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Abstract

Let D = (V,E) be a primitive digraph. The exponent of D
at a vertex u € V, denoted by expp(u), is defined to be the least
integer k such that there is a walk of length k from u to v for each
v € V. Let V = {v1,v2, -+ ,vn}. The vertices of V can be ordered so
that expp(vi;) < expp(viy) < -+ £ expp(vi, )=7(D). The number
expp(vi, ) is called k-exponent of D, denoted by expp(k). We use
L(D) to denote the set of distinct lengths of the cycles of D. In
this paper, we completely determinate 1-exponent sets of primitive,
minimally strong digraphs of with n vertices and L(D) = {p,q}},
where 3<p<gandp+qg>n.
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1 Introduction

We consider only the digraphs without multiple arcs. Let D = (V, E)
be a digraph with n vertices. A walk uWwv of length p from » to v in D
is a sequence of vertices u,uy, ..., up = v and a sequence of arcs (u,u,),
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(u1, u2), ..., (¥p-1,v), where the vertices and arcs need not to be distinct,
and denoted by uWwv = (u,u, ..., ¥p_1,v). The initial vertex of uWwv is
u, the terminal vertex is v, and u;,us, ..., up—) are the internal vertices
of uWv. If u = v, then uWw is a circuit (or a closed walk). A path is
a walk with distinct vertices. A cycle(an elementary circuit) is a circuit
with distinct vertices except for u = v. For convenience, we treat a cycle
as a path (a closed path) in this paper. An r-cycle is a cycle of length 7.
By L(D) we denote the set of distinct lengths of the cycles of D. For the
sake of simplicity, we use notation [a,. .., b} to denote the set of all integers
between @ and b, namely [a,...,b] ={m |m € Z and a < m < b}. We
use notation |a] and [a], respectively, to denote the greatest integer which
is not greater than a and the least integer which is not less than a.

The digraph D is called strongly connected(or strong) if for each ordered
pair of distinct vertices u,v there is a walk from « to v. A strongly con-
nected digraph D is called minimally strong(or ministrong) provided each
digraph obtained from D by removing an arc is not strongly connected.
A digraph D is primitive if there exists an integer k& > 0 such that for
each ordered pair of vertices u,v € V(D) (not necessarily distinct), there
is a walk of length k from u to v in D, and the least such k is called the
exponent of D, denoted by exp(D). It is well known that a digraph D is
primitive if and only if D is strongly connected and the greatest common
divisor of the lengths of its cycles is 1.

In 1990, from the background of memoryless communication system,
R. A. Brualdi and Bolian Liu [1] generalized the concept of the exponent
for a primitive digraph and introduced the concept of k-exponent. Let
D = (V, E) be a primitive digraph with n vertices vy, vy, ..., v,. For any
v;, v; € V, let expp(vs,v;) := the smallest integer p such that there is a
walk of length ¢ from v; to v; for each integer ¢ > p. Let the exponent
of vertex v; be defined by expp(v;) := max{expp(vi,v;) : v; € V}. Then
expp(v;) is the smallest integer p such that there is a walk of length p
from v; to each vertex of D. We arrange the vertices of D in such a way
that expp(vi,) < expp(vi,) < -+ < expp(vi, ), and we call the number
expp(vi,) the k-point exponent of D (the k-exponent for short), which is
denoted by expp(k).

Let PMSD,, be the set of all primitive, ministrong digraphs of order n.
Bolian Liu[2] obtained the maximum value of the k-exponent for PM SD,,.
Bo Zhou [5] characterized primitive, ministrong digraphs with n vertices
whose k-exponent (1 < k < n) achieve the maximum value. In 2002, Bo
Zhou [5] pointed out that the complete determination of k-exponent set
(1<k<n-—1)of PMSD, is an interesting and difficult problem.

In this paper, we mainly study the l-exponent of the primitive, min-
istrong digraphs with n vertices and L(D) = {p, ¢}, where 3 < p < g and
P+ g > n. In Section 2 we shall give a lower bound of 1-exponent(see
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Theorem 2.1). In Section 3 we shall determinate completely 1-exponent
set(see Theorems 3.5 and 3.6). :

2 The lower bound of the l-exponent

Let D = (V,E) be a digraph. D' = (V’,E’) is called a subdigraph
of Dif VVCV and E' C E, and denoted by D' C D. We call D’ a
proper subdigraph of D (write D’ C D) if D’ € D and D' # D. Let
D, = (W1, E;) and D, = (Vz, E3) be two subdigraphs of D. We call the
digraphs D1 N Dy = (VN Vo, E1 N Ez) and Dy U Dy = (V3 U Ve, By U Ey)
the intersection and the union of D, D2, respectively.

Let D = (V, E) be a digraph. We use R;(u) to denote the set of vertices
of D that can be reached by a walk with initial vertex » of length ¢ (for
t =0, we define R;(u) = {u}). Let uWv be a walk from vertex u to vertex
v. We use n(uWwv) to denote the length of the walk uWv. Let vW'w be a
walk from vertex v to vertex w. For convenience, we also use uWvW'w to
denote the walk uWv + vW'w from u to w.

Let D be a digraph, C a cycle of D with length at least 2. Let u and v
be two vertices in V(C). We define uC{®u = u, uC®v the path from u to
v in C for u # v, and uC®y(k > 1) the walk uC®v + C +--- + C from

N e’

k times
u to v.

Let D = (V, E) be a primitive digraph with L(D) = {p,¢}. For u,v €
V(D), the distance d(u, v) from u to v is defined to be the length of shortest
walk from u to v in D, the relative distance dy(py(u, v) from u to v is defined
to be the length of the shortest walk from u to v that meets at least one
p-cycle and one g-cycle. The Frobenius number ¢(p, g) is defined to be the
smallest integer m such that every integer with ¢ > m can be represented
in the form t = u;p +pu2q, where p;, uo are nonnegative integers. It is well
known that if p and ¢ are coprime, then ¢(p,q) = (p — 1)(g — 1).

Lemma 2.1 [4] Let D be a primitive digraph with L(D) = {p, q} (p,q > 1).
Write ¢py = #(p,q). Then for any u,v € V(D), we have

expp(u,v) < dppy(u,v) + (D),

expp(u) < max{dy(p)(u,v):v € V} + drD)-

Lemma 2.2 Let D be a primitive digraph with L(D) = {p,q}(p,q > 1).
Let u,v € V(D) and let a be a positive integer. If the length of every walk
from u to v of length at least a can be expressed as n(uWv) = uip + paq
+a, where py, puo are nonnegative integers, then expp(u,v) > a+ ér(p).

Proof. If expp(u,v) < a + ¢r(p), then there exists a walk from u to v
of length a + ¢, (py — 1 by the definition of expp(u,v). Since ¢r(p)y = 2,
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it follows that a + ¢.(py —1 > @, and so a + @1 (p) — 1 = mp + p2q + a,
where 1, 2 are nonnegative integers. Thus ¢z(p) — 1 = p1p + p2g, which
contradicts that ¢.(p) is Frobenius number of p,q. Therefore expp(u,v)
2a+déyp). O

By Lemmas 2.1 and 2.2, we have

Lemma 2.3 Let D be a primitive digraph with L(D) = {p,q}(p,q > 1).
Let u,v € V(D), if the length of every walk from u to v of length at least
di(p)(u,v) can be expressed as n(uWv) = pip + pog + dy(p)(u,v), where
1, p2 are nonnegative integers, then expp(u,v) = dr(p)(u,v) + d1(p).

Let D be a digraph, 3 < p < ¢, and let C; = (v1,v2,...,vg,v;) and
C, be respectively a cycle of length ¢ and length p in D. We call C, a
consecutive p-cycle on C, if C,NCy = vy, Cé“’v,, (where v;, and v, are two
vertices of Cy, not necessary distinct), v;, and v;, are respectively called the
initial vertex and the terminal vertex of Cp on Cy. Let Cp and Cj, be two
consecutive p-cycles on Cy. we call Cj, a greater consecutlve p-cycle on C,
than C;, if Cp,NC,; C C;, an Cp is called a maximum consecutive p-cycle on
C, if there is no greater consecutive p-cycle on C, than C, in D. Let D be
a digraph, C; a g-cycle of D and ¢ a path of C,, and let T be a set of some
consecutive(maximum consecutive) p-cycle on C;. We call T a consecutive
(maximum consecutive)p-cycle cover of (Cg,0) if ( |J Cp)NCy =o0.

Cp€T

Let T be a consecutive (maximum consecutive)p-cycles cover of (Cy, o).
We call T reducible if there exists some p-cycle C, € T such that T} =
T\{C,} is still a consecutive (maximum consecutive) p-cycles cover of
(Cq,0) and call C, a superfluous p-cycle in T. We call T irreducible if
T is not reducible. We have

Lemma 2.4 Let D be a digraph, 3 < p < q, Cq a g-cycle of D and o a
path of Cq, and let T be an irreducible consecutive p-cycles cover of (Cq, o).
Then

(i) C,NCy & C/ NGy for any distinct C,, Cy € T.

(ii) V(C" n C, A cy’ I"I Cqy) =0 for any distinct G,y Cp, G €T

Proof. (i) If there exist distinct C,, C € T such that C,nC, C C//NC,,
then Cj, is a superfluous p-cycle in T Thls contradicts that Tis 1rredu01ble

(u) If there exist distinct C;, C;), Cp’ € T such that V(C,NCyNC,'N
Cq) #0, then (C,UC UCY)N C'q sa subpath of o by C,, C’" C”’ bemg

consecutive p-cycles on Cy. Let (C,UCJUC)NCy = uC(o)v Then u is
the initial vertex of one of the three p-cycles on C, and v is the terminal
vertex of one of the three p-cycles on Cj. Wlthout loss of generality we
assume that u is the initial vertex of C, on C, and v is the terminal vertex
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of C, on C,. Since V(C, N Cy NCy) # 0 and C,,, Cy are consecutive p-
cycles on Cq, then (CLUC,)NCy = uC{?v, and thus C,' is a superfluous
p-cycle in T. This contradicts that T is irreducible.

This completes the proof of Lemma 2.4. O

Let T be an irreducible consecutive (maximum consecutive) p-cycles
cover of (Cy,0). From (i) of Lemma 2.4, distinct cycles in T have distinct
initial vertices and distinct terminal vertices on Cy. If o # C,, then o =
vac.§°)v,,, where v, is the initial vertex of some C, € T on Cy; if ¢ = Cy,
then o can be expressed as ¢ = vaCél)va, where v, is the initial vertex
of any Cp € T on C,. We arrange all p-cycles in T in the sequence:
C},C2,...,C} such that along the path o, we first meet the initial vertex
Vg , of C' on C,, next we meet the initial vertex of C2 on C,, ..., finally we
meet the initial vertex of Ct on Cy. The sequence C,C7, ..., C; is called
a irreducible consecutive (ma.x1mum consecutive) p-cycles cham of (Cq,0).

Let D = (V, E) be a digraph, C, a p-cycle of D and C, a g-cycle of D.
We use uPg v to denote any pa.th fromu € Vitov € V whose internal
vertices and arcs are not in Cy, use uPc,v to denote the path in C, from
u € V(Cp) to v € V(Cp). Clearly,

{ uC,(,O)v, if u#w,
uPc,v = (1) e
uCp 'u (namly Cp), if u=v.

We also denote uPc,v by uPg,¢, v if all internal vertices and arcs of uPc,v
is not in C,.

Lemma 2.5 Let D be a digraph, 3 < p < q, Cq = (v1,v2,...,9g,01) @
g-cycle of D and o a path of Cy. Let C';,Cg,..’,C;, be an irreducible
consecutive p-cycles chain of (Cq,0), where C} = vz,.C'go)vy,. PC; & Vaie We
have the following results:

(i) If o C vlcéo)vq, thenl <zy <z <y <23 <Y < -+ < Ty
SY-2<Z <Y1 <Y <gq.

(ii) fo=Cyandzy =1, thenl =z Sy <z2 <41 <73 < Y2
< <Z1 SY2 <Lt <Y1 5¢.

Proof. Let T = {C},C2,...,Ct}. Then T is an irreducible consecutive
p-cycles cover of (Cy,0). By (i) of Lemma 2.4, 1, 3, ..., z, are distinct
and vy, ¥y, ..., ¥ are distinct.

(i) From o C vlcéo)vq and the definition of irreducible consecutive
p-cycles chain, ) < T2 < --- < z; and z; < y; (£ = 1,2,...,t). We claim
that 1 < y2 < +++ < y. Otherwise, there must exist k¥ € {1,2,...,t —
1} such that yx > yk41, it follows that zx < Tp41 < yet1 £ yx. And
50 Vzpyy O sy € V2, Oy, Namely CA¥1 N C, C CENC,. This
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‘ .
contradicts that T is irreducible. It follows from (|J C;) N C, = o that
i=1

0 =g, Céo)vm.

Now we prove that z;1) < ¥ (i =1,2,...,t - 1) and y; < Ziq2 (i =
1,2,...,t —2). If there exists j € {1,2,...,¢t — 1} such that z;41 > y;,
it follows from z; < y; (! = 1,2,...,t), 21 < 22 < .-+ < 1; < q and
N <y2<--<y-1 <y < g that

t
U G NCy =y, céo)'”yu

i=1

t
Vy; cho)”yﬁl Z U v2, Gy, = (
i=1

which is impossible. Hence z;41 <y (i = 1,2,...,t — 1). If there exists

1€ {1,2,...,t—2} such that y; > 49, it follows from z; < Zi41 < 142 and
(0)

Y < Y141 that 21 < 41 < Tpp2 S Y1 < Y41 And 50 vy, € V(v2,Cq 'vy,)

(¢=11+1,1+2). Hence

Uz, € V(C,NCFINCH2NC,).

This contradicts (ii) of Lemma 2.4. Hence y; < zi42 (i = 1,2,...,t — 2).
Therefore 1 S 21 <22 <Y1 < T3 < Y2 < -+ < Ty S Y2 < Tt < Y1
<y <gq.

(if) Clearly ¢ > 2. From z; = 1 and the definition of irreducible
consecutive p-cycles chain, we have z; < z5 < --- < ;. First we prove that
there exists an unique integer j € {1,2,...,t} such that z; > y;. Clearly

zy <y If z; < y; for each i € {1,2,...,¢}, then vo‘So)vl g 'ux‘C'.go)vm
t

(6=1,2,...,t), and so v,C v € (U C) N C, = C,, which is absurd. If
i=1

1=
there exist two distinct integers 4,3’ € {1,2,...,t} such that z; > y; and
Ty > yy, then 4,7’ € {2,3,...,t} and v; € V(v,, Céo)vm) NV(vz, Céo)vy‘,).
Note that vy € V(vy,C{"v,). Thus v, € V(CLNCin CY NC,), which
contradicts (ii) of Lemma 2.4.

We next prove that j =¢. If j # ¢, thenj<tandy; < z; < 7 <
yt, and 50 v, CVvy, C v5,C{v,,. Namely CtNC, C CINC,. This
contradicts that T is irreducible.

We next prove that y; < z2. Clearly it holds when ¢ = 2. Hence
it suffices to prove that y, < zp for t > 3. If y, > z2 and zo > w,
then 2; < y1 < 23 <y < x4, and so vxlcé")v,,, - vx‘Cng)vy,. Namely
Cp N Cy C Cf N C,, which contradicts that T is irreducible. If y; > z2
and z2 < w1, it follows from z; > y:, ; < z2 and y; < w; that z; < z2
<41 < ¥t < z¢. Thus for each i € {1,2,¢}, vz, € V(vx,.C,So)vy‘), and so
vz, € V(C} N C2N CENC,), which contradicts (ii) of Lemma 2.4.
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Now we prove that y; < y2 < ++- < y—1. If thereexists k € {1,2,...,t—
2} such that yx > yi+1, then zx < Ti41 < Yr41 < Yk, and so vy, “C,so)vyk a S
vz, C¥vy, . Namely Ck+1nC, C CFNC,. This contradicts that T is irre-
ducible.

Finally we prove that ;41 < 3 (1 = 1,2,...,t — 1) and y; < Zi42
(i=1,2,...,t=2). If there exists i; € {1,2,...,t—1} such that z;; 41 > ¥;,,

observe that y; < y, by vx,C‘éO)vy1 Z vx,Céo)vw, it follows that
Yip <¥iy +1<zjp1 <zi<y for g7 +1<i<t -1,
and
1< <y LY <Y, 15340 <31

Thus
Vyyy Cgo)"’ynﬂ Z 'Umactgo)”y( for iy +1<i<t.

Moreover, since

T; <yi <y, <y, +1 for 1<i<q,

then
vy‘lcgo)vyﬁ.,.l Z vx,.C,go)vw for 1 <4<y,

and so

t t
Vyi, Cgo)qu*'l Z U vziCéO)vyi = (U )N Gy =Gy,

i=1 i=1

which is absurd. Hence zi41 < v (¢ = 1,2,...,t — 1). If there exists
le{1,2,...,t — 2} such that y; > 242, it follows from z; < z141 < Ti42
and y < Y141 that 7; < 7141 < Z42 <y < Y41, and so

Verys € V(0. COuy ) = 1,1+ 1,1+ 2).

Hence
Vg, € V(CLNCHINCH2NC,).

This contradicts (i) of Lemma 2.4. Hence y; < zi42 (¢ = 1,2,...,t —2).
Consequently 1 = 27 Sy <22 S y1 <23 S Y2 < 0 < T—1 £ Ye-2
<zt SY-154g.

We have completed the proof of Lemma 2.5. O

Lemma 2.6 Let D be a primitive digraph with n vertices and L(D) =
{p,q} with3 <p < qandp+q>n, and let Cq = (v1,v2,...,Yg,v1) be a
g-cycle in D and Cp a p-cycle in D. Then there ezists a consecutive p-cycle
C, on Cy such that C,NCy C C,NCy.
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Proof. Clearly the result holds if Cp, is a consecutive p-cycle on C,. Now
we suppose that C,, is not a consecutive p-cycle on C,. Since p+¢ > n, we
have V(C, N C,) # 0, and so we can express Cp, as

Cp =y, Céo)vh Pe,e,vt; Cgo)w, Pe,é,Vts C,go)'v;s ooy, Cgo) v, Fe,¢, v,

where s > 2 and v, v, € V(Cy) (i =1,2,...,8). Without loss of generality
we assume that ¢; = 1. We first prove that any internal vertex of the
paths v, CQvs,,, (6 =1,2,...,5 = 1), v,CPv, is not in V(C,). Ifv €
V(Cy) is a internal vertex of th,go)vt,, then Cp = w, P, ¢, vt, Po,vPc, i, .
Note that vy, Pcpc-vvt,Céo)vzl is a cycle. If n(v, Pg, g, v, Céo)vh) = p, then
n(ve, Cgmvh) = 7(ve, PC,'UPC,,'W;), and so
77("11 Céo)vpcple) = 'I(”h C(So)v) + ﬂ(VPC,”l;)
< ’7(”11 Céo)vtz) + 77(% PvaPvah)
= 77(”11 Céo)vtn) + n(vtz Cgo)”ll) =4q,

n(ngo) ve, Pe,v) = n(vC{vy,) + (v, Po,v)
< (v, C‘go)vt,) + n(vs, Pc,vPc,u,)
= n(vhcgo)vt,) + n('ut,Céo)vh) =q.
Since vllC.go)vPc,vzl, vCéo)vt,Pc,v are two circuits and L(D) = {p,q},
then n(vy, C.go)vPcpvg,) = kip (k, is a positive integer) and n('vC,go)'ut2
Pc,v) = kap (k2 is a positive integer). It follows that
q= n(u,,cgl’)vcg")v,, Céo)wl)
= n(v, C(So)v) + n(vCéo) vt,) + 1(vey Po,vPc,v1,)
= n(w, Céo)v) + n(vPc,v,) + n(vCéo)w,) + n(ve, Po,v)
= (v, COvPc,m,) + n(wCv:, P, v) = (k1 + ka2)p .

This contradicts that (p, q) = 1. If n(w, P, ¢, v, Cs v, ) = g, then n(v, Po, g,
= (v, Céo)vt, ). Note that vy, C‘éo)vPc, vy, vC’gO) vi, Po, v are circuits. Hence
p = n(w, Pg ¢, v Pe,v,) = n(v, Pe,¢,ve) + 1(ve, Po,u, )
= (v, Cgo)%) + n(ve, P, w, )
= (v, CPvCPvy,) + n(vi, Po,vPc,w,)
= (v, Cgo)v) +n(vPc,w,) + ‘r)('uCéo)vg,) + n(ve, Po,v)
= 1w, CPvPs,u,) + n(vCP v, Po,v) 2 p+p=2p,
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which is absurd. Therefore, any internal vertex of the path théo)vt,
is not in V(Cp). Similarly, any internal vertex of the paths vz‘Céo)vt‘. +
(t=2,...,8-1), v,,C§°)vt, is not in V(Cp). It follows that 1 = ¢; <
h<ta<lp < <ty <l Note that each of v, C¥v, P ¢, r,,, C v,
(i=1,2,...,8—1) and vth.go)vz, Pc,¢,v is a cycle of D. We claim that
there exists a p-cycle in these cycles. 6therwise, if all of these cycles are
g-cycle, then

(v, Pcpc'qvti+l) = ﬂ(vlﬂCéO)vti-n)(i =1,2,...,s—-1)

and
T]('U[' PCpC‘qIUtl ) = 77('01. Cg())vll )9

and so
n(Cp) = n(vy, 030)”11050)'”‘2 0450)'”‘2 o vt-CéO)v‘-Cgo)vh) =4q,
a contradiction. Without loss of generality we assume that

n(ve, CéO)thCpcqvtngo)vtl) =p-

Take C, = v,,Céo)thCPéqv,,CéO)vt,. Then Cj, is a consecutive p-cycle

on C, and C, NC, C vy, Py, = C, N Cq. The proof of Lemma 2.6 is
complete. O

Lemma 2.7 Let D be a primitive digraph on n vertices and L(D) = {p, q}
with3 < p < qand p+q > n, and let Cg be a g-cycle of D and C, =
vz‘C§°)vy‘. Peie, vz (i = 1,2) two distinct mazimum consecutive p-cycles
on C, and C3 N C, # C2 N C,. Then there exists no common internal
vertez in paths vy, Pc; G, Uz and vy, chéq Ugg.

Proof. We assume that there exists vertex u € V(D) such that u is a
common internal vertex of vy, Pcééqv,,.l and vszcgequ,, then vy, ch,c,,
uchéqv,, is a walk of D, and any internal vertex of vy, Pc,gc“'qupcgéquz
is not in V(Cy). It follows that v, chéqupcgdq”mz is a path (other-
wise, there is a common internal vertex v in vy, Po1g v and uPg2g, vz, .
. . . . P 9 3 P 9
Thus there exists the circuit UPC;éuncgéq'v which must contain a cy-
cle with no vertex in V(C,), which contradicts that p + ¢ > n). Hence
vy, Poie, uFczc, Ve, Céo)vy1 is a cycle. Similarly v,, chc':,, uPcic,Vn Céo)vy,
is also a cycle. Let

0
n(vy, Pc;équpcgcquz Ctg )v'yl) =a
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and
n(vy: Pozc,uPoyc,vs: C0vy,) = b.

I V(CLNC2NC,) =0, then
vz, Céo) vy,) = (v, céo)"yz) + 7(vy, cho)vy: )s
(02, C{vy,) = vz, COvy,) + vy, COwy,),
and so
a+b = n(vy, Poye,uPcae,vas O vy ) + n(vys Peac, uPosc, vz C vy,
= n(vy, Poye, ) + n(uPeac,ve,) + 1(vz, CcOv,,)
+1(vy, chéqu) + n(uPC;;’@q Vg, ) + vz, Cgo)vy,)
= (n(vy, chéqu) + W(UPC},C',,”zx) + n(vm.CS")vy,))
(0220 00) + 10y Pog,8) + (uPoo, ver)
+(n(vy, Céo)'”m ) + n(vy, Céo) Vy,))
= n(Cp) +n(C) +n(Ce) =2p+q>p+q.

Since a,b € L(D) = {p,q} and p < g, thena = b = q, and so 2¢ = 2p+q. It
follows that g = 2p, which contradicts that (p,q) = 1. If V(CINC2NnC,) #
0, vz, = vy, and vz, = vy,, then
a+b = n(vy, Peye,uPcac,vn) + 1(vy. Pore, uPore, vy,)
= n(vy, Poyg, ) + n(Pe3e,v) + vy Poge, u) + 1(uPoye, vy)
= n(vy, Py, w) + n(uPoyc,vya) + n(vy, Poze,u) + n(uPeac, v )
= 0(Gp) +n(C3) — (n(vy, CPvy,) + (v, CPvy,)) = 2p — g,
which contradicts that a+b > 2p. If V(Cf} NCZNC,) # 0, and vz, # vy, or
vz, # Uy, similarly we have a + b = (Cp) + 17(03) =2p. Hencea=b=p
since a, b > p. Since
(v Pore,uPo2c, vzaCy ) vy) N Cg = v5,C 0wy,
(vy, P Cgéqup C1C, V= Céo)vyz) NCy = vzxcgo)vyza
and we can check from C; N Cy # C2 N C, that either
CyNC, C 'u,,,C’,S"")'uyl and C2NC, C vz, C'(go)‘v,,l

or
C; N Cy C v, CPvy, and C2NC, C vy, COvy, ,
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it follows that
: i} B} 0 _ ; 0
either vy, Pc,l,c,Uchc,,Uzz Cé Yuy, or vy,chcunC;qumC‘g )vy2

is a greater consecutive p-cycle on C, than C; and Cg. This contradicts
that C',l,, Cf, are maximum consecutive p-cycles on C;. The proof of Lemma
2.7 is complete. O

Lemma 2.8 Let D € PMSD,, and L(D) = {p,q} with 3 < p < q and
p+q>n, and let Cy = (v1,v2, ..., vq,v1) be a g-cycle of D. Then in Cq
there must ezxist two distinct arcs which are not in any p-cycles.

Proof. Define that vy = v. If there is precisely one arc (va,va+1) of
C, such that (va, va41) is not an arc of any p-cycle of D, then there exists
a walk from v, to ve4; along some p-cycles which does not pass through
arc (va,va+1). This contradicts that D is minimally strong digraph.

Suppose that for each a € {1,2, ...,q}, in D there is a p-cycle con-
taining the arc (vs,va+1). By Lemma 2.6, in D there exists a consec-
utive p-cycle on C, which contains the arc (va,vs+1). We take a max-
imum consecutive p-cycle C;‘ on C, containing the arc (vq,va+1). Let
T ={C;:a€ll,...,q} ThenT is a maximum consecutive p-cycles
cover of (Cy,Cy), and we obtain an irreducible maximum consecutive p-
cycles cover T of (Cq,Cy) by removing the superfluous p-cycles from T
Furthermore, we can obtain an irreducible maximum consecutive p-cycles
chain C,}, Cg, - Cxta of (Cq,C,) by properly arranging the order of the
p-cycles of Ty. Let C} = vxiCng)vyi Peic, v and without loss of generality
we assume that z; = 1. By Lemma 2.5, 1 = z; < y: < z2 £y < z3
SyYp <+ < 2oy < Yoz < 2 < yt—1 < ¢. By Lemma 2.7, for any distinct
i,j € {1,2, ...,t}, there exists no common internal vertex in the paths
vy, Pei ¢, V=i and vy, Poi e, vz, and so

vy, Pop vy, Pog vy, Pog-1Vye-s * vy Pozvy,
— _ 0 ) 0)
= vy,PC;quz] C‘S )vytPC;cqu,Cé ’Uyt_,PC;—léq

0 - 0
'sz-lcts )vyz-z T Uy PC?,C,,”:I:;»C; )vyx

is a cycle (denoted by C,, where r is its length). It is easy to see that
n(C) +n(C2) +--- +n(CE) = n(Cy) +n(Cr), namely tp = g+ r. Since
L(D) = {p,q}, then r € {p, q}. If r=p, then g = (t — 1)p, which contradicts
that (p,q) = 1 and p > 3. If r = g, then 2¢ = tp, and so p | 2¢, which
contradicts (p,q) = 1 and p > 3. The proof of Lemma 2.8 is complete. [

Let D € PMSD,, and L(D) = {p,q} with 3 < p < gand p+q > n,
and let Cy = (v1,v2, ...,vq,v1) be a g-cycle of D. By Lemma 2.8, in C,
there exist two arcs not being in any p-cycle. Without loss of generality we
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assume that the two arcs are (vg,v1) and (va,%41) (1 L a < g—-1). We
have

Lemma 2.9 Let D € PMSD,, and L(D) = {p,q} with 3 < p < q and
p+q>n, and let Cy = (v1,v2, ...,vq,v1) be a g-cycle of D and two arcs
(vgs%1), (Va,%a+1) (1 < @ < g —1) not in any p-cycle. Let v;,v; € V(C,)
and v;Wu; be any walk from v; to v; in D. Then

pap + pag + n(w:COv;), i i<,
niWv;) = p1p + pog — n(w:iCOvy), i i>j,
p1p + pag, if i=yj,

where p1, pa are nonnegative integers.
Proof. v;Wv; can be expressed as v;Wv; =
k k k ke k
Vi Cg l)vjx Pc"q”izcé z)vjapéqviacé a)vja Tt ”i:_ncé ¢ 1)1’.1’:-1PC'.,U"¢C§ ‘)vJ'u

where k; (1 < I < t) are nonnegative integers, v;,, u,, (1 £1<t) are the

vertices of Cy, i; =4, j; = j. We first consider n(v,,C’q vy) and TI(vaC' vy)
for any z,y € {1,2,...,q}. Clearly

7(v=CFvy) = kg + n(vzCPv,)

kg + n(vC5vy), if z<y,
=\ (k+1g-n(,CO), if z>y,
kq, if z=v.

For n(vzFg,vy), we consider the following two cases.
Case 1: 1 £z <a Ifz <y, then ”zPé vyC(o)vx contains the
arc (vq,vl), and so vzFg, v,,Céo vz is a g-cycle. Hence n(vzFe vy) =
(szq vy) If z > y, then Uch v,,C,, vy is a p-cycle or a g-cycle, and so

(vzPg,vy) = plor gq) — n(v,CVv;).

If z = y, then vz Pg, vy is a p-cycle or a g-cycle, and so n(v._,,PC- vy) =
p(or q).
Case 2: a+1 <z <gq If z < v, then v, Pg, vquo vz contains

the arc (vg,v1), and so vz FPg, v,,Cq vz is a g-cycle. Hence n(vzPg,vy) =

n(v,C( )v,,) Ifz>yand y > a+1, then v P, v,,Cq vz is a p-cycle or a
g-cycle, and so

M(vzPg,vy) = plor q) — n(v,CVv;).
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If 2 >y and y < a, then vaéquC‘(,o)vI contains the arc (vg, e+1), and so
veFPg, v,,,C(SO)vaB is a g-cycle. Hence

vz Pe,vy) = q - n(vyCéo)vz).

If z = y, then vzPs vy is a p-cycle or a g-cycle, and so (v P, vy) =

plor q).
By the above discussions, we have

ﬂ(”ngO)”y)r if z<uy,
N(vzPg,vy) = § plor q) - n(vyCéo)'ux), if >y,
plor g), if z=y.

It follows that

t t—1
Z"T("il Cék‘)vjz) + Zﬂ(vjx Pe, Vi)
=1 =1

n(v:Wv;)

p1p+uzq+n(viC’§‘:vj), if i<,
= pp+ peg - n(w;COw), if >,
mp + pagq, if i=j,

where 11, 2 are nonnegative integers. The proof of Lemma 2.9 is complete. [J
Let D be a digraph and u,v € V(D), and let uPv be a path from u to

v and ', ¥’ two vertices in uPv. We use u'Pv’ to denote the path from v’

to v’ in uPv.

Lemma 2.10 Let D € PMSD,, and L(D) = {p,q} with3 < p < q and
p+4q>n, and let Cy = (v1,v2, ...,Vq,V1) 8 a g-cycle in D. Let (vq,v1),
(va,va+1) (1 < a < g—1) are two arcs not being in any p-cycle. We have

(i) If there exists the path v;Pg v; (1 £i < j < a) in D, then n(viPe,v;)
= n(v:COv;).

(i) fviPev; (1<i<j<a)isa path of some p-cycle Cp, in D, then
any internal vertex of viCéo)vj is not in V(Cp).

(iii)For any v; € {v1,v2,...,v,} and any v; € {Vat1, Vat2, .-+1V},
there exists no p-cycle containing both v; and v; in D.

(iv) Let Cp be a p-cycle with V(Cp) N{v1,v2,...,va} # 0, and let i, j be
respectively the least and the greatest subscript of the vertices in V(Cp) N
{v1,v2,..,v.}. Then C, can be expressed as

Cp =, Cgo)”jx P CpC, vizcéo)v:izp C,,C'qvisoéo)vjs I
Vie_y Céo)vjz—l PC,,C, Vi, Cgo)v.‘iz PC,,C'q'Uix )

where 1 <i=1 <ji<ig<jo<iz <Jsg< - <1 K1 < <G =
jiga.
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Proof. (i) Clearly v.-Pc-qijéo)vi is a cycle containing the arc (vg, Ug+1)-
Hence v; Pg v; C'éo)v,‘ is a g-cycle, and so n(v;Pg, vj) = n(v,-C‘go)vj)

(ii) If there exists vertex v, withi+1 < ¢t < j—1 such that v, € V(C)),
then C,, can be expressed as C, = v;Fg,v; Pc, vt Pe,vi, and so (v Pg, v;) =
n(ng.go)vj) by (i). Hence n(viCQso)ijcpvtPcpvi) = p. On the other hand,
since vtho)ijcpvt is a circuit,

n(v,-Céo)ijcpvtPcpvi) = n(v,-Cgo)vtCéo)ijcpvtPcPvi)
> n(vtC‘go)ijcpvt) Z D,
which is absurd.
(iii) If there exist v; € {v1,v2,...,%}, ¥j € {Vat1, Vat2, --.,Vq} and

some p-cycle C, such that both v; and v; are in V(C,), then there exists
a path 'v,-chquj1 with v;;, € {v1,v2,...,%} and v, € {Vas1, Vas2, ..., v}

such that v;, Pg vj, C Cp. Clearly v, Pg vj, Cgo)vi, is a cycle containing
the arc (vg,v1). Hence v;, Pg vj, Céo)'u;1 is a g-cycle since L(D) = {p,q},
and so (v, P v;,) = n(v;, C.So)vj‘). It follows that v;, Céo)vjl Pc,v;, is a

p-cycle. However v,-,Céo)'vj, contains the arc (vq,vs+1), a contradiction.
(iv) Let ¢; and j; be respectively the least and the greatest subscript
of the vertices in V(Cp) N {v1,v2,...,v,}. Then there must exist integer

71 € [é1,...,a} such that 'UilC(SO)'Ujl (€ CpNCy) is the longest path with
the initial vertex v;,. If j; = j¢, then by (iii), C, can be expressed as
Cp= Vi, Cgo)vjl PCPC'qvix .

If j1 < ji, let v;, be the vertex in C, that the path in C, beginning at

vertex vj, first meet, and let v,-,Céo)v,-, (€ Cp NCy) be the longest path
beginning at vertex v;,. Then by (iii) and C, being a cycle, we have
i1 S 51 <i2 £ jJ2 <4t < a If jp = jy, then by (ii), (iii) and C, being
a cycle, the vertex in Cy that the path in Cp beginning at vertex v, first
meet must be v;,. Hence Cp, can be expressed as

Cp = v, C{Ovj, Pg,5,v:,C0 P g vi,
If j2 < ji, continue the above process, finally we obtain that
Cp =v, C,go)'v,-1 Pcpc-qvi,C'go)vj,Pcp@qviaCéo)vja
Vie_y Céo) v, P C,C, Vi C‘SO) v;, P CpC,y Vi

where 1 S i =14 < ji <2 < Jf2a<i3 < J3 < v <y < Joo1 < 4
< jt = j £ a. The proof of Lemma 2.10 is complete. O
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Lemma 2.11 Let D € PMSD,, and L(D) = {p,q} with3 < p < q and
p+4q > n, and let Cy =(v1,v2,...,v4,v1) be a g-cycle in D, both (vq,v1)
and (Vg,Vat+1) e not arcs of any p-cycle in D. Let Cp, C, be p-cycles
containing at least two vertices of {v1,v2,...,v.}, and let i and j (V' and
j') be respectively the least and the greatest subscript of the vertices in
V(Cp) N {v1,v2,...,va} (V(Cp) N{v1,v2,...,7a}). We have

() If [¢, ] N [i',5') = O, then no common internal vertez of v; Pc,v; and
vj' Por vy exists.

(iis If[i,7] N [#,5] # O and there exists a common internal vertez in
v;jPc,vi, vy Poyvir, then max{j,j'} — min{i,7} <p-1.

Proof. By (iv) of Lemma 2.10, we have
viPc,v; = Uch,c",,vi and 'UJ"PC;'U;" = vj/PC;éqvi:.
By (i) and (iv) of Lemma 2.10, we have
N(viPc,v;) = n(viC((lo)vj) and n(vi Porvy) = n(viquo)'vjr).

Hence both v,C( )vJPc v; and v,IC( v,/Pc/ v;r are p-cycles

@) If [,5] N [z ,j'] = 0, then either ¢’ > j or i > j' hold. Without loss
of generality we assume i’ > j. If there exists a common internal vertex
u in v;Pc,v; and vy Por vy, since each internal vertex of v_,PC’uPc: Ui
not in V(Cy), it follows that internal vertices of v; P, uPc/ vy are distinct
(otherwise, v;Pc, uPc' vy contains a cycle whose all vertices are not in
V(Cy), which contradicts that L(D) = {p, g} and p + g > n). By (i) of

Lemma 2.10, n(v; Pc,uPcivir) = (v,C( vir). Hence
2p = n(vy Pc; uPcp'v,'Pcp‘Uch,uPc; vy PC,’, vjr)
= n(vj: Pc; uPcpvngo)UjC‘;o)Ui: Céo)’l)j:)
= n(vj:Pc: 'U,PCP’UiC(O)'UJV).

Since internal vertices of v Pc,uPc,v; are distinct and are not in V(Cq)
(just as internal vertlces of v; Pc,,uPc: vy are distinct and are not in V(Cy)),

hence vJ/Pc;,uPc,,szq vj is a cycle. It follows from L(D) = {p,q} and
U(UJ’PC,/’ 'U.PCP'Ui Céo)’vjt) = 2p that

'I](’Uj/ PC;’LLPCP’UiC‘go)UjI) =gq,

and so g = 2p, which contradicts that (p,q) = 1. Therefore, no common
internal vertex of v; Pc,v;, 'v,chn vy exists.

(i) If [¢,4] N [z,J’] # 0, then either i < # < j or
Without loss of generality we assume that ¢ < ¢’ < 5. If j

i < 4.

5 i
! < j, then
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max{j,j'} —min{i,’'} = j—i <p—-1. If§5 > jand u is a common
internal vertex of v; Pc v, erPc,:,v‘: then 'u,:Pc: uPcpv,Cq vy is a cycle
(the method of the proof is the same as in (i)). Note that a.ny arc of the
cycle vy Pey, uPcpv,Cq vj belong to either the p-cycle v.Cq v; Po,v; or the
p-cycle vy Cq v,:PC: vi. By Lemma 2.8, the cycle v; Pc: uPcpv,Cq vy is
not q-cycle, and so it must be a p-cycle. Therefore max{y, J'} — min{s, '}
=j—-i<p-1.
We have completed the proof of Lemma 2.11. O

Lemma 2.12 Let D € PMSD,, and L(D) = {p,q} with 3 < p < q and
p+ g > n, and let Cq = (v1,v2, ...,,v1) be a g-cycle of D and o a
path in Cy. If there is a consecutive p-cycles cover of (Cq,0) in D, then
7(0) < min{q - 2, (n - 9)(r - 2)}.

Proof. By Lemma 2.8, in C, there exist two arcs not being in any p-
cycle. Without loss of generality we assume that (vg,v1), (Va,va+1) are

the two arcs, and o C vIC,so)va. Let T be a consecutive p-cycles cover of
(Cq,0). We remove those superfluous p-cycles in T to obtain an irreducible
consecutive p-cycles cover Ty (C T) of (Cy,0). Afterwards, we get an
irreducible consecutive p-cycles chain C’;, C;‘,’, ceey Cztz of (Cy, ) by properly

arranging the order of the p-cycles of T). Let C! = v, Céo)vj,PC:’ &, Vi
(!=1,2,...,t). By Lemma 2.5,

41 <ig<j1 <3< Jo <-v <y < Ge-g <dp L o1 < e
t
We first prove that U Cl contains at least ¢ vertices not in V(C,). It

suffices to prove that U vJ‘PC(C v;, contains at least ¢ vertices not in

V(C,). Clearly, v;, PCIC v;, contains at least a vertex not in V(Cy) by

D ministrong. Suppose that for £ € {1,2, ...,t — 1}, U v Pei e, v

contains at least k vertices not in V(C;). We prove that U vj, Pczc vy

contains at least k + 1 vertices not in C;. For each ! € {1 2, ..., k—
1}, since [i;, 1) N [zk+1,jk+1] = @, by (1) of Lemma 2.11, there is no
common internal vertex in vy chc v;, and vj, +1PCI¢+IC V.. If there
is no common internal vertex in kaPck@ v;,, and vj, +!Pck+lc Vi then
k41

U v; Poio, vy contains at least k + 1 vertices not in V(C,) by D min-
I=

1strong If there exists some common internal vertices in v;, Pckc vy, and
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Vjusr Poxt1, Viegr» then vy, Pert1g,Viny, contains at least an internal ver-

tex which is different from those common internal vertices by D ministrong,
k+1
and so U v, Pcig,vi, contains at least k + 1 vertices not in V(C,). By

induction, U v, Pore, v contains at least ¢ vertices not in V' (Cy).

Now we prove n(o) < min{g — 2,(n — ¢q)(p — 2)}. Note that in D there
are precisely n — ¢ vertices not in the g-cycle C;. By the above arguments,
any irreducible consecutive p-cycles chain contains at most n — g p-cycles.
Hence t < n — g. Since n(v;, Cé")v,-,) <p-2(1=12,...,t), then

t
n(0) = (v, CPv;,) <D n(v:,CMvs,)
i=1

t
<Y p-2)=tp-2)<(n—-q)(p-2)
=1
We can check from Lemma 2.8 that n(o) < ¢ — 2, and so
n(o) < min{g - 2,(n — q)(p - 2)}.
The proof of Lemma. 2.12 is complete. O

Theorem 2.1 Let D € PMSD,, and L(D) = {p,q} with 3 < p < q and
p+q>n. Then

expp(1) 2 max{(p — 1)(¢ — 1) + 1,p(¢ — 1) — (n — g)(p — 2)}.

Proof. Let C; = (v1,v2,...,94,v1) be any g-cycle of D. By Lemma 2.8,
in Cy there exist at least two arcs not belonging to any p-cycle. Without
loss of generality we assume that the arc (vg,v1) does not belong to any
p-cycle. Then C, can be expressed as

Co=01C{ v, CP vy, 1100, CPviy 1 - vty _, C O, 41w, COvy, 41

(where k > 2, Iy = g, vg41 = v1) such that each arcin v10<5°)v1, , v[,.+1C§°)vl‘. +1
(( = 1,2, ...k — 1) is in some p-cycle, and for each ¢ € {1,2,...,k},
'Ulicéo)vlg+l = (w;, v, +1) is not in any p-cycle. We first prove that

2(v1CPv;,) < min{g - 2,(n - g)(p — 2)}.
If |y = 1, then n(v,cg"’v,,) =0<mn{g-2,(n—q)(p—2)}. Ifl; >

1, for each ¢ € [1,...l; — 1], let (vi,vi41) be an arc of the p-cycle C";
(perhaps Cp=Cj for i # j ), and let h; and j; be respectively the least
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and the greatest subscript of the vertices in V(C‘) N {v1,ve,...,v,}. By
(i),(iv) of Lemma 2.10, C; can be expressed as C} = vy, PC.vJ‘PC.C Vh,

and n(vh‘Pc.v,‘) = n(vh‘Cq v,‘), where 1 < h; < j; < I;. Hence C” =
U, Cq vj, Pc;cqvh‘ is a p-cycle (a consecutive p-cycle) containing the arc
(vi,vig1), and thus T = {C_';; 1i=1,2,...,l; — 1} is a consecutive p-cycles
cover of (Cq, v Céo)v,,). By Lemma 2.12,

7(v1C{Mu,) < minf{g -2, (n - g)(p - 2)}.
Similarly
(v, +1CPv;,,) < min{g-2,(n - g)(p-2)}E=1,2,...,k - 1).
Next we prove that for any v € V(C,),
expp(v) > max{¢.p) + 1,érp) +¢— 1 — (n — q)(p — 2)}.

Let vyWvg be any walk from v to v, in D. By Lemma 2.9, n(viWv,) =
#1p+ p2g+n(v C.g vg), Where 11, p2 are nonnegative integers. By Lemma
2.2, expp(v1,7) 2 N(v1COv,) + 1Dy = $r(py + ¢ — 1. Hence

expp(v1) = max{expp(v1,w) : w € V(D)}
> expp(v1,vq) > dr(py +q—1.

Let i be any integer in [1,...,l;]. Clearly for any positive integer z,
Rz(vi) € Ray(i-1)(v1). Hence

V= RexpD(v‘-)(vi) Cc Rexpp(v‘)+(i—l)(vl)s
it follows that expp(v1) < expp(v;) + (i — 1). Thus

expp(vi) 2 expp(v1) = (i —1) 2 ¢y +g -1~ (i - 1).
By Lemma 2.12,i—1<!; — 1 < min{g — 2,(n — q)(p — 2)}. Hence
expp(vi) 2 1 (p) +¢— 1 —min{g -2, (n - q)(p - 2)},
and so, for each v € V(vlc.go)vg, )
expp(v) 2 max{¢rp) +1,érp) +9—1 - (n~q)(p—2)}.
By similar argument, for each v € V(vl‘..,.lCéo)v;m) (i=1,2,...,k—1),

expp(v) 2 max{dr(p) + 1,¢rp) +9—1— (n - q)(p — 2)}.
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Therefore for any v € V(Cy),

expp(v) = max{¢rp) + L,dr(p) + 9~ 1—(n—q)(p - 2)}.

Now we show that for any vertex v not in any g-cycle,

expp(v) > max{¢r(p)+ 1,éL(D) +9—1—(n—q)(p — 2)}.

Let X = {z:z € [l,...,q] and there is a path from v to v, whose internal
vertices are not in V(Cy)} and Y = {y : y € [1,...,q] and there is a
path from v, to v whose internal vertices are not in V(C,)}. Let b =
max{z : z € X} and ¢ = min{y : ¥y € Y}. Then no common internal
vertex exists in vPC Up, chqu Otherwise, if v is a common internal
vertex in vPg, vs, ‘UcPé v, then vPg uPg, v contains a cycle whose vertices
are not in V(Cq), which contradicts that L(D) = {p,g} and p+q > n.

Hence vFPg, vbC ché v is a cycle (is a p-cycle since it contains vertex v).
Similarly, forany z € X andy € Y, vPg, sz'q chC v, vFPg, vqu vyPC v
are p-cycles. Note that vbC( )vc is a path of the p-cycle vFPg, vqu chqu.

Hence vbC( )y does not contain the arc (vy,,v;;41) (z =12, ...,k). It
follows that vbC( )v,_. is contamed in one of the paths vIC Vi, Ul +1 C( )vla ,
v¢,+1C’q Ulgy- ooy vlk_l.HCq vy,.. Without loss of generality we assume that

vqu(,o)vc C vlc,§°)v,,. Then 1 < b<c¢ <1, and so széo)vc - vlc.§°’v,,,
vbc,§°)u,, - vlc§°)u,l. Namely, ] Sz <c<ljand1 <b<y <.
From the definition of b,c, we have b > = and ¢ < y. Therefore 1 <z <
b<c<y<!l Let wWy, be any walk from v to v;. Then vWwy, can
be expressed as vWuv, = vPg v Wvg, where z is a vertex in X, v, Wy, is
a subwalk of vWw, which is obtained by removing the path vFg vs from

vWu,. By Lemma. 2.9, n(ve Wy,) = p1p + pog + n(sz¢§°)vq), where g1, 2
are nonnegative integers. Hence
7(vWrg) = n(vPg, ve) + pap + p2g + n(vzCOvg)
= N(Pg,vz) + p1p + p2q + N(v2COve) + n(vcC{vg)
= mp + p2q + 1(vPg, v:C v Pe,v) — 1(vePs,v) + 1(veC{ " vg)
= pp + p2g +p — n(vePe,v) + (¢ — o).
Note that for any pa.th chC v from v, to v whose internal vertices are not

in V(Cy), n(vPg, vz Cq chC v) = p. Hence n(v.FPg, v) is a constant, and
so p—n(vePe, v) +g—cisa constant. By Lemma. 2. 2

expp(v,vq) 2 dr(p) +P — N(veFe,v) + (g —¢).
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By Lemma 2.12, {; — 1 < min{g — 2, (n — ¢)(p — 2)}. Hence
g-c2q-h=q-1-(hL-1)
> ¢—1-min{g-2,(n-q)(p-2)}
max{l,¢g—1-(n—q)(p-2)}.
Note that 7(vcPg,v) < p— 1. It follows that
expp(v,vg) 2 drpy) +p— (p— 1) + max{l, (¢ - 1) - (n — g)(p — 2)}
> max{¢rp)+ 1, ér0) +9—1—(n—q)(p - 2)},

and so
expp(v) = max{expp(v,w) : w € V(D)} 2 expp(v, vq)
> max{¢r(p)+ 1, ér(p) +9—1-(n—q)(p - 2)}.
To sum up, for any v € V(D),

expp(v) 2 max{¢rp) + 1, dr(p)+¢—1—- (n—q)(p - 2)}.

Therefore

expp(1) 2 max{(p-1)(¢-1)+1,p(g—1) - (n - g)(p - 2)}-

The proof of Theorem 2.1 is complete. O

3 the l-exponent set

Lemma 3.1 (3] Let D be a primitive digraph on n vertices and L(D) =
{p,q} withp<qandp+q>n. Then

(p—1)(g-1)<expp(l) < (p-1)(g—1)+n—p.
By Lemma 3.1 and Theorem 2.1, we have

Theorem 3.1 Let D € PMSD,, and L(D) = {p,q} with3 < p < q and
p+qg>n.
() If g+ [(g—2)/(p—2)] £ n, then
(p-1)(g—-1)+1<expp(l)<(p—1)(g—-1)+n—p.
(i) If g+ [(¢—2)/(p - 2)] > n, then
plg—1)-(n-q)p—-2)<expp(l) < (p—1)(g—1)+n—-p.

Proof. (i) If g+ [(g—2)/(p—2)] < n, then g—}g < [g%g-] <n-—gq, and so

g—2< (n—gq)(p—2). By Lemma 3.1 and Theorem 2.1,

(p-1)(g-1)+1<expp(l) S (p-1)g—-1)+n—p.
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(ii) If g + [(g — 2)/(p — 2)] > n, then g:—g > n—gqsincen—gqisan
integer, and so ¢ — 2 > (n — q)(p ~ 2). By Lemma 3.1 and Theorem 2.1,
plg-1)—(n-q)(p—-2) <expp(l) <(p—1)(g—-1)+n—p.
The proof of Theorem 3.1 is complete. [0

Theorem 3.2 Let p,q be two integers with3 <p<qg<n-1, (p,g) =1
and p+q > n. Then for eachm € [(p—1)(g~-1)+g-—p+1,...,(p—
1)(g—1) +n—p], there exists a primitive, minimally strong digraph D with
n vertices and L(D) = {p, q} such that expp(1) =m.

Proof. Foreachm € [(p—~1)(g—1)+q—p+1,...,(p—1)(g—-1)+n-p],
there exists an unique integer a € [g—p + 1,...,n — p] such that m =
(p—1)(g—1)+a. Let D = (V,E) with V = {v1,vs,...,v,} and

E={(vi,vi+1):i=1,2,...,q,...,a+p—= 1} U {(vg,v1), (Yatp) Va+1)}
U{(vq, i), (viyv2) ti=a+p+1la4+p+2,...,n if a+p<n}

where g —p+1 < a < n—p. Then D € PMSD, and L(D) = {p,q}.
Note that dp,py(v1,va) = a—1+ ¢ and the length of any walk v; Wv, from
v1 to v, of length at least dy(p)(v1,va) can be represented in the form
21p + 22q + d(py(v1,v,.). By Lemma 2.3,

expp(v1,va) = dyp)(v1,%) + $r(p) =g +a—1+(p—1)(g - 1)
Hence
expp(v1) = max{expp(v1,v) : v € V(D)}
= expp(v1,va) =(@—-1)(g-1)+g+a—1.
Let z be any positive integer, we have
Ri41(vi)=Rz(viy1) for each i€ ([l,...,q—-1jU[g+1,...,a+p—1];

Ry41(vj) = Ry(v2) for each je{1}U[a+p+1,...,n];
R ('Ua-i-p) = R;(vVa41). Hence

expp(vi41)=expp(v;) —1 for i€ [1,...,g—-1U[g+1,...,a+p—1],
expp(v2) = expp(v;) —1 for j€ {1}Ufa+p+1,....,7],
expp(Va+1) = €xpp(va+p) — 1.
Therefore
expp(1) = expp(vqy) = expp(v1) — (¢ — 1)
=p-1)g-1)+a=m.
The proof of Theorem 3.2 is complete. O
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Lemma 3.2 Let D = C, U C’; U Cf, u-.--u C;,‘ be a primitive digraph
with 3 < p < q, where Cy = (v1,v2,...%,v1) is @ g-cycle, C},C2,...Ck

an irreducible consecutive p-cycles chain of ('Cq,vIC.go.)vg) 1<t<yg),
and for any distinct 1,5 € {1,2,...,k}, V(C}) N V(C]) C V(Cy). Then
expp(vi) = expp(vis1) +1 for each i € [1,...,t —-1].

Proof. Let C} = 'u,,iC',go)‘u;iPC,.;(;qu,.,i (¢=1,2,...,k). By Lemma 2.5, 1 =
§1<82<l1<s3<lp< - <8_1 <lgg <8 Ly <lg=1t. Clearly
L(D) = {p,q}. It is easy to see that for any positive integer z and each

k-1
i€ [1, N 1] U U [lj +1,..., l.'i+1 - 1], R;,.H(v,-) = R,(v,-.,.l). Hence for

eachi € [1,...,l; - 1)U U i+1,...,0j41—1), expp(v;) = expp(vig1) +1.
Thus it suffices to prove that
expp(v,) =expp(u+1)+1 (i=1,2,...,k—1).
We first prove that
Rip_(ti-1)(0) = Rip_(ti=ty)-1(v41) (6=1,2,...,k—=1).  (3.1)

Let u; be the terminal vertex of the arc in C" with the initial vertex vy,
(i=1,2,...,k). It is easy to see that

Rp(vll) = R‘P—l(wx+1) URP—I(ul)
= Rp—l(vlﬂ-l) U {vll}

= Rp_1(v,41) since vy, € Rp_1(vy,41).
So (3.1) holds for ¢ = 1. Since
Rop_(1—-1,)(vis) = Rap_(13-1)-1(vi41) U Rayp(t-1,)~1(u2)
= Rop_(1,-1,)-1(Vz+1) U Rp(wy, ),

Ry(v,) = Rp_1(v1,41) U Rp—1(u1)
= Rp_(t,—1,)(Rtz—1,-1(v1,41)) U {wy, }
= Rp_(ip-1)(via) U {1, } = Rp_ (1) (v1,),  (3.2)

and

Rop—(13-11)-1(Via+1) = Rp(t—1,) (Rp-1(vi541)) 2 Rp—(1y—1,)(v1,),

then R2p—(lz-ll)(vlz) = R’Zp—(lz—h)-l(vlz'l'l)' Namely (3.1) holds for ¢ = 2.
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Suppose that i € [3,...,k —1]. Since

Rip_(t~1) () = Rip—(te—ty)-1(vte+1) U Rip_(,—ty)—1(w:)  (3.3)
and
Rip_(l"_")_l(ui) = R(i_l)P'(li—l—ll)(RP—(li—l{_l)—]_('U'i))
= Ri—typ-(ior-t)(W0iy)y  (34)

then

Rip—(ti=1)(v1;) = Rip_(t,—1)-1(vti+1) U R 1)p— 1y —11) (Vi1 )-
Since
R 1yp—(tioy—12) (V1i2r)
= Rii_1)p—(ticy—t1)=1(V0_1+1) Y Ri—1yp— 1y 1) -1 (¥i-1)
= R(‘i—l)p—(l(—h)(Rli—li—l—l(vll'—l"'l))
UR(i_2)p-(li—2_ll)(R —(li..l—l.'_z—l)(u'i—l))
= R(i—l)P-(li—lx)(vli) U R(i—2)p—(l;,2-ll)(Uli—z))

and similarly

R(i—2)p-(tiea—11) (Vti_z) = Riim2)p—(to1 —11) (V1i2y ) U R(i=3)p(1i-5-11) (Vtia),

Rop—(1-1,)(v1a) = Rap—(15—1,)(v13) U Rp(vy,).
It follows from (3.2) that

Rityp-(tecr -ty (visy) = (U Rj1)p-(t;-11)(v1;)) U Rp(wi,)
=3

1
= (U R(j—1)p—(t;-12)(v1;)) U {wy, }-
=2
Since for each j € {3,4,...,i},
R(j-1)p-(t;-1)(v;) = Rij—1)p—(t;-12)-1(Ra(vy;))
2 Ri-1)p-(t;-11)-1(%5)

= R(j-2)p(t5-1-12) (Rp=(ty=4;-1)-1(145))
= R(.i‘”?"('j—l"‘l)(”’,‘—;))
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and R,_(1,—1,)(vi,) 2 {w,}. Hence
R 1yp—(tios-1) (Viisy) = Riim1yp—(ts—t2) (01,)-
From (3.3) and (3.4), we have
Rip—(ti-t2) (V1) = Ripm(ti~1)-1(9141) U Ris—1yp (1, —1,) (W1,)-
Since

Rip_(t;—t)-1(vt,+1) = Ri—1yp—(ti-1,) (Rp-1(v1;41))
2 R(i-l)p-(l;-h)('”l.-) for each i € [3,...,k - 1],

then (3.1) holds for each i € [3,...,k —1].
Summing, (4.1) holds for each i € [1,...,k - 1].
Now we prove that

expp(v,) =expp(v+1) +1 for i=1,2,...,k-1.
By (3.1), we have
Rz(v,) = Ry—1(vy41) for i€ {1,2,...,k =1} and z > ip—(; - ).
Let v, Wv, be any walk from v;; to v, in D. We can check that
NoWog) = mp + pag+q -1,
where 4, po are nonnegative integers. By Lemma 2.2,

expp(vi,,vq) 2 by +9—1U
=@p-1)0g-1)+q-li=pg—p—1l;+1.

Hence

expp(v;) = max{expp(w;,v): v € V(D)}
2 exPD(vluvq) 2pg—-p—li+1.
Sinceg>t=1; > k+1, thenforeachi€ {1,2,...,k—=1}, (pg—p -l +
D-[ip-(i-b)]=(g-i-p-bL+12(g-kp-L+1>2p—(Ih)-1)
> 0, and so
pq—p—l,-+1>ip—(l,--—ll) (‘i=1,2,...,k—1).
It follows that expp(v,) >ip— (L —4) (i=1,2,...,k —1). Hence

V= Rexpp(vz,.)(vla) = Rexpp(v,,)—l('vls+l) (E=12,...,k- 1),
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and so

expp(vi,+1) S expp(u,) —1 (i=1,2,...,k-1).
Namely

expp(v,) 2 expp(vy+1) +1 ((=1,2,...,k—1).

On the other hand, since

Re"PD("'¢+1)+l(vl{) = Rexpp("l.-n)(Rl(vli))
2 RexPD("li+1)(vli+l)
=V for each i€ {1,2,...,k—-1},

then
expp(w;) L expp(vi+1) +1 (i=1,2,...,k-1),

and so
expp(v;) = expp(un+1) +1 (i=1,2,...,k—-1).

Consequently
expp(vi) = expp(viq1) +1 (3 =12,...,t - 1).
The proof of Lemma 3.2 is complete. O

Theorem 3.3 Let p,q be two integers with3<p<q<n-1, (p,q) =1,
p+q>n, and g+ [g:—g] < n. Then for eachm € [(p—1)(g—1)+1,...,(p—
1)(g — 1) + g — p+ 1], there ezists a primitive, ministrong digraph D with
n vertices and L(D) = {p, q} such that expp(1l) =m.

Proof. Foreachm € [(p—1)(¢g—1)+1,...,(p—1)(¢—1)+g—p+1], there
exists an unique integer a € [1,...,g—p+1] such that m = (p—1)(g—1)+a,
and for such integer a, there exist an unique integer k(= [9;—25—11) such that
1+(k-1)p-2)<g—a<1+k(p—2). Clearly

-1

q—a
g+k=q+[1——
5=

q—2
< + — < .
2 ]—q [p 2]—‘”

Let D = (V,E) with V = {v;,v2,...,vs} and E = E; U E; U E3, where

By = {(vi,vi41) 11=1,2,...,9 — 1} U {(vg,v1)},

Ey = {(vi4i(p-2)» Vg+i)s (Vgtir Vi (i-1)(p-2)) 1 =1,2,..., k — 1}
U{(vg—a;sVg+k)s (Vg+ks Vg—a—p+2)}

E3 = {(vp-1,%), (vi,v1) i€ fg+k+1,...,n]}.

Let D' = (V',E’) with V' = {v1,v2,...,v4x} and E' = EyUE,. It is
not difficult to see that D(D’) is strongly connected and L(D) = L(D’) =
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{p,q}. Hence D(D’) is primitive for p and q being coprime. We can check
that each digraph obtained from D(D') by removal of an arc is not strongly
connected. Hence D,D’ are primitive, minimally strong digraphs with
L(D) = L(D') = {p,q}. Clearly we have
expp(vi) = expp(vg+1) (i=q+k+1,9+k+2,...,n),
expp(vi) = expp/(v;) (1=1,2,...,q9+k).

It follows that expp(1) = expp/(1). Let

Cq = (vlavZa ceryUgy vl)x
G = '”1+(i-1)(p-2)030)”1+"(p-2) U (V14i(p—2)1 Yghis V14 (i-1)(p-2))
(i=1,2,...,k—1),

Cp = ”q-a-p+2céo)"q—a U (Yg—a Vg+k) Vg—a-p+2)-
Then D' = CoUCRUCEU---UCF, and C},C2,...,C¥ is an irreducible
consecutive p-cycles chain of (Cq,vlago)vq_a), and for any distinct 4,5 €
{1,2,...,k}, V(C;)nV(C}) C V(C,). We can check that

expp:(vq) = expp: (vVg+1),

eXle(Uq.H) = €XPp/ (v(i—l)(p—Z)) (2 =2,3,....,k - 1)’

€xpp:(Vg+k) = €Xpp: (Vg—a—p+1),

expp:(vi) = expp/(vig1) +1 (i=g—a+1,g—a+2,...,g—1).
It follows from Lemma 3.2 that

expp(1) = expp:(vg—a) = expp/(v1) — (g —a - 1).

Let v;Wwv, be any walk in D’ from v, to vg. Then n(v;Wuy,) can be
expressed as
n(n1Wuvg) = mp + pag + drpry(vi, vg),

where 1, 2 are nonnegative integers. By Lemma 2.3,
expp (V1, %) = dr(p) +drp)(v1,vg) = (P~ 1)(g - 1) +¢ -1,
then

expp(v1) = max{expp(v1,v) : v € V(D)}
= expp/(v1,v) = (p-1)(¢—1) +q—1,

and so expp/(1) = (p — 1)(¢ — 1) + a = m. Therefore expp(1) = m. The
proof of Theorem 3.3 is complete. O
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Theorem 3.4 Let p,q be two integers with3<p<g<n-—-1, (p,q) =1,
p+g>nandq+ [f,—:—g] > n. Then for eachm € [p(g—1)— (n—q)(p—2),
ooy (p=1)(g = 1) +q — p+ 1], there ezists a primitive, minimally strong
digraph D with n vertices and L(D) = {p,q} such that expp(1) =m.
Proof. For eachm € [p(g—1)—(n—q)(p-2),..., (p—1)(g—1)+q—p+1],
there exists an unique integer a € [g—1—(n—q)(p—2),...,g—p+1] such
that m = (p — 1)(¢ — 1) + e, and for such integer a, there exists an unique
integer k(= [9;—5—1]) such that 1+ (k- 1)(p—-2)<g—a <1+ k(p-2).
Clearly

q+k=q+f%%;—113q+f(—n—%2-)1=n-

Let D = (V,E) with V = {v1,vs,...,vn} and

E = {(v,vit1) :i=1,2,...,g— 1} U {(vg, 1)}
U{(v14i(p~2)s Va+i)s (Vguis V14 (i-1)(p-2)) 1 8 = 1,2,..., kK — 1}
U{(vg—as Vg+k)s (Vg+ks Vg—a—p+2)}
U{(vp-1,v:), (vi,v1) :i € f[g+k+1,...,n]}.
From the proof of Theorem 3.3, D is a primitive, minimally strong digraph

with n vertices and L(D) = {p,q}. By the same argument as in the proof
of Theorem 3.3, we obtain that

expp(l) = expp(vg-a) = expp(v1) — (g—a 1)
=(p-1)(g-1)+g-1-(¢g—a-1)
=(p-1)(g-1)+e=m.

The proof of Theorem 3.4 is complete. O
By Theorems 3.1, 3.2 and 3.3, we have

Theorem 3.5 Let S be the set of 1-exponent of all primitive, minimally
strong digraphs with n vertices and L(D) = {p,q}, where3<p < q,p+q>
n and g+ [g:—g] <n. Then S = [(p—1)(g—1)+1,...,(p—-1)(g—1)+n—p].

By Theorems 3.1, 3.2 and 3.4, we have

Theorem 3.6 Let S be the set of l-exponent of all primitive, minimally
strong digraphs with n vertices and L(D) = {p,q}, where 3 < p < g,
p+q>nand g+ f,;"_—g'l >n. Then S = [p(g—1)— (n — q)(p — 2),
cn@-1)(g-1)+n-p.
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