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ABSTRACT. Let € be any class of finite graphs. A graph G is C-
ultrahomogeneous if every isomorphism between induced subgraphs
belonging to € extends to an automorphism of G. We study finite
graphs that are K.-ultrahomogeneous, where K. is the class of com-
plete graphs. We also explicitly classify the finite graphs that are
LK .-ultrahomogeneous, where UK, is the class of disjoint unions of
complete graphs.

1. INTRODUCTION

A mathematical structure is called ultrahomogeneous if every isomor-
phism between finite substructures can be extended to an automorphism.
In the context of graph theory, a graph G is ultrahomogeneous if every iso-
morphism between finite induced subgraphs extends to an automorphism of
G. Gardiner [5] gave an explicit classification of the finite ultrahomogeneous
graphs using the previous work of Sheehan (13].

One can vary this basic definition in many interesting ways. For example,
G is homogeneous if for every pair of finite isomorphic subgraphs H; and Ha,
there exists an isomorphism H; — H, that extends to an automorphism of
G. The difference between homogeneity and ultrahomogeneity is whether or
not the isomorphism H; — Hj is specified. Ronse [12] showed that a finite
graph is homogeneous if and only if it is ultrahomogeneous. Two different
variations are considered in [4] and [10].

Yet other variations arise by considering only certain types of subgraphs.
A graph G is connected-ultrahomogeneous if every isomorphism between
connected induced subgraphs extends to an automorphism of G. Gardiner
[6] explicitly classified the connected-ultrahomogeneous graphs.

Definition 1.1. Let € be any class of finite graphs closed under isomor-
phism. A graph G is C-ultrahomogeneous if every isomorphism between
induced subgraphs belonging to € extends to an automorphism of G.

This definition recovers the original notion of ultrahomogeneity by tak-
ing € to be the class of all finite graphs. Similarly, we recover connected-
ultrahomogeneity by taking C to be the class of all finite connected graphs.

This research was supported by NSF REU grant DMS-0139018.

ARS COMBINATORIA 82(2007), pp- 83-96



If H is a given fixed finite graph, we say that another graph G is H-ultra-
homogeneous if it is { H }-ultrahomogeneous. This is equivalent to requiring
that the automorphism group Aut(G) of the graph G acts transitively on
the set of induced subgraphs that are isomorphic to H.

In this paper, we choose a few specific examples of reasonable classes € and
study the finite C-ultrahomogeneous graphs. Because complete subgraphs
are a common subject of study for graph theorists (see, for example, [9] or
[11]), we are interested in the class K, of all finite complete graphs. Thus, we
are considering graphs G such that any isomorphism between finite complete
subgraphs of G extends to an automorphism. Note that the K,-ultrahomo-
geneous graphs include all ultrahomogeneous and connected-ultrahomogen-
eous graphs, since these are stronger conditions than K,-ultrahomogeneity.

Unfortunately, we are able to obtain only partial results about the X,-
ultrahomogeneous graphs. In order to prove something more substantial, we
also consider the UK,-ultrahomogeneous graphs, where UK, is the class of
graphs that are disjoint unions of complete graphs. The class LUK, consists
of all graphs of the form

Ko UKy U---UK;,.

In Section 4, we classify the finite UK ,-ultrahomogeneous graphs explic-
itly. We find that the class of finite LIK,-ultrahomogeneous graphs is only
slightly larger than the class of ultrahomogeneous graphs. This enlightens us
about the nature of ultrahomogeneity for graphs. Considering all subgraphs
turns out to be a highly redundant condition. The seemingly much weaker
condition of UK,-ultrahomogeneity turns out be nearly equivalent.

The classification of finite ultrahomogeneous graphs contains two sporadic
graphs and two infinite families. In our classification, one of these sporadic
graphs, K3 x K3, becomes an infinite family. It would be interesting to find
a homogeneity property that expands the other sporadic graph, Cs, into an
infinite family.

In this paper, we consider ultrahomogeneity only for finite undirected
graphs. Many of the questions that we answer can be asked for infinite
graphs, but we focus exclusively on finite graphs. Therefore, from now on,
whenever we use the word “graph”, we always mean a finite graph.

Ultrahomogeneity makes sense in many other combinatorial contexts,
such as finite geometries (2] and infinite graph theory [8]. Ultrahomogeneity
tends to be a highly redundant condition in these contexts also. For exam-
ple, [2] shows that ultrahomogeneity with respect to subsets of at most 6
points implies ultrahomogeneity in general for a certain kind of finite geom-
etry. Also, [1, Thm. 3.2] implies that ultrahomogeneity for finite graphs is
implied by ultrahomogeneity with respect to subgraphs on at most 5 ver-
tices. We strongly suspect that it is possible to establish more redundancy
results of this type.
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1.1. Notation. For any graph G and any positive integer ¢, let tG be the
graph that consists of ¢ disjoint copies of G.

Recall that if G and H are graphs, then the Cartesian product G x H is
graph whose vertex set is the product of the vertex sets of G and H such
that two vertices (v1,w;) and (vp,w2) are adjacent if and only if v1 = v
and w; and we are adjacent in H, or if wy; = wp and v; and v, are adjacent
in G. Let G* denote the ¢-fold Cartesian product of G with itself.

If t and n are positive integers, let K¢;n be the complete regular multi-
partite graph containing ¢ partite sets, each of which has n elements. Thus,
K. is the complete regular multipartite graph with order nt and degree
n(t —1). For example, Kj;, is the graph nK}, and Ky is the graph K.

2. C-ULTRAHOMOGENEOUS GRAPHS

We present in this section some general results about C-ultrahomogeneity
that will be useful later.

Definition 2.1. If € is any class of graphs, then € is the class of graphs
whose complements belong to €.

For example, the class K, contains all graphs that consist entirely of
disjoint vertices. Also, the class UK, consists of all multipartite complete
graphs.

The following theorem will allow us to check whether a graph is C-ultra-
homogeneous simply by examining its complement, which in some cases is
an easier task.

Theoz_em 2.2. A graph G is C-ultrahomogeneous if and only if its comple-
ment G is C-ultrahomogeneous.

Proof. We prove the backward direction. The proof in the other direction
is identical because the complement of the complement of a graph is the
original graph.

Suppose that G is C-ultrahomogeneous. We need to show that G is -
ultrahomogeneous. Let ¢ : Hy — H; be an isomorphism of subgraphs
in G, where H, and Hj belong to C. Then ¢ canomcally determines an
1somorphlsm ¢ : Hy — Hy in G, where H, and H, belong to €. Since G
is (‘!—ultrahomogeneous, there exists an automorphism ¥ of G taking H; to
H,. Now 3 canonically determines an automorphism % of G taking H; to
H,, and 9 extends ¢.

3. K.-ULTRAHOMOGENEOUS GRAPHS

In this section, we give some examples of K,-ultrahomogeneous graphs.
Any ultrahomogeneous graph or connected-ultrahomogeneous graph is K,-
ultrahomogeneous. These are not the only examples. For example, any
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vertex-transitive, strongly edge-transitive, triangle-free graph is K,-ultra-
homogeneous.

Proposition 8.1. Let G be a K, -ullrahomogeneous graph. Then the t-fold
Cartesian product G* is K,-ullrahomogeneous.

Proof. Suppose that H is an induced subgraph of G* such that H is iso-
morphic to K, for some n. Then H is of the form {v1} x {v2} x -++ x J x
-»» X {v¢—1}, where J is isomorphic to K,. By permuting factors, there
exists an automorphism of G taking H to H’, where H’ is of the form
J x {v1} x {va} x - -- x {ve—1}. Since G is K;-ultrahomogeneous (i.e., vertex-
transitive), there exists an automorphism of G taking H' to H”, where H"
is of the form J x {v} x {v} x --- x {v}, for some fixed vertex v. Finally,
since G is K,-ultrahomogeneous, there exists an automorphism taking H”
to any other subgraph of the form L x {v} x {v} x --- x {v}, where L is
isomorphic to K. O

Note that for an ultrahomogeneous graph G, the graph G* is not neces-
sarily ultrahomogeneous. In fact, K, x K, is K,-ultrahomogeneous but not
ultrahomogeneous for n > 3. This shows that there are K,-ultrahomogen-
eous graphs which are not already ultrahomogeneous.

It may seem natural to guess that G is ultrahomogeneous if it is both
K .-ultrahomogeneous and K ,-ultrahomogeneous, but this is not true. For
example, K, X K, for n > 3 is K,-ultrahomogeneous and K,-ultrahomo-
geneous but not ultrahomogeneous, as will be shown below in Lemma 3.3.

Lemma 3.2. The graph K, x K, is K,-ulirahomogeneous.

Proof. In the graph K., x Ky, two vertices (vy,w1) and (vp,ws) are ad-
jacent if and only if v; # vy and w; # ws. Let H and H’ be induced
subgraphs isomorphic to K, and let {(vi,w), (v2,w2,),..., (v, u:)} and
{(v}, 1), (v, w3,), ..., (vi,w})} be the sets of vertices of H and H’ respec-
tively. Let ¢ be the isomorphism that takes (v;, w;) to (v!,w!). Note that the
vertices vy,vs,...,v, are distinct. Similarly, the vertices w;,ws,...,w, are
distinct; the vertices v}, v, ..., v} are distinct; and the vertices w}, w}, ..., w}
are distinct.

Choose any permutation of the vertices of K., that takes each v; to v},
and choose any permutation of the vertices of K, that takes each w; to
w;. These permutations induce an automorphism of K,, x Kn, and this
automorphism extends ¢. ]

Lemma 3.3. For n > 3, the graph K, x K, is K.-ulitrahomogeneous and
K . -ultrahomogeneous but not ultrahomogeneous.

Proof. The graph K, x K, is K.-ultrahomogeneous because of Proposition
3.1. Also, by Lemma 3.2, __}g,. x K, is K,-ultrahomogeneous. Therefore, by
Theorem 2.2, K,, x K, is K .-ultrahomogeneous. However, K, x K, is not
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ultrahomogeneous. To see this, it is enough to show that K, x K, is not
2K,-ultrahomogeneous. Let H be the copy of 2K» spanned by the vertices
(v1,wn), (v1,w2), (v2, ws), (v2,ws), and let H’ be the copy of 2K, spanned
by the vertices (vy,w;), (v1,w2), (v2, ws), and (vs, w3). It is straightforward
to check that no automorphism of K, x K, takes H to H'. a

It is reasonable to ask whether all the graphs in the class K, are relevant.
Is there any subclass € of K, such that the K,-ultrahomogeneous graphs
are precisely equal to the C-ultrahomogeneous graphs? We do not know the
answer, but the following example is a preliminary step.

Example 3.4. We construct a graph G that is K;-ultrahomogeneous and
Ks-ultrahomogeneous but not Ksz-ultrahomogeneous. The idea to use Cay-
ley graphs to find such an example was brought to our attention through
the work of Doyle [3] who employed similar techniques to show that there are
vertex-transitive, edge-transitive graphs that are not strongly edge-transitive.

Let A be the group Zs x Zs. Let S = {(z,0),(0, z), (z,z) | = € Zs,z # 0}
be the generating set. It can be shown that the resulting Cayley graph
G = Cay(A; S) is K;-ultrahomogeneous and Ks-ultrahomogeneous. To see
that G is not K3-ultrahomogeneous, just consider the induced subgraphs H,
whose vertices are (0,0), (1,0), and (1,1), and Hz whose vertices are (0,0),
(1,0), and (2,0). Then any isomorphism between these two subgraphs does
not extend to an automorphism.

The following proposition tells us that we only need to consider connected
K.-ultrahomogeneous graphs if we wish to understand all K,-ultrahomogen-
eous graphs.

Proposition 3.5. If G is K.-ultrahomogeneous, then G is isomorphic to
tH, where H is a connected, K,-ultrahomogeneous graph.

Proof. Suppose G is K.-ultrahomogeneous. The case when G is connected is
trivial, so suppose G is not connected. Then G has at least two components.
Suppose for sake of contradiction that G has two components H; and Hp
that are not isomorphic. Let v; be a vertex of H; and vy a vertex of Ha.
Since G is K,-ultrahomogeneous, there exists an automorphism taking v; to
vo. This is a contradiction since H; is not isomorphic to Hj. O

4, UK,-ULTRAHOMOGENEOUS GRAPHS

Let M be the class of all complete (not necessarily regular) multipartite
graphs Ky, r,.....r., With n > 1 and each r; > 1. Note that M is the comple-
ment of the class LUK,. In order to understand the UK ,-ultrahomogeneous
graphs, we will study the M-ultrahomogeneous graphs and then apply The-
orem 2.2.

Note in particular that K, belongs to M (by taking r; = 1) and that
the disjoint union ¢K; of ¢ vertices also belong to M (by taking n = 1 and
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r; = t). Thus, every M-ultrahomogeneous graph is K,-ultrahomogeneous
and also K ,-ultrahomogeneous.

Definition 4.1. For any induced subgraph H of a graph G, let Ny (G)
be the induced subgraph of G consisting of the vertices 8 of G such that
B is adjacent to every vertex of H but not in H. Also, let Ng(G) be the
induced subgraph of G consisting of the vertices 8 of G such that 8 does not
belong to either H or Ny (G).

Note that when H consists just of a single vertex a, then Ny (G) (which
we also write as N,(G)) is the induced subgraph on the neighbors of a. Also
Na(G) is the induced subgraph on the vertices that are not adjacent to a.

We will classify the M-ultrahomogeneous graphs by induction on the num-
ber of vertices. The key inductive step is given by the following proposition.

Proposition 4.2. If G is M-ultrahomogeneous and H is an induced sub-
graph of G that belongs to M, then Ny (G) is also M-ultrahomogeneous.

Proof. Let ¢ : K — K’ be any isomorphism between induced subgraphs of
Ny(G) such that K and K’ belong to M. We need to show that ¢ extends
to an automorphism of Ny(G).

Let L be the induced subgraph of G consisting of the vertices of H together
with the vertices of K. Define L’ similarly, using the vertices of H and of K'.
Then there is an isomorphism ¢ : L — L’; it is the identity on the vertices
of H, and it is ¢ on the vertices of K.

Note that L and L’ also belong to M. Therefore, & extends to an au-
tomorphism 9 of G since G is M-ultrahomogeneous. Since 3 fixes H, it
restricts to an automorphism of Ny (G). O

We now give the explicit classification of M-ultrahomogeneous graphs.

Theorem 4.3. A graph is M-ultrahomogeneous if and only if it is isomor-
phic to:

(1) tKy, fort 21 andn>1;

(2) Kijn fort 22 andn > 2;

(8) Ky x Ky, forn >3; or

(4) Cs.

We give the main steps in the proof here, but the technical details are
recorded in lemmas later in this section.

Proof. By inspection, each listed graph is M-ultrahomogeneous. For the
other implication, suppose that G is M-ultrahomogeneous. If G is discon-
nected, then G belongs to the above list by Lemma 4.5 below.

Now we may assume that G is connected. The proof is by induction on
the number of vertices in G. If G contains one vertex, then G belongs to
the list. Assume now that n > 2 and that any M-ultrahomogeneous graph
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with strictly fewer than n vertices belongs to the list. Let G contain n
vertices. We need to show that G belongs to the list. Choose any vertex o
of G. By Proposition 4.2, N,(G) is again M-ultrahomogeneous, and it has
strictly fewer vertices than G. By the induction assumption, N,(G) belongs
to the list in the statement of the theorem. Lemmas 4.8, 4.9, and 4.10 below
indicate that N,(G) must be isomorphic to

(1) 2K, with n > 2;

(2) tK; witht > 1; or

(3) Kin witht >2andn > 1.
The situation when N,(G) = K, is included in Case (3). Lemmas 4.11,
4.12, and 4.13 provide an explicit description of G in cases (1), (2), and (3)
respectively. (|

The main point of Theorem 4.3 is to provide a classification of the UK -
ultrahomogeneous graphs. This is stated in the following corollary.

Corollary 4.4. A graph is UK, -ultrahomogeneous if and only if it is iso-
morphic to:

(1) tKy fort 21 andn > 1;

(2) Kip fort 22 andn > 2;

(3) Kn x Ky, for n>3; or

(4) Gs.
Proof. By Theorem 2.2, we just need to find the complements of the graphs
listed in Theorem 4.3. 0

The only difference between our classification and the classification of
ultrahomogeneous graphs [5) is that the graph K, x Ky, is not ultrahomo-
geneous when n > 3.

The rest of this section is dedicated to proving the technical lemmas
necessary for the proof of Theorem 4.3.

Lemma 4.5. If G is disconnected and M-ullrahomogeneous, then G is iso-
morphic to tK,, for somet>2 andn > 1.

Proof. Since G is 2K -ultrahomogeneous, every pair of non-adjacent vertices
belong to distinct components of G. This implies that G is a disjoint union
of complete graphs. But G is also vertex-transitive (i.e., K;-ultrahomogen-
eous), so each component has the same order. O

Lemma 4.6. If G is connected and M-ultrahomogeneous, then G has diam-
eter at most 2.

Proof. The graph G is vertex-transitive (i.e., K;-ultrahomogeneous), so the
graph N,(G) is independent (up to isomorphism) of a choice of vertex a in
G. If N,G is empty, then G has diameter 1. Otherwise, let 8 be any vertex
of No(G) (i.e., B is not adjacent to a) such that the distance from a to f is
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2. Since G is connected and since G is 2K;-ultrahomogeneous, the distance
between any two non-adjacent vertices must equal 2. a

In other words, in a connected M-ultrahomogeneous graph, any two ver-
tices are either adjacent or have at least one common neighbor.

Remark 4.7. Many of the proofs that follow use similar techniques, which
we introduce here. Some of these ideas were inspired by the methods of [12].

In Lemma 4.6, we proved that two non-adjacent vertices in a connected M-
ultrahomogeneous graph have at least one common neighbor. In fact, every
pair of non-adjacent vertices has the same number of common neighbors.
Let m be this number; note that it is at least one.

Let r be the number of vertices in N, (G) (i.e., the number of vertices
not adjacent to a). The total number of paths of length 2 from a to N4(G)
is equal to rm.

Now let d be the number of vertices in No(G) (i.e., the degree of ) and
let k be the degree of each vertex in No(G) (i.e., the number of copies of K3
containing any given edge). Then each vertex in No(G) has exactly d—k—1
neighbors in N,(G), so the total number of paths of length 2 from a to
Na(G) is equal to d(d — k — 1). Thus,

(4.1) rm=d(d-k-1).

We will use this equation frequently in the following proofs.

Choose a vertex B in No(G), and let s be the number of vertices in N4(G)
that are adjacent to every vertex of H. The graph H does not depend (up to
isomorphism) on the choice of 8 in I_V'.,(G) because G is 2K;-ultrahomogen-
eous; therefore s is independent of the choice of 8. Suppose that H belongs
to M. If H’ is isomorphic to H and also belongs to N,(G), then there is an
automorphism fixing a and taking H to H’. Therefore, in this case, if p is
the number of subgraphs of N,(G) that are isomorphic to H, then

(4.2) r = sp.

The condition on H will always be satisfied in the situations where we use
Equation (4.2) below.

Let v be the number of vertices in G, and let ¢, be the number of copies
of K, in the subgraph N,(G). Then a is contained in exactly g, copies of
Kn41. Since G is Kj-ultrahomogencous, every vertex is contained in exactly
gn copies of Kny1. Therefore, g,v equals n + 1 times the number of copies
of K41 in G, so

(4.3) n + 1 divides g,v.

Lemma 4.8. If G is connected and M-ultrahomogeneous and a is any vertex
of G, then No(G) is not isomorphic to Cs.
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Proof. For sake of contradiction, suppose that N,(G) is isomorphic to Cs.
Now G is regular of degree 5, and G has 6 + r vertices. Equation 4.1 tells
us that rm = 10, so r is a divisor of 10. Letting n = 2, Equation 4.3 tells us
that 3 divides 5(6 + ), so r is a multiple of 3. But there are no divisors of
10 that are also multiples of 3. O

Lemma 4.9. IfG is connected and M-ultrahomogeneous and a is any vertez
of G, then No(G) is not isomorphic to Kyn x K, withn > 3.

Proof. For sake of contradiction, suppose that N,(G) is isomorphic to K, x
K, with n > 3. To fix notation, let {(8;,d;)]1,5 =1,2,...,n} be the vertices
of No(G), where (4;, ;) and (&, &;) are adjacent if and only if i = kor j = L.

Let B be any vertex of N,(G), and let v be a vertex in No(G) that is
also adjacent to 8. We may assume that v is the vertex (d;,d;). Consider
N,(G), which is also isomorphic to K, x Kn; we know that it contains a,
B, (6:,81), and (8, 8;) for i # 1. It follows that B is adjacent to at least
two more vertices of No(G), one of the form (4;,d;) and one of the form
(8x, 81). Moreover, B is not adjacent to any other vertices of the form (4y, o)
or (d;, ;). Similarly one can show that 3 is adjacent to exactly 0 or 2 vertices
of each “row” or “column” of No(G).

Now N, g(G) must be isomorphic to a non-empty disjoint union of cycles
of even length. But N, g(G) is M-ultrahomogeneous by Proposition 4.2, so
by Lemmas 4.5 and 4.6, N, g(G) is actually isomorphic to Cq and m = 4.

There are (’2‘)2 copies of Cy in K, x Kn, so Equation 4.2 tell us that

2
r=s("
(=)
On the other hand, Equation 4.1 tells us that

4r =n?(n-1)2

It follows that s = 1, which means that for every copy C of Cy in No(G),
there exists exactly one vertex 8 in No(G) such that 8 is adjacent to each
vertex of C.

Now we know that G contains 1+n2+ (2)° vertices, and Na(G) contains
2n copies of K,,. By Equation 4.3, n+1 divides 2n(14n%+ ('2‘)2). Performing
arithmetic modulo n + 1,

2
0=2n (1+n2+(’2‘) ) = —6.

Thus 0 is congruent to —6 modulo n+1, so n+ 1 must divide 6. Since n > 3,
the only possibility is n = 5.

We are left only with the case n = 5. Since n > 3, the graph N,(G)
contains three vertices that are pairwise non-adjacent. Since G is 3K-ultra-
homogeneous, every set of three pairwise non-adjacent vertices has a common
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neighbor. If B; and B, are vertices of No(G) with no common neighbor in
Ng(G), then B8 and B> must be adjacent; otherwise, «, 81, and B2 are three
pairwise non-adjacent vertices with no common neighbor.

Let B be the vertex of No(G) that is adjacent to every vertex of a given
copy of Cy in No(G). There are 51 copies of Cy in N4(G) that do not
intersect this given copy of Cj4, and there are 51 vertices of I_V'a(G) that
correspond to these 51 copies of C4. None of these 51 vertices has a common
neighbor with 8 in N,(G), so these 51 vertices must all be adjacent to 8
because of the remark in the previous paragraph. This is impossible since
G is 25-regular. O

Lemma 4.10. Let G be connected and M-ultrahomogeneous, and let a be
any vertez of G. If No(G) is isomorphic to tKy, thenn=1 ort <2.

Proof. Let A, A2,..., A, be the components of N,(G), so each A; is a
complete graph. Let v be any vertex of N,(G); then N, (G) is isomorphic
to K,_i. Because G is K3-ultrahomogeneous, every pair of adjacent vertices
has exactly n — 1 common neighbors.

If 41 and <2 both belong to A;, then they are adjacent. Their common
neighbors consist entirely of o together with the other vertices of A;. In
other words, if B is not a neighbor of a, then Ng(G) N A; contains at most
one vertex. This implies that 1 < m < t. Equation 4.1 gives us the formula

(4.4) rm = n?t(t —1).
The number of copies of mK in No(G) is (:m)n"", so Equation 4.2 gives

the formula
r= ( ¢ )n"‘s.
m

Combining the previous two equations, we get the formula

(4.5) snm-2(t_1) =t-1.

m-—1

This means that ¢—1 cannot be strictly smaller than (\,_},), so there are only

four possible values for m: 1, 2, t — 1, and t. We treat each case separately.
In each case, we assume that ¢ > 3 and n > 2 and reach a contradiction.

First, note that when ¢ > 3, the graph N,(G) has three pairwise non-
adjacent vertices. Since G is 3K;-ultrahomogeneous, every set of three non-
adjacent vertices in G must have a common neighbor.

Case 1: m = 1. Let 8 be any vertex in No(G), and let v be its unique
neighbor in No(G). If § is another vertex in N,(G) that is not adjacent
to v, then 8 and § must be adjacent; otherwise , 8, and § would form a
set of three pairwise non-adjacent vertices with no common neighbor. In
other words, every vertex of N,(G) must be adjacent to B or « (or both).
From Equation 4.5, we know that s = n(t — 1). Thus, vy has s = n(t — 1)
neighbors in N4(G), so B has at least r —n(t — 1) neighbors in No(G). Now
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nt > nt(t —1) —n(t — 1) since G is nt-regular and since 7 = n%t(t —1). This
inequality can never hold when n >2 and ¢ > 3.

Case 2: m = 2. First of all, Equation 4.5 tells us that s = 1. Let 8 be
any vertex in No(G), and let «; and <, be its neighbors in N4(G). Since v,
and 4> have exactly n — 1 neighbors in N,(G) and since G is tn regular, v,
and +; have exactly n(t — 1) neighbors in No(G). Thus, there are exactly
2n(t — 1) — 1 vertices in N4(G) that are adjacent to v; or ¥, (or both). If §
is another vertex in N,(G) that is adjacent to neither v; nor 72, then 8 and
& must be adjacent; otherwise a, 8, and § would form a set of three pairwise
non-adjacent vertices with no common neighbor.

Therefore, 8 has at least r — 2n(t — 1) + 1 neighbors in N(G). Taking
into account the two neighbors of 8 in Na(G), nt > 1n2(t—1)—2n(t—1)+3
since G is nt-regular and since r = n2t(t — 1)/2. This inequality can never
hold when n > 2 and ¢t > 3.

Case 3: m =t —1. Now Equation 4.5 becomes sn‘~3 =1, so t < 3. Thus
t = 3 and m = 2. We have reduced this case to Case 2.

Case 4: m = t. Now Equation 4.5 becomes sn*~2 =t—1,s0t—1 > n'~2,
Since n > 2 and ¢ > 3, this can only happen whenn =2, s=1, and t = 3.
It follows that m = 3 and r = 8. Note that N,(G) is isomorphic to 3K3.
Therefore, every edge of G lies in exactly one copy of K3.

Let N,(G) consist of the three disjoint edges 8182, 712, and 6;42. Since
each of these edges lies in only one copy of K3 and each vertex € of N4(G) is
adjacent to exactly three vertices in No(G), it follows that ¢ is adjacent to
one vertex of the form g;, one vertex of the form -;, and one vertex of the
form 8x. This accounts for all the edges between N,(G) and N,(G) since
there are 8 vertices in N,(G) and there are 8 possibilities for (8;,7;, 0k).
Write €;;x for the vertex of N(G) that is adjacent to S, v;, and .

Next we must account for the edges within NQ(G’). The edge B1€111 must
belong to a copy of K3, so ¢;1; is adjacent to a vertex of the form ey;i.
Moreover, since the edge €;111€1;x belongs to only one copy of K3, we must
have that €y ;% equals €;22. By symmetric arguments, ¢;;x is adjacent to €;jris
if and only if 7, 7, and & differ from ¢, 7/, and &’ in exactly two places.

We have completely described G. However, we can now see that G is not
M-ultrahomogeneous. In fact, it is not even vertex-transitive. For example,
No(G) is isomorphic to 2K, but N, (G) is a connected graph. a

Lemma 4.11. Let G be an M-ultrahomogeneous graph, and let o be any
vertez of G. If No(G) is isomorphic to 2K, withn > 2, then G is isomorphic
to Knyi1 X Knt1.

Proof. As in the proof of Lemma 4.10,1 < m < 2.
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Suppose that m = 1. Using Equation 4.4, r = 2n2. Thus G has 1 4+ 2n +
2n? vertices. Also, N,(G) contains exactly 2 copies of K,. Equation 4.3
tells us that n+1 divides 2+ 4n +4n2. Performing arithmetic modulo n+1,

0=2+4n+4n? =2+44(-1)+4(-1)2=2.

This can never happen when n > 2.

We have contradicted the assumptlon that m=1,som must equal 2.
Again using the Equation 4.4, r = n2. Thus G has 1 4+ 2n + n? vertices.

Let v be any neighbor of a; then No,,.,(G) is isomorphic to K, _;. Since
G is Kj-ultrahomogeneous, N.,, ,(G) is isomorphic to K, _; for any pair of
adjacent vertices 1 and +s.

Let A and B be the two copies of K, in N,o(G), and let a;,as,...,0n
be the vertices of A. Now each vertex o; in A is adjacent to the copy of K,
consisting of a together with the other vertices of A. The vertex o; must be
adjacent to another copy B; of K, whose vertices are not in A, B, or equal
to a. The subgraph N, a,(G) consists of the vertex a together with the
other vertices of A. Therefore, none of the B; intersect.

The vertex a together with the vertices of A, B, By,..., B, give us 1 +
2n + n? vertices, so we have accounted for all the vemoes We still must
account for the edges between vertices belonging to B, B, ..., By. In fact,
we must account for exactly n edges incident to each such vertex.

Let 8 be any vertex of B. If B had two neighbors 7; and 7, in B;, then 8
would belong to N, 4,(G). But this is not possible because N, -,(G) is the
copy of K1 consisting of a; and the other n — 2 vertices of B;. Therefore,
B has exactly one neighbor in each B;, and these neighbors together with 8
form a complete graph. From this fact it follows that G must be isomorphic
to Kpy1 X Kny1. a

Lemma 4.12. Let G be connected and M-ultrahomogeneous, and let o be
any vertez of G. Suppose that No(G) is isomorphic to tK;.

(1) Ift =1, then G is isomorphic to K.

(2) Ift =2, then G is isomorphic to Cy or Cs.

(3) Ift > 3, then G is isomorphic to Koy.

Proof. When t = 1, the graph G is 1-regular, so it is isomorphic to Kj.

When ¢ = 2, the graph G is connected and 2-regular. This means that
G is isomorphic to a cycle. By Lemma 4.6, the only M-ultrahomogeneous
cycles are C; and Cs.

In the rest of the proof, we assume that ¢ > 3. We follow the same outline
as the proof of Lemma 4.10. In the case m = 1, we obtain the inequality
t > (¢t — 1)2; this can never hold when ¢ > 3.

In the case m =t — 1, Equation 4.4 tells us that r = ¢. Each vertex 8 in

o,(G’) has ¢ — 1 neighbors in N, (G), so it must have exactly one neighbor
v in N&(G). Since 8 and + both have ¢ — 1 neighbors amongst the ¢ vertices
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of N4(G), they must have a common neighbor . Then 8, «, and § are the
vertices of a copy of K3. This is a contradiction since G contains no copies
of K. 3.

In the case m = t, the graph N,(G) consists entirely of vertices that are
adjacent to every vertex of N,(G). Equation 4.4 tells us that » = ¢ — 1.
Since G is t-regular, there are no more vertices and G is isomorphic to Ka;;.

Finally, in the case m = 2, we get ¢ > (¢t — 1) — 2(t — 1) + 3, which
implies that ¢ < 5. We handle the cases t = 3, t =4, and ¢ = 5 separately.

Case 1: t = 3. Equation (4.4) implies that r = 3. Therefore, G is a
3-regular graph on 7 vertices. This is impossible.

Case 2: t = 4. Equation (4.4) implies that » = 6. Since m = 2, each of
the 6 vertices of N, (G) is adjacent to one of the 6 pairs of vertices in No(G).
Since G contains no copies of K3, any two adjacent vertices of —I\TQ(G) cannot
have a common neighbor in N,(G). This means that every vertex of N4(G)
has at most one neighbor in N (G). This leads to a contradiction since G
must be 4-regular.

Case 3: t = 5. Equation (4.4) implies that » = 10. Since m = 2, each
of the 10 vertices of No(G) is adjacent to one of the 10 pairs of vertices
in No(G). Since G contains no copies of K3, any two adjacent vertices of
No(G) cannot have a common neighbor in Ny (G). Since G is 5-regular, this
implies that two vertices of N4(G) are adjacent if and only if they do not
have any common neighbors in N, (G).

We have completely described the graph G. It remains to observe that G is
not M-ultrahomogeneous. In fact, G is not 4K-ultrahomogeneous. Because
No(G) is isomorphic to 5K}, it follows that every set of 4 non-adjacent ver-
tices can be extended (uniquely) to a set of 5 non-adjacent vertices. However,
if we take 3 vertices of N,(G) together with the unique non-adjacent vertex
of No(G), then we have a set of 4 vertices that cannot be extended. O

Lemma 4.13. Let G be connected and M-ultrahomogeneous, and let o be
any vertez of G. If No(G) is isomorphic to the complete regular multipartite
graph Kyn witht > 2 and n 2> 1, then G is isomorphic to Kyy1;n.

Proof. Let Ay, Ag,..., A, be the partite sets of N,(G). Choose any vertex
B of A;. Since Ng(G) is also isomorphic to Ky, there exist n — 1 vertices
a1, @z, ..., on-1 of G such that each a; is adjacent to 8 and to every vertex
of Az,..., A, but is not adjacent to . Also, the vertices a; and oy are not
adjacent for 7 # k.

It remains only to show that each o; is adjacent to every vertex of A;.
To do this, choose a vertex v in A2 and consider N,(G), which is again
isomorphic to Ky;n. d

95



REFERENCES

[1) P. J. Cameron, 6-transitive graphs, J. Combin. Theory Ser. B 28 (1980), no. 2, 168
179.

[2] A. Devillers, Ultrahomogeneous semilinear spaces, Proc. London Math. Soc. (3) 84
(2002), no. 1, 35-58.

[3] P. Doyle, A 27-vertez graph that is vertez-transitive and edge-transitive but not I-
transitive, unpublished, 1976.

{4] H. Enomoto, Combinatorially homogeneous graphs, J. Combin. Theory Ser. B 30
(1981), no. 2, 215-223.

[5] A. Gardiner, Homogeneous graphs, J. Combin. Theory Ser. B 20 (1976), 94-102.

[6] A. Gardiner, Conditions for homogeneity, J. Combin. Theory Ser. B 24 (1981), 301-
310.

[7] F. Harary, Graph Theory, Perseus Books, 1969.

[8] A. H. Lachlan, and R. E. Woodrow, Countable ultrahomogeneous undirected graphs,
Trans. Amer. Math. Soc. 262 (1980), no. 1, 51-94.

[9] S. D. Monson, N. J. Pullman, and R. Rees, A survey of clique and biclique coverings
and factorizations of (0, 1)-matrices, Bull. Inst. Combin. Appl. 14 (1995), 17-86.
[10] R. W. Myers, Jr., 1-homogeneous graphs, Discrete Math. 57 (1985), no. 1-2, 67-88.
[11] N. J. Pullman, Clique coverings of graphs—a survey, Combinatorial mathematics X

(Adelaide, 1982), 72-85, Lecture Notes in Mathematics 1038, Springer, 1983.
[12) C. Ronse, On homogeneous graphs, J. London Math. Soc (2) 17 (1978), 375-379.
[13] J. Sheehan, Smoothly embeddable subgraphs, J. London Math. Soc. (2) 9 (1974),
212-218.

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETROIT, MI 48202

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PA
19104

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, IRVINE, IRVINE, CA
92697-3875

E-mail address: isaksen®math.wayne.edu

E-mail address: cjankows®sas.upenn.edu

E-mail address: sproctor@uci.edu

96



