the chord {i,% + k}, creating an even cycle of
length k + 1. Therefore, for each specific odd n > 5, an even cycle in dom (U,})
of length ) is created where A € {4,6,...,n—1}.0

From Lemma 5.1, it follows that at least "7‘3 different even cycles can be
generated in dom (U;}), for each odd n > 5. For example, see Figure 3 where
n = 9. In this figure, the 1-tie chord creates C,, the 2-tie chord creates Cg,
and the 3-t1e chord creates Cy as generated subgraphs in dom (Ug'). Here, there
exists —— = 3 different lengths of even cycles and4 < A < 8 for even \.
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