Domination Graphs of Extended Rotational Tournaments: Chords and Cycles James D. Factor Marquette University P.O. Box 1881, Milwaukee, WI 53201 james.factor@marquette.edu #### **Abstract** Only the rotational tournament U_n for odd $n \geq 5$, has the cycle C_n as its domination graph. To include an internal chord in C_n , it is necessary for one or more arcs to be added to U_n in order to create the extended tournament U_n^+ . From this, the domination graph of U_n^+ , $dom(U_n^+)$, may be constructed where C_k , $3 \leq k \leq n$, is a subgraph of $dom(U_n^+)$. This paper explores the characteristics of the arcs added to U_n that are required to create an internal chord in C_n . Keywords: tournament, regular tournament, rotational tournament, domination graph, loopless semi-complete digraph, extended tournament, m-tie chord, cycle, tie arc #### 1 Introduction A tournament T_n is a digraph on n vertices where there exists exactly one arc between every pair of vertices in the vertex set of T_n , $V(T_n)$. For $u,v\in V(T_n)$, $u\neq v$, u is said to dominate, or beat, a vertex v, denoted by $u\to v$, if the arc $(u,v)\in A(T_n)$, the set of all arcs in T_n . The out-set of a vertex u, O(u), is the set of all vertices that u beats. The out-degree of a vertex u is $d^+(u)=|O(u)|$. The domination graph of T_n , dom (T_n) , has $V(dom(T_n))=V(T_n)$, with an edge between every pair of vertices in T_n that together beat all other vertices. Fisher, et al. [8], [9] introduced the domination graph of a tournament. This initial work led to the study of domination graphs with nontrivial components [5] and with isolated vertices [6]. Other research addressed tournaments with connected domination graphs [7], [10]. Of particular interest to this paper, Cho, et al. [1], [2] presented results on the domination graphs of regular tournaments. More recently, work on the domination graphs of subdigraphs of tournaments [4] has been presented. The concepts of extended tournaments and partial domination graphs were introduced in [3]. A partial domination graph is a domination graph in the classical sense. An extended tournament T_n^+ is a tournament with at least one tie arc. An extended tournament is a loopless semi-complete digraph. A tie between two vertices $u, v \in V(T_n^+)$ is represented by arcs $(u, v), (v, u) \in A(T_n^+)$. For the purpose of discussing results involving tournaments with ties T_n^+ , its domination graph is denoted as $dom(T_n^+)$. Note that adding an arc to a tournament T_n may or may not generate a new edge in $dom(T_n^+)$. It could still be true that $E(dom(T_n)) = E(dom(T_n^+))$. So, in general, $E(dom(T_n)) \subseteq E(dom(T_n^+))$. For example, let T_4 be a tournament where $A(T_4) = \{(1,2),(2,3),(2,4),(3,1),(3,4),(4,1)\}$ and $V(T_4) = \{1,2,3,4\}$. See Figure 1 where $A(T_4^+) = A(T_4) \cup (2,1)$ and $E(dom(T_4)) = E(Pdom(T_4^+))$. Figure 1: Extended tournament T_4^+ where $dom(T_4) = dom(T_4^+)$ In Factor and Factor [3], extended tournaments T_n^+ where $dom(T_n^+) = K_n$, the complete graph on n vertices, were completely characterized. They proved the following theorem and corollaries: **Theorem 1.1** [3] Let T_n^+ be an extended tournament. If dom $(T_n^+) = K_n$, then T_n^+ has at least $\binom{n}{2} - n$ ties. **Corollary 1.2** [3] Let T_n^+ be an extended tournament. If $dom(T_n^+) = K_n$, then T_n^+ has at most n non-tie arcs. #### Corollary 1.3 [3] C_4 is the induced subgraph of an extended tournament. This last corollary is an interesting contrast to the fact that there does not exist any tournament T_n that generates an even cycle as a subgraph in $dom(T_n)$, proven by Cho, Kim, and Lundgren [2]. In view of the above results, what can be said about the nature of the arcs added to T_n , creating T_n^+ , in regard to how they generate internal chords and hence subgraphs in $dom(T_n^+)$? Here we explore this question in the context of rotational tournaments. ### 2 The Rotational Tournament U_n A tournament T_n is regular if n is an odd integer and for all $u \in V(T_n)$, $d^+(u) = \frac{n-1}{2}$. The domination graph of a regular tournament $(n \geq 3)$ is either an odd cycle or a forest of paths [2]. Regular tournaments whose domination graphs are odd cycles will be considered here. A regular tournament T(S) can be defined as the rotational tournament with symbol S whose vertices are labeled by elements of \mathbb{Z}_n (the integers mod n), for odd integer $n \geq 3$, with arc (i,j) if $j-i \equiv s$, where $s \in S$ and s is a $\frac{n-1}{2}$ -set contained in \mathbb{Z}_n where $0 \notin S$ and $s_1 + s_2 \not\equiv 0$ for all $s_1, s_2 \in S$. Specifically, $S' = \{1, 3, 5, ..., n-2\}$, where odd n satisfies $0 \notin S'$ and $s_1 + s_2 \not\equiv 0$ for all $s_1, s_2 \in S'$. Define the rotational tournament $u_n = T(S')$ for odd $u_n \geq 1$. Un has vertices labeled by consecutive numbers $u_n = 1$ and has arcs $u_n = 1$ and has arcs $u_n = 1$ and has arcs $u_n = 1$ and $u_n = 1$ for all $u_n = 1$. In the following discussion, vertices will be labeled 0, 1, ..., n-1. Without loss of generality, it will be assumed to be a consecutive labeling in the clockwise direction in U_n . An example of a rotational tournament for n=5 using this labeling is shown in Figure 2, where $V(U_5)=\{0,1,2,3,4\}$, $S'=\{1,3\}$, and $d^+(i)=2$ for all $i\in V(U_5)$. Figure 2: The rotational tournament U_5 Throughout the remainder of this paper, it will be assumed in all proofs and discussions that i + p means $(i + p) \mod n$ for odd $n \ge 3$, $p \in \mathbb{Z}$. The following lemma describes the vertices that are not beaten by the pair of vertices i, i + k in U_n when k is odd, and gives the number of vertices they do not dominate. These characteristics are significant for the rest of the paper. **Lemma 2.1** Given $i \in V(U_n)$, $n \geq 3$, and k odd where $1 \leq k \leq n-2$, the vertices not beaten by either i or i+k are of the form i+d, where d=2,4,...,k-1. The number of vertices not beaten by the pair is $\frac{k-1}{2}$. **Proof:** By definition of U_n , $i \to i+k$ only for $k \in \{1,3,...,n-2\}$, and i+k does not beat any vertex of the form i+2q where $0 \le q \le \frac{k-1}{2}$, for each k. Therefore, the only vertices not beaten by i and i+k are of the form i+d where d=2,4,...,k-1, and there exist $\frac{k-1}{2}$ of these. \square Note that given $i \in V(U_n)$, only vertices i and i + k, where k is odd, are considered in Lemma 2.1. Consider the following proposition below, which addresses the vertices i and i + 2p, where $0 \le p \le \frac{n-1}{2}$. **Proposition 2.2** When considering all $i, i + k \in V(U_n)$, $n \geq 3$, the case where k is odd gives all possible pairings of vertices in $V(U_n)$. **Proof:** Let $i \in V(U_n)$. Consider the vertices i and i+2p where $0 \le p \le \frac{n-1}{2}$. The distance clockwise from vertex i to vertex i+2p is even. Since n is odd, the distance clockwise from i+2p to i must be odd. Thus, when j=i+2p and j+k=i, where k is the odd clockwise distance from i+2p to i, the pair is obtained. \square From Proposition 2.2, it follows that given $i \in V(U_n)$, $n \geq 3$, it is only necessary to consider vertices i and i + k, where k is odd, in order to produce all possible pairs of vertices in U_n . ### 3 Internal Chords in $dom(U_n^+)$ Let C_n be a cycle on n vertices. For odd $n \geq 3$, all of the edges in C_n are considered external and come from the definition of U_n , where $dom(U_n) = C_n$ by Fisher, et al. [8]. Let U_n^+ be an extended tournament where $i, j \in V(U_n^+)$, $i \neq j$, and let m be a nonnegative integer. A tie arc is an arc that creates a tie in U_n^+ when added to U_n . Any new arc added to U_n creates a tie in U_n^+ . Edge $\{i,j\}$ is an m-tie chord in $dom(U_n^+)$ if a minimum of m tie arcs must be added to U_n in order to produce the edge $\{i,j\}$ in the domination graph. This m-tie chord need not be the only chord created by the m arcs. Note if m=0, then edge $\{i,j\}$ is referred to as a 0-tie chord. This means that $\{i,j\}$ is an external chord in $dom(U_n^+)$, and is part of the original domination graph. If m>0, the m-tie chord is referred to as an m-tie internal chord, where the generated edge $\{i,j\}$ is an internal chord in $dom(U_n^+)$, and is not part of the original domination graph. The following propositions follow directly from the definition of regular tournaments. **Proposition 3.1** Let $i, j \in V(U_n)$, $i \neq j$, for $n \geq 3$. $|O(i) \cap O(j)| = m$ if and only if $n - 1 - |O(i) \cup O(j)| = m$. **Proposition 3.2** Let $i, j \in V(U_n)$, $i \neq j$, for $n \geq 3$. There are the same number of common vertices that i and j beat as there are the number of vertices that neither i nor j beat. Furthermore, this count does not include the vertices i and j. Remark 1 Consider consecutive vertices $i, i+1 \in V(U_n)$, for $n \geq 3$, where $0 \leq i \leq n-1$. $V(U_n) = O(i) \cup O(i+1) \cup \{i\}$ where $O(i) \cap O(i+1) = \emptyset$. By Proposition 3.1, $|O(i) \cap O(i+1)| = 0$ implies m = 0 and $|O(i) \cup O(i+1)| = n-1$. Therefore, $\{i, i+1\}$ is a 0-tie chord. As such, it is an external chord in $dom(U_n^+)$, since no new arcs must be added to U_n . **Proposition 3.3** Let $i, j \in V(U_n)$, $i \neq j$, for $n \geq 3$. If $n-1-|O(i) \cup O(j)| = m$ or $|O(i) \cap O(j)| = m$, then $\{i, j\}$ is an m-tie chord in dom (U_n^+) for some U_n^+ . **Proof:** Let $i, j \in V(U_n)$, $i \neq j$, for $n \geq 3$ and $m \geq 0$. By Proposition 3.1, $|O(i) \cap O(j)| = m$ if and only if $n - 1 - |O(i) \cup O(j)| = m$. Suppose that $n - 1 - |O(i) \cup O(j)| = m$. This means that there exists m vertices not beaten by i or j, excluding i and j. So a minimum number of m arcs must be added to U_n to create some U_n^+ which has $\{i,j\}$ as an edge in its domination graph. Thus $\{i,j\}$ is an m-tie chord in $dom(U_n^+)$. \square Suppose U_n is a rotational tournament for $n \geq 5$ where $i \in V(U_n)$. By Lemma 2.1, if k = 3, then the vertices not beaten by i or (i + 3) are of the form (i + 2). Results from Factor and Factor [3] involving arcs added to U_n from vertices that beat the vertex (i + 2) and form a tie in U_n^+ are as follows. **Proposition 3.4** [3] $dom(U_n \cup (i+3, i+2)) = C_n \cup \{i, i+3\}.$ **Proposition 3.5** [3] $dom(U_n \cup (i, i+2)) = C_n \cup \{i, i+3\}.$ In either case, we see that $\{i, i+3\}$ is a 1-tie internal chord in $dom(U_n^+)$, since U_n^+ is created by adding a minimum of one arc to U_n , creating one tie in U_n^+ . Note that when either arc (i+3,i+2) or arc (i,i+2) or both are added to U_n , giving U_n^+ , only the one internal chord $\{i,i+3\}$ is generated. This is true for each of the n vertices $i \in V(U_n^+)$. A natural question that arises is whether an m-tie internal chord can be created without producing additional chords. If $\{i,j\}$ is an m-tie internal chord, it is easy to see that adding arcs from i to each of the m vertices not beaten by either i or j will produce the chord $\{i,j\}$ in the domination graph. However, it is not guaranteed that only the one chord will be produced in this manner. For example, let $i \in V(U_n)$ where i=0 and n=5. By definition of U_5 , 0 beats 1, and 0 beats 3. Add arcs (0,2) and (0,4) to generate U_5^+ . Since 0 beats all vertices then so will any other vertex paired with 0. Therefore, $\{0,3\}$ and $\{0,4\}$ are generated in $dom(U_5^+)$. Thus, there is a need to characterize a set of arcs whose addition to $A(U_n)$ will generate exactly the one edge $\{i,j\}$ in $dom(U_n^+)$. As a first step in this process, the following results characterize the vertices comprising an m-tie internal chord in $dom(U_n^+)$ and enumerate the additional vertices that must be added to the set $O(i) \cup O(j)$ in U_n with corresponding tie arcs in U_n^+ . **Lemma 3.6** Let $i \neq j \in V(U_n)$, such that j = i + k, for k odd and $1 \leq k \leq n-2$. Then $\{i,j\}$ is an m-tie chord in dom (U_n^+) if and only if $m = \frac{k-1}{2}$. **Proof:** (\Rightarrow) Let $i \neq j \in V(U_n)$, such that j = i + k, for k odd and $1 \leq k \leq n-2$. Let $\{i,j\}$ be an m-tie chord in $dom(U_n^+)$. Therefore, a minimum of m-tie arcs must be added to U_n in order to create $\{i,j\}$ in $dom(U_n^+)$. By Lemma 2.1, the only vertices not beaten in U_n by $\{i,i+k\}$, k odd, $1 \leq k \leq n-2$, are of the form i+d where d=2,4,...,k-1, and there are $\frac{k-1}{2}$ of these vertices. Therefore, $m=\frac{k-1}{2}$. (\Leftarrow) Let $i \neq j \in V(U_n)$, such that j = i + k, for k odd and $1 \leq k \leq n - 2$. By definition of U_n , i beats j and $n - 1 - |O(i) \cup O(j)|$ is the number of vertices not beaten by i or j, excluding the pair. By Lemma 2.1, the number of vertices that neither i nor i + k beat is $\frac{k-1}{2}$. Let $m = \frac{k-1}{2}$. Proposition 3.3 states that $\{i, i + k\}$ is an m-tie chord in $dom(U_n^+)$ for some U_n^+ . From Lemma 3.6, it follows that there are different types of m-tie chords possible in the same domination graph of an extended rotational tournament. For example, let n=9. Then $\{i,i+1\}$ is a 0-tie chord, $\{i,i+3\}$ is a 1-tie internal chord, $\{i,i+5\}$ is a 2-tie internal chord, and $\{i,i+7\}$ is a 3-tie internal chord in $dom\left(U_9^+\right)$ for $i\in V\left(U_9^+\right)$. Figure 3 illustrates this, where i=0. Figure 3: Different m-tie chords in $dom(U_9^+)$ **Corollary 3.7** Let $i, j \in V(U_n)$, $n \geq 3$, where j > i. j = i + 2m + 1 for $0 \leq m \leq \frac{n-3}{2}$ if and only if $\{i, j\}$ is an m-tie chord in dom (U_n^+) . **Proof:** Note that $m = \frac{k-1}{2} \Leftrightarrow k = 2m+1$. Let $i, j \in V(U_n), n \geq 3$, where j > i. By Lemma 3.6, $j = i + 2m + 1, 0 \leq m \leq \frac{n-3}{2}$ if and only if $\{i, j\}$ is an m-tie chord in $dom(U_n^+)$. \square **Theorem 3.8** Let U_n^+ be the extended rotational tournament for $n \geq 5$. Then there are exactly n distinct m-tie internal chords in dom (U_n^+) for each m where $1 \leq m \leq \frac{n-3}{2}$. **Proof:** Let $n \geq 5$ and $1 \leq m \leq \frac{n-3}{2}$. By Corollary 3.7, $\{i, i+2m+1\}$ is an m-tie internal chord for each $i \in V(U_n)$. Further, if j = i+2m+1, then $i \neq j+2q+1$ for any integer q, since an even number must be added to j in order to obtain i when n is odd. Thus $\{i, i+2m+1\} \neq \{j, j+2m+1\}$ for all $i \neq j$, and as there are n ways to choose i, there exist exactly n distinct m-tie internal chords. \square Table 1 makes use of Corollary 3.7 and Theorem 3.8. | n | m | Number of internal chords | |---|---|---------------------------------------------| | 3 | 0 | None | | 5 | 1 | Five 1-tie internal chords | | 7 | 2 | Seven each 1- and 2- tie internal chords | | 9 | 3 | Nine each 1-, 2-, and 3-tie internal chords | Table 1: n distinct m-tie internal chords The following lemma characterizes the *m*-tie internal chords $\{i, j\}$, j = i + k, in $dom(U_n^+)$ for $n \ge 5$, where k is odd, $3 \le k \le n - 2$. **Lemma 3.9** Let $i, j \in V(U_n)$, $n \geq 5$, where j > i and $1 \leq m \leq \frac{n-3}{2}$. Then $\{i, j\}$ is an m-tie internal chord in dom (U_n^+) if and only if $i + d \notin O(i) \cup O(j)$ in U_n and $i + d \in O(i) \cup O(j)$ in U_n^+ , for $d \in \{2, 4, ..., 2m\}$. **Proof:** (\Rightarrow) Let $i,j \in V(U_n), n \geq 5$, where j > i. Let $\{i,j\}$ be an m-tie internal chord in $dom(U_n^+)$. By Corollary 3.7, $j = i + 2m + 1, 1 \leq m \leq \frac{n-3}{2}$. Letting k = 2m + 1 in Lemma 2.1 we see that $i + d \notin O(i) \cup O(j)$ for $d \in \{2,4,...,2m\}$. By assumption, $\{i,j\}$ is an m-tie internal chord of $dom(U_n^+)$, so i and j must beat these m vertices in U_n^+ . Consequently, $i + d \in O(i) \cup O(j)$ in U_n^+ . (\Leftarrow) Let $i,j\in V$ $(U_n), n\geq 5$, where j>i. Assume $i+d\notin O$ $(i)\cup O$ (j) in U_n , and $i+d\in O$ $(i)\cup O$ (j) in U_n^+ for $d\in \{2,4,...,2m\}$, where $1\leq m\leq \frac{n-3}{2}$. This exhibits m vertices not dominated by i or j and hence at least m arcs must be added to U_n to create some U_n^+ with $\{i,j\}$ an edge in dom (U_n^+) . Since $(i+d)\in O$ $(i)\cup O$ (j) in U_n^+ for $d\in \{2,4,...,2m\}$, then $\{i,i+2m+1\}=\{i,j\}$ and $\{i,j\}$ is an m-tie internal chord in dom (U_n^+) . \square Note that if n=3 and k=1, then m=0, and all edges are external on $dom\left(U_3^+\right)=C_3$. Consequently, there are no internal chords (i.e., they are all 0-tie chords). By Lemma 3.9, if $i,j\in V\left(U_n\right), n\geq 5$, where j=i+k for each $k\in\{3,5,...,n-2\}$, $\{i,i+k\}$ is an m-tie internal chord in $dom\left(U_n^+\right)$, where $m=\frac{k-1}{2}$, if and only if the vertices i and i+k together beat vertices $\{i+2,i+4,...,i+k-3,i+k-1\}$, for each $i\in V\left(U_n^+\right)$. The form of the m-tie internal chord in $dom\left(U_n^+\right)$, where $m=\frac{n-3}{2}$, is $\{i,i+n-2\}$. Further, vertices i and i+n-2 must additionally beat vertices $\{i+2,i+4,...,i+n-3\}$, for each $i\in V\left(U_n^+\right)$. In the specific case where n=3 and m=0 (no internal chords), vertex i beats vertex i+1 in the definition of U_3 . Thus, $dom\left(U_3^+\right)=dom\left(U_3\right)=C_3$ for any number of tie arcs that might be added to U_3 in order to form U_3^+ . Again, this is an example where arcs can be added to U_n that create a U_n^+ where the domination graph of U_n is the same as the domination graph of U_n^+ . Recall from Proposition 2.2, given $i \in V(U_n)$, $n \geq 3$, it is only necessary to consider vertices i and i+k, where k is odd, in order to generate all possible pairings in U_n . This is also true for all possible pairings of vertices in $dom(U_n^+)$, since $V(U_n) = V(U_n^+)$. This fact along with Corollary 3.7 motivates the following definition of the set X_n^m , for the specific U_n^+ , for each odd $n \geq 3$, and all $0 \leq m \leq \frac{n-3}{2}$. $X_n^m = \{\{\tilde{i},j\} \mid j=i+k \text{ where } k=2m+1 \text{ and } \{i,j\} \text{ is an } m\text{-tie chord in some } dom\left(U_n^+\right)\}$ Note that for m=0, X_n^0 is the set of external chords. For m>0, X_n^m is the set of possible m-tie internal chords in $dom(U_n^+)$ of the form $\{i,i+2m+1\}$, $i\in V(U_n^+)$ for each $n\geq 3$. Combining the preceding results and using the definition for X_n^m , the following lemma and theorem are obtained for the case where $dom(U_n^+) = K_n$, $n \ge 3$. **Lemma 3.10** For each odd $n \ge 3$, let $M = \frac{n-3}{2}$ and dom $(U_n^+) = K_n$. Then the following are true: - 1. $|X_n^m| = n$ for each m, where $0 \le m \le M$. - 2. For $m_1 \neq m_2$, $0 \leq m_1, m_2 \leq M$, $X_n^{m_1} \cap X_n^{m_2} = \emptyset$. **Proof:** For each odd $n \geq 3$, let $M = \frac{n-3}{2}$, $dom\left(U_n^+\right) = K_n$, and X_n^m be defined as above, where $0 \leq m \leq \frac{n-3}{2}$. By Theorem 3.8, the number of distinct m-tie chords is n, so $|X_n^m| = n$ for each m where $0 \leq m \leq M$, giving the first result. For the second result, where $m_1 \neq m_2$, note that $X_n^{m_1}$ consists of chords of the form $\{i, i+k_1\}$ where $k_1 = 2m_1 + 1$, and $X_n^{m_2}$ consists of chords of the form $\{i, i+k_2\}$ where $k_2 = 2m_2 + 1$, for all $i \in V\left(U_n^+\right)$. Since $m_1 \neq m_2$, for $0 \leq m_1, m_2 \leq M$, then $k_1 \neq k_2$. Consequently, $X_n^{m_1} \cap X_n^{m_2} = \varnothing$. \square Lemma 3.10 proves that for a given odd $n \geq 3$, the set of n distinct m_1 -tie internal chords has no chords in common with the set of n distinct m_2 -tie internal chords in $dom(U_n^+)$, for all $m_1 \neq m_2$ where $0 \leq m_1, m_2 \leq \frac{n-3}{2}$. **Theorem 3.11** For each odd $n \ge 3$, let $M = \frac{n-3}{2}$ and dom $(U_n^+) = K_n$. Then $\bigcup_{m=0}^M X_n^m$ consists of all chords in dom (U_n^+) . Further, $\binom{n}{2} = \left|\bigcup_{m=0}^M X_n^m\right|$. **Proof:** By Corollary 3.7 and Lemma 3.10, for each odd $n \ge 3$, every edge of $dom(U_n^+)$ is in X_n^i for some $1 \le i \le \frac{n-3}{2}$. So, $\left| \bigcup_{m=0}^M X_n^m \right| = |E(K_n)| = \binom{n}{2}$. Given any edge in K_n , that edge must be some m-tie chord of $dom(U_n^+)$ for some U_n^+ . This is addressed in the following corollary. **Corollary 3.12** If $\{i,j\}$ is an edge in K_n , odd $n \geq 3$, then there exists an extended tournament U_n^+ such that for a certain m, $0 \leq m \leq \frac{n-3}{2}$, $\{i,j\} \in E$ (dom (U_n^+)) is an m-tie chord. Further, there are $\frac{n-1}{2}$ distinct types of m-tie chords possible. **Proof:** The first part follows directly from Theorem 3.11. Further, there are $\frac{n-3}{2}$ types of internal chords and one type of external chord, giving a total of $\frac{n-1}{2}$ distinct types of m-tie chords possible. \square ### 4 Tie-Arcs in U_n^+ This section characterizes how the tie arcs added to U_n are chosen in order to create an extended tournament U_n^+ whose domination graph will contain specific m-tie internal chords, where $n \geq 5$, $1 \leq m \leq \frac{n-3}{2}$, without any additional chords. **Proposition 4.1** Let $i, j \in V(U_n)$ for $n \geq 5$, $1 \leq m \leq \frac{n-3}{2}$ and j = i+2m+1. There exist exactly 2^m possible sets of m arcs that each when added to U_n to produce the m-tie internal chord $\{i, j\}$ in $dom(U_n^+)$. **Proof:** Let $i, j \in V(U_n)$ for $n \ge 5$, $1 \le m \le \frac{n-3}{2}$ and j = i + 2m + 1. $\{i, j\} \notin E(dom(U_n))$ since $j \ne i + 1$ or i + 2n + 1. One arc from vertex i or vertex j to each of these vertices to make U_n^+ will create $\{i, j\}$ in $dom(U_n^+)$ by i or j, by Lemma 3.9. There are 2^m such collections of exactly m arcs. \square By Proposition 4.1, for m=1, $n \geq 5$, there are 2 sets, with 1 arc each, either of which will create a 1-tie internal chord of the form $\{i, i+3\}$ in $dom(U_n^+)$. Propositions 3.4 and 3.5 show that $\{i, i+3\}$ is unique for either of the 2^1 arcs (i, i+2) or (i+3, i+2) added to U_n for $i \in V(U_n)$. **Proposition 4.2** Let $i, j \in V(U_n)$ for $n \geq 7$, $1 \leq m \leq \frac{n-3}{2}$ and j = i+2m+1. There exists at least one collection of m arcs that when added to U_n produces $\{i, j\}$ and at least one other internal chord in $dom(U_n^+)$. Furthermore, exactly m internal chords can be created that are incident with i in $dom(U_n^+)$. **Proof:** Let $i,j \in V\left(U_n\right)$ for $n \geq 7, 1 \leq m \leq \frac{n-3}{2}$ and j=i+2m+1. By Corollary 3.7, $\{i,j\}$ is an m-tie internal chord in $dom\left(U_n^+\right)$. Consider the set constructed by allowing i to beat all m of the vertices i+2, i+4, ..., i+2m. Thus, using Lemma 3.6 and Lemma 3.9, the 1-tie internal chord $\{i,i+3\}$ is formed when i beats vertex i+2 and the 2-tie internal chord $\{i,i+5\}$ is created when i also beats vertex i+4. Continuing in this manner, the m-tie internal chord $\{i,i+2m+1\}$ is created when i also beats vertex i+2m. Therefore, exactly m internal chords can be created that are incident with i in $dom\left(U_n^+\right)$. Consequently, $dom\left(U_n^+\right)$ has at least one other internal chord created by a set of m arcs added to $A\left(U_n\right)$. \square Figure 4: Different sets of 3 arcs added to U_9 produce different internal chords in $dom(U_9^+)$ From the above proposition, different sets of m arcs added to U_n can each produce a different number of internal chords in $dom(U_n^+)$ for $n \geq 7$. For example, let n=9 and some $i \in V(U_9)$ and m=3. By the method used in Proposition 4.2, if (i,i+2), (i,i+4), and $(i,i+6) \in A(U_9^+)$, then there are exactly 3 internal chords, each of a different type, created in $dom(U_9^+)$: the 3-tie internal chord $\{i,i+7\}$, the 2-tie internal chord $\{i,i+5\}$, and the 1-tie internal chord $\{i,i+3\}$. For i=0, see Figure 3. Note, that it is even possible to generate more than 3 internal chords by adding only 3 arcs to U_9 . Consider, if (i,i+2), (i,i+4), and $(i+7,i+6) \in A(U_9^+)$, then there are four internal chords created in $dom(U_9^+)$: the 3-tie internal chord $\{i,i+7\}$, the 2-tie internal chord $\{i,i+5\}$, and the two 1-tie internal chords $\{i,i+3\}$ and $\{i+4,i+7\}$. This phenomenon is shown in Figure 4(a) where i=0. If, however, the three arcs (i+7,i+2), (i,i+4), and $(i,i+6) \in A(U_9^+)$, only the single 3-tie internal chord $\{i,i+7\}$ is produced in $dom(U_9^+)$. For i=0, this is illustrated in Figure 4(b). Proposition 4.1 states that for odd $n \geq 5$, there exist exactly 2^m possible ways to produce an m-tie internal chord using exactly m arcs in $dom(U_n^+)$ for any $i \in V(U_n^+)$. By Proposition 4.2, for odd $n \geq 7$, $1 \leq m \leq \frac{n-3}{2}$, there exists at least one collection of m arcs that when added to U_n will create the m-tie internal chord $\{i, i+2m+1\}$ and at least one additional chord in $dom(U_n^+)$. The following theorem shows that there is at least one set of m arcs that when added to U_n will uniquely generate an m-tie internal chord in $dom(U_n^+)$, creating no additional chords (i.e., $dom(U_n^+) = dom(U_n) \cup \{i,j\}$ for any given $i,j \in V(U_n)$). **Theorem 4.3** Let $i, j \in V(U_n)$ for $n \ge 5$, $1 \le m \le \frac{n-3}{2}$, and j = i + 2m + 1. Then the following set of m arcs when added to U_n produces only the m-tie internal chord $\{i, i + 2m + 1\}$ in $dom(U_n^+)$: - 1. For $n \ge 5$ and m = 1, $\{(i+3, i+2)\}$. - 2. For $n \geq 7$ and $2 \leq m \leq \frac{n-3}{2}$, $\{(i, i+d) \mid d = 4, 6, ..., 2m\} \cup \{(i+2m+1, i+2)\}$. **Proof:** Let $i, j \in V(U_n)$ for $n \ge 5$, $1 \le m \le \frac{n-3}{2}$, and j = i + 2m + 1. In Case 1, $n \ge 5$ and m = 1. As a consequence of Proposition 3.4, only the additional chord $\{i, i + 3\}$ is created in $dom(U_n^+)$ when $U_n^+ = U_n \cup (i + 3, i + 2)$. Now consider Case 2. For odd $n \ge 7$ and $2 \le m \le \frac{n-3}{2}$, the set of m arcs added to U_n is $\{(i,i+d) \mid d=4,6,...,2m\} \cup \{(i+2m+1,i+2)\}$. By Lemma 3.9, $\{i,i+2m+1\}$ is an m-tie internal chord in $dom(U_n^+)$. Now it remains to be shown that no other chord is produced by these m arcs in $dom(U_n^+)$ other than $\{i,i+2m+1\}$. Suppose that there is another r-tie internal chord created in $dom(U_n^+)$ by the given set of m arcs. Note $1 \le r < m$ since there are only m arcs added. By Lemma 3.6 and Lemma 3.9, letting k = 2r + 1, the vertices i and i+k must together beat the vertices (i+2), (i+4),..., (i+k-1) for every $i \in V(U_n)$. Note, $(i+2)-(i+2r+1)=2-2r-1=-2r+1\equiv n-2r+1 \pmod n$ which is even. Therefore, $(i+k,i+2)\notin A(U_n)$ and is unique in $A(U_n^+)$. Since the only arc whose head is i+2 which is unique to $A(U_n^+)$ is (i+2m+1,i+2), then it follows that r=m. But r must be less than m, which gives the contradiction. Therefore, only the one internal chord $\{i,i+2m+1\}$ is generated in $dom(U_n^+)$. \square **Corollary 4.4** For odd $n \ge 5$, $m = \frac{n-3}{2}$ is the maximum number of m-tie arcs that must be added to U_n to create only a specific internal chord in dom (U_n^+) . Consider for $n \geq 7$, $i \in V(U_n)$, if the arcs $\{(i,i+d) \mid d=4,6,...,n-3\}$ are added to U_n , then the only vertex not beaten by i is i+2. By Theorem 4.3, for any $1 \leq m \leq \frac{n-3}{2}$, if i+2m+1 beats i+2 and the arc (i+2m+1,i+2) is added to the above collection of arcs creating U_n^+ , then the edge $\{i,i+2m+1\}$ is an m-tie internal chord in $dom(U_n^+)$. Note $M = \frac{n-3}{2}$ is the number of arcs added to U_n to create U_n^+ and this set of M arcs generates $dom(U_n^+) = C_n \cup \{i,i+2m+1\}$ for any $1 \leq m \leq M$ and $i \in V(U_n)$. Recall from Proposition 2.2, it is only necessary to consider vertices $i, i+k \in V(U_n)$, where k is odd, in order to produce all possible pairs in U_n and consequently in $dom(U_n^+)$, since $V(U_n) = V(U_n^+)$. Because all $i+k \in V(U_n)$, k=2m+1, are defined by $1 \leq m \leq \frac{n-3}{2}$, then any chord can be created without producing any additional chords in $dom(U_n^+)$ with M arcs. This result is stated in the following corollary. **Corollary 4.5** For odd $n \ge 5$, there exists exactly $\frac{n-3}{2}$ arcs that can be added to U_n to produce only a specific internal chord in dom (U_n^+) . **Proof:** By Theorem 4.3 and Proposition 2.2. \Box **Theorem 4.6** For odd $n \geq 5$, $i \in V(U_n)$, any set of internal chords can be created in dom (U_n^+) by adding to U_n the arcs $\{(i,i+d) \mid d=4,6,...,n-3\}$ and $\bigcup_L \{(i+2m+1,i+2)\}$, where $L \subseteq \{m \in \mathbb{Z} \mid 1 \leq m \leq \frac{n-3}{2}\}$, such that none of these sets of arcs will create any extraneous chords in dom (U_n^+) . **Proof:** For odd $n \geq 5$, $i \in V(U_n)$, by Corollary 4.5, exactly $\frac{n-3}{2}$ arcs can be added to U_n to create any specific internal chord in $dom(U_n^+)$. In particular, add the arcs $\{(i,i+d) \mid d=4,6,...,n-3\}$ and the arc $(i+2m_1+1,i+2)$ to U_n to create U_n^+ , for any $1 \leq m_1 \leq \frac{n-3}{2}$ and $i \in V(U_n)$. Then, for $i \in V(U_n)$ and $m_1 \in \{m \in \mathbb{Z} \mid 1 \leq m \leq \frac{n-3}{2}\}$, $dom(U_n^+) = C_n \cup \{i,i+2m_1+1\}$. By Theorem 4.3, no additional chords are produced in $dom(U_n^+)$. This remains true for all $L \subseteq \{m \in \mathbb{Z} \mid 1 \leq m \leq \frac{n-3}{2}\}$ since each of the added arcs in U_n^+ are all of the form (i+2m+1,i+2), i.e., i+2m+1 always beats the vertex i+2. \square # 5 Cycles in $dom(U_n^+)$ Recall that there is no tournament T_n that generates an even cycle as a subgraph in $dom(T_n)$ [2]. The following lemma shows that there exist extended tournaments, namely U_n^+ , for which even cycles of length λ , $4 \le \lambda \le (n-1)$, exist as subgraphs of $dom(U_n^+)$ for every $n \ge 5$. **Lemma 5.1** For odd $n \ge 5$, by properly adding arcs to U_n to create U_n^+ , there exists an even cycle of length λ for all $\lambda \in \{4, 6, ..., n-1\}$ in dom (U_n^+) . **Proof:** For each odd $n \geq 5$, consider U_n and $i \in V(U_n)$. By Theorem 4.3, there exists a distinct set of m arcs that can be added to U_n to produce only the m-tie internal chord $\{i, i+2m+1\}$ for $1 \leq m \leq \frac{n-3}{2}$ in $dom(U_n^+)$. For each odd k, there exists k edges plus the chord $\{i, i+k\}$, creating an even cycle of length k+1. Therefore, for each specific odd $n \geq 5$, an even cycle in $dom(U_n^+)$ of length λ is created where $\lambda \in \{4, 6, ..., n-1\}$. \square From Lemma 5.1, it follows that at least $\frac{n-3}{2}$ different even cycles can be generated in $dom(U_n^+)$, for each odd $n \ge 5$. For example, see Figure 3 where n=9. In this figure, the 1-tie chord creates C_4 , the 2-tie chord creates C_6 , and the 3-tie chord creates C_8 as generated subgraphs in $dom(U_9^+)$. Here, there exists $\frac{9-3}{2}=3$ different lengths of even cycles and $4 \le \lambda \le 8$ for even λ . ### Acknowledgment The author thanks the referee for the constructive suggestions which have contributed to the quality of this paper. #### References - [1] H.H. Cho, F. Doherty, J.R. Lundgren and S.R. Kim. Domination graphs of regular tournaments II, *Congressus Numerantium* 130 (1998) 95-111. - [2] H.H. Cho, S.R. Kim, and J.R. Lundgren. Domination graphs of regular tournaments. *Discrete Mathematics* **252** (2002) 57-71. - [3] J.D. Factor and K.A.S. Factor. Partial domination graphs of extended tournaments. *Congressus Numerantium* 158 (2002) 119-130. - [4] K.A.S. Factor. Domination graphs of compressed tournaments, *Congressus Numerantium* **157** (2002) 63-78. - [5] D.C. Fisher, J.R. Lundgren, D. Guichard, S.K. Merz and K.B. Reid. Domination graphs with nontrivial components, preprint. - [6] D.C. Fisher, J.R. Lundgren, D. Guichard, S.K. Merz and K.B. Reid. Domination graphs of tournaments with isolated vertices, preprint. - [7] D.C. Fisher, J.R. Lundgren, S.K. Merz and K.B. Reid. Connected domination graphs of tournaments, *JCMCC* 31 (1999) 169-176. - [8] D.C. Fisher, J.R. Lundgren, S.K. Merz and K.B. Reid. The domination and competition graphs of a tournament, *Journal of Graph Theory* 29 (1998) 103-110. - [9] D.C. Fisher, J.R. Lundgren, S.K. Merz and K.B. Reid. Domination graphs of tournaments and digraphs, Congressus Numerantium 108 (1995) 97-107. - [10] G. Jimenez and J.R. Lundgren. Tournaments which yield connected domination graphs, *Congressus Numerantium* 131 (1998) 123-133.