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Abstract

We call the graph G an edge m-coloured if its edges are coloured
with m colours. A path (or a cycle) is called monochromatic if all
its edges are coloured alike. A subset S C V(G) is independent by
monochromatic paths if for every pair of different vertices from S
there is no monochromatic path between them. In [5] it was defined
the Fibonacci number of a graph to be the number of all indepen-
dent sets of G; recall that S is independent if no two of its vertices
are adjacent. In this paper we define the concept of a monochro-
matic Fibonacci number of a graph which gives the total number of
monochromatic independent sets of G. Moreover we give the number
of all independent by monochromatic paths sets of generalized lexi-
cographic product of graphs using the concept of a monochromatic
Fibonacci polynomial of a graph. These results generalize the Fi-
bonacci number of a graph and the Fibonacci polynomial of a graph.
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1 Introduction

For concepts not defined here, see [1] and [2]. We consider only finite,
undirected, simple graphs. By P, and C, for n > 2 we mean graphs
with the vertex sets V(P,) = V{(C,) = {v1,...,vn} and the edge set
E(P,) = {{vi,vit1};i = 1,...,n = 1} and E(C,) = E(P,) U {va, 01}, re-
spectively. Moreover P, is a graph with one vertex. Let X ¢ V(G)UE(G).
The notation G \ X means the graph obtained from G by deleting the set
X. A subset S C V(G) is independent of G if no two of its vertices are
adjacent. Moreover we assume that the subset containing exactly one ver-
tex and the empty set also are independent. In [5] a graph representation
of the Fibonacci numbers F, and the Lucas numbers L, was presented.
It was defined the Fibonacci number of a graph G to be the number of
all independent sets S in G and following the Fibonacci number of G was
denoted by F(G). It is interesting to know that F(P,) = F,,.4+1, where F}, is
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the n-th Fibonacci number defined by Fo = Fy = land F,, = F,,_1 + F,_o,
for n > 2. Moreover for n > 2 holds F(C,) = L,, where L, is the n-
th Lucas number defined by Lo = 2, Ly = 1, L, = L,_1 + Lp_3, for
n > 2. The number F(C,) for n > 3 has also another recurrence form
F(C,) = F(Pn-3) + F(Pp-3) with F(P,) = Fn41, n = 0,1,2. Fibonacci
numbers of graphs were investigated for example in (3], [4], [5], [7], (8]. In
[4] it was introduced more general concept, namely generalized Fibonacci
number of a graph which give the total number of 7-independent sets (i.e.
generalization of an independent set in distance sense) of a graph G.

In this paper we generalize the concept of Fibonacci numbers of a graph
G with respect to sets independent by monochromatic paths. The definition
of an independent by monochromatic paths set was introduced in [6]. Let
G be an edge coloured graph. A subset S C V(G) is independent by
monochromatic paths of G if for every pair of different vertices v,,v2 €
S there is no monochromatic path between them. Moreover the empty
set and the subset containing exactly one vertex also are independent by
monochromatic paths of G. Throughout this paper we will write an imp-
set of G instead of an independent by monochromatic paths set of G. By
MPF(G) we will denote the number of all imp-sets in the graph G and
we will call it the monochromatic Fibonacci number of the graph G. The
notation M PF;(G) means the total number of imp-sets with k elements,
k > 0 in the graph G. It is obvious that MPF(G) = > MPF(G).

k>0

Moreover for graph G, on n vertices, n = 0,1 we put that MPF(G,,) =
n+ 1 and also MPFy(G,) =1, MPF,(G;) = 1.

2 The total number of imp-sets of P, and C,

Let P, be an edge coloured graph and 7 = (H;)i¢a,...,;} be a sequence of
monochromatic subpaths of P, of length n;, n; > 1, i = 1,...,¢ such that
H;NH; # 0 if and only if j = ¢+ 1. Then for the graph P, we put notation
Ppine, Evidently n is the length of the monochromatic path containing
the initial vertex of P, and n, is the length of the monochromatic path
containing the end vertex of P,. Let Prt'™ be a graph with the vertex
set numbered in the natural fashion. Then by a graph P;'"""™ j <t we
mean a graph isomorphic to Pt ™t \ {vn,¥n_1, ..., Un—p+1 f If n; =1 for
i=1,...,t then we will write P, instead of P}~

Theorem 1 Let P}t»™t be an edge coloured graph on n vertices, n>2 and
let k>0, t>1 be integers. Then M PFy(Pirm)=1, MPF (P} rtt)=n,
for k > 2 holds MPF(P?) = 0 and for t > 2 we have the formula
MPE(PM»m™) = MPF (P ™) + ntMPFk_l(P"""""“‘"l).

n-n, n—ng—1

P R O O F: The statements M PFo(Pr»"t) =1 and MPF,(Pptr") =
n are obvious. Let &£ > 2. If ¢t = 1, then all edges of the graph P}* are

126



coloured alike. This implies that every imp-set has at most one vertex,
hence for k > 1, MPF,(P}') = 0. Assume now that ¢t > 2 and k > 2. Let
S be an arbitrary k-element imp-set of a graph P71+t with the vertex set
V(Ppe-™) numbered in the natural fashion. Evidently n; is the length
of the monochromatic path containing the end vertex of P,. Because only
one vertex from monochromatic path can belong to S, hence we distinguish
two possible cases:

Case 1. For every i =0,1,...,n, — 1 holds v,_; ¢ S.

Let S; be a family of all k-element sets S such that v,_; € S, for every
i = 0,1,..,n; — 1. Hence the definition of the graph P2'»--™t implies
‘that § = §’, where §' is an arbitrary k-element imp-set of the graph
Ppivme\ {yn_ii = 0,1,...,m — 1} isomorphic to P2, ™', In other
words |S1| = MPFE(P;L ™).

n—n;
Case 2. There exists 0 < i < ny — 1 such that v,,_; € S.

Let S; be a family of all k-element imp-sets S such that there exists 0 <
i < my — 1 where v,_; € S. Because v,—; € S, so all remaining vertices
belonging to the monochromatic path H; do not belong to S. In the other
words vp,_; ¢ S for every j € {0,1,...,n:} \ {¢}. This implies that § =
S* U {vn—i}, where S* is an arbitrary (k — 1)-element imp-set of the graph

Priseme\ fy,_5=0,1,...,n,} isomorphic to P:i’(’;:'_,‘_‘l‘)‘_l. Evidently we

have MPFk_l(P:l',;“‘fl‘“‘_l) sets S. Moreover 0 < i < ny — 1, so we can
choose a vertex v,—; belonging to S on n, ways. Whence by fundamental

combinatorial statements |S;| = n,M PFk_l(P:l',','t'fl‘"-l).

In consequence if ¢ > 2 and & > 2 then for the numbers M PF(Pgtr ™)
we have the recurrence formula M PF(Pgt™) = MPF (P L "™') +
nM PFk_l(P"”""““‘_l). This completes the proof. 0

n—ng—1

Theorem 2 Let PP ™t be an edge coloured graph on n, n > 2 vertices
and let t > 1 be integer. Then MPF(P}') =n+1 and for t > 2 the num-
bers MPF (PR satisfy the following recurrence MPF(PJ1r ™) =
MPF(PR™ ") 4 ng MPF(PRU ™).

—n, —ns—1

PROOF:Ift =1, then P is monochromatic, so k can be 0 or 1. Hence
MPF(P}) = MPFy(P?)+ MPF,(P}') = n+1, by Theorem 1. If t > 2,
then using the Theorem 1 we have that

MPF(Privme) = T MPFy(Prirm) = MPFy(Prrmt) 4
£>0

MPFy(Ppiv=m)+ 3 (MPFW(PR ™) + meMPFea (P20 )
k32

=14+n+ Y MPE(PM:™ Y +n, 3 MPF_y(Pruo™-h)

-1 n—n;—l
E>2 k>2
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= 1+(n—nt)+nt+ Z MPFk(P:_l_:;'n‘_‘)-{-nt Z MPFT(P:.’-’,hT]‘_l_l)
k22 r=k—-121

= Ltn—net T MPFL(PL™ )+, (1 +T MPFr(P;‘::;;'.";-"l))
k>2

r21
= MPR(PL ™) +m & MPF,(Pyrm )
=M PFR(PIL™Y) + M PFZP"l’,‘l"'f'{"_l) as required. Thus the the-
orem is proved. m]

Corollary 1 For an arbitrary proper edge colouring of the graph P, n > 1
holds MPF(P,) = Fy+1.

P R O OF: Let ¢ be a proper edge colouring of the graph P,. If n = 1, then
from the definition of the number M PF(P,) we obtain that MPF(P,) =
F(P))=F;. If n =2, thent =1so MPF(P;) = F(P2) = F3 and result is
obvious. Let n > 3. Then ¢ > 2 and for every two adjacent edges e;,e; €
E(Pr1--mt) holds ((e1) # {(e2). The proper edge colouring of the graph
P, implies that all monochromatic paths of P, have the length equal to 1.
Hence the Theorem 2 gives that M PF(P,) = MPF(P,_2)+ MPF(P,_,),
for n > 3. Moreover by initial condition we obtain that for an arbitrary
proper edge colouring of P, holds MPF(P,) = F(P,) = Fny1. O

Let C, be an edge coloured graph and g = (H;)ieqs,...,s) be a sequence
of monochromatic paths of C,, of length n;, n; > 1 ¢ = 1,...,t, such that
H,NnH; #0ifand only if j =i+ 1 ori =1 and j = t. Then for the graph
C, we put notation CJ1» ",

Theorem 3 Let CZ1»-™ be an edge coloured graph on n vertices, n>3 and
let t>1, k>0 be integers. Then MPEy(Cpr™)=1, MPFR(Cprr™)=
n, for k> 2 holds MPF,(C)=0 and for t >2 we have the formula
MPF(Chirm) =

MPFk(Pni;l,ng,...,ng_),ng—l) + MPFk—l(Pnz_l'na,"_'in'_z’n‘-l_l)~

n—n)—ng

P R O O F: The initial conditions are obvious. Assume that & > 2 and
t > 2. Let S be an arbitrary k-element imp-set of CJ1»-™ with the
vertex set V(CR1»-~"t) numbered in the natural fashion and assume with-
out loos of generalization that Hy N H; = {v;}. To calculate the number
MPF,(Cp1™) we consider two possible cases:

Case 1. Let v; € S.

Let S; be a family of all k-element imp-sets S of Cj;t+~™t such that v; € S.
Evidently § = 8’ where S’ is an arbitrary k-element imp-set of the graph
Cru-me \ {1y} isomorphic to P12 ™-t™~1  In the other words

|S1) = MPFk(PniIl’"""""“”"‘_l).
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Case 2. Let v, € S.

Assume that Sy is the family of all sets S such that v; € S. Because
only one vertex from monochromatic path can belong to the set S hence
the assumption of the set S gives that v; ¢ S for every i = n — n; +
1,..,m,2,...,n; + 1. This implies that S = S$* U {v;}, where S* is an
arbitrary (k — 1)-element imp-set of the graph C1» 7t \ {vg;8 =n—n; +
1,..,m; + 1} isomorphic to P:ﬁ;llf,‘:,";'in"""‘"‘—l. Hence it is clear that
|So] = M PFk_l(P:i;llf,‘:;"_ji""”"‘"‘_l). All this together completes the
proof. (]

Using the same method as in the Theorem 2 and in the Corollary 1 we

can prove:

Theorem 4 Let C1»™t be an edge coloured graph on n vertices, n > 3
and let t > 1 be integer. Then MPF(C') =n+1 and fort > 2 the num-
bers MPF(Cnvmt) satisfy the following recurrence MPF(Cir™) =
MPF(PLLy e Mtm =l 4 MPF(PRZL s,

Corollary 2 For an arbitrary proper edge colouring of the graph Cp,, n > 3
holds MPF(C,) = L.

3 Fibonacci numbers in edge coloured graphs

Let G be an edge coloured simple graph. By Q = {Q,...,Q:}, t > 1 we
denote the family of all maximal (with respect to set inclusion) monochro-
matic subgraphs of G. The vertex z € V(G) is an inner vertex of a
monochromatic subgraph if there exists 1 < ¢ < ¢ such that z and all
vertices adjacent to z belong to V(Q;). The vertex z € V(G) is an end
vertex of a monochromatic subgraph if either degez = 1 or £ € V(Q;) and
there exists a vertex y ¢ V(Q;) such that {z,y} € E(G). Evidently for
every z € V(G), either z is an inner vertex of a monochromatic subgraph
or = is an end vertex of a monochromatic subgraph. By V;(G) (respec-
tively: V.(G)) we denote the subset of V(G) containing all inner vertices
of a monochromatic subgraph (respectively: all end vertices of monochro-
matic subgraphs). Then V(G) = V;(G) U V,(G) is a partition of V(G) into
two disjoint subsets. We define uncolored simple graph G(Q) as follows:
V(G(Q) = V(G) and E(G(Q)) = {{vp,vg};vp, v € V(Qi)si = 1,...,}
with replacing multiple edges by one edge.

Theorem 5 For an arbitrary edge coloured graph G holds MPF(G) =
F(G(Q))-

PR O OF: Let S C V(G) be an imp-set of G. We shall show that S
is an independent set of G(Q). Assume on the contrary that S is not
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an independent set of G(Q). This means that there exist vp,v, € S and
{vp, v} € E(G(Q)). The definition of the graph G(Q) implies that vp,vg €
V(Q:) where @Q; is a monochromatic subgraph of G. Consequently there
is a monochromatic path between vp,v, in G, a contradiction with the
assumption.

Assume now that S* is an independent set of G(Q) but S* is not an imp-set
of G. Hence there exist vp,v, € §* and a monochromatic path between
them in G. This implies that vp, v, € V(Q;) where Q; is a monochromatic
subgraph of G. By the definition of G(Q) holds {v,,v,} € E(G(Q)), a
contradiction with the independence of S*.

Thus the theorem is proved. 0

Theorem 6 Let G be an edge coloured graph. If S is a family of all imp-
sets S of G such that S C V.(G), then |S| = F(G(Q) \ Vi(G)).

P R O O F: Let S be as in the assumption of the Theorem and S € S. We
shall prove that S is an independent set of G(Q) \ Vi(G). Assume on the
contrary that S is not independent of G(Q) \ V;(G). This means that there
exist vp, vy € S such that {vp,vq} € E(G(Q)\Vi(G)). The definition of the
graph G(Q) implies that there is a monochromatic subgraph Q; such that
vp,¥q € V(Q;). Hence there exists a monochromatic path between v,,v,
in G, a contradiction with the assumption.

Assume now that S* is an independent set of G(Q) \ Vi(G) and S* is not
an imp-set of G. So there are vp,v, € S* € S and a monochromatic path
between them in G. Hence there is a monochromatic subgraph Q; such
vp, ¥ € V(Q;) and by the definition of G(Q) we obtain that {v,,ve} €
E(G(Q) \ Vi(Q@)), a contradiction. This completes the proof. 0

Corollary 3 If PHr™ is an edge coloured graph, then

ISl=F . .
n+1- zl(n‘—l)

4 Monochromatic polynomial of graphs

In [3] it was introduced the concept of the Fibonacci polynomial of a graph
which gives the total number of independent sets of the composition of
two graphs. They define the Fibonacci polynomial Fg(z) of the graph G
by Fe(z) = F(G[K;]) for integer z, where K is a complete graph on z
vertices, z > 1. It has been proved:

130



Theorem 7 [3] Letn >1,p >0, z > 1 be integers. Then for an arbitrary
graph G on n vertices Fg(z) = ZFk(G)zk, where Fi(G) is the number

k>0
of all k-element independent sets of G.

For general results concerning the total number of r-independent sets (i.e.
independent sets generalized in distance sense) in generalized lexicographic
product of graphs, see [8].

In this section we define the monochromatic Fibonacci polynomial of a
graph G which gives the total number of imp-sets in edge coloured general-
ized lexicographic product of graphs. This concept generalize the Fibonacci
polynomial of a graph introduced in [3]. The definition of the generalized
lexicographic product of graphs is applied for edge coloured graphs in the
following way.

Let G be an edge coloured graph on V(G) = {v,...,vn},n > 2, and
a = (R;)icq,...,n) be a sequence of vertex disjoint edge coloured graphs on
V(R;) =V = {y1,--, ¥z}, T > 1. By generalized lexicographic product of G
_____ n} We mean a graph G[o] such that V(G[a]) = V(G)xV
and E(Gla]) = {{(v3,4p), (v3, vq)} colouredi; (vi = v; and {yp, e} € E(R:)
coloured i) or {v;,v;} € E(G) coloured i}. By Rf, i =1,...,n we will de-
note the copy of the graph R; in Gla]. If R; = R for ¢ = 1,...,n, then
Gla] = G[R], where G(R] is a composition of two graphs.

We define the monochromatic Fibonacci polynomial M PFg(z) of the edge
coloured graph G on n vertices, n > 2, by M PFg(z) = M PF(G[a]), where
@ = (R;)ieq1,...,n} is an arbitrary sequence of vertex disjoint edge coloured
graphs on |[V(R;)| = |V| = =z.

Theorem 8 Let x > 1, n > 2 be integers. Then for an arbitrary edge
coloured graph G on n vertices and for an arbitrary sequence o of vertez
disjoint edge coloured graphs R;, i = 1,...,n, on x vertices MPFg(z) =
> MPF(G)z*.

k>0

P R O O F: Let G be an edge coloured graph on n vertices, n > 2 and
a be a sequence of vertex disjoint edge coloured graphs Ry,..., R, on z,
z 2 1 vertices. To prove this Theorem it suffices to calculate the number
MPF(G[a]). From the definition of the graph G[a] we deduce that to ob-
tain a k-element, k > 1, imp-set of G|a] first we have to choose a k-element
imp-set of G. Of course we can do it on M PF},(G) ways. Let S = {v;;i € I}
be an imp-set of G where Z be a subset of a set of indexes of vertices belong-
ing to V(G) and |Z] = k, k > 1. Next in each Rf, ¢ € T we have to choose
an imp-set. Evidently by the definition of G[a] for every two vertices from
V(R§), i € T there exists a monochromatic path between them in Gfo],
so exactly one vertex from each V(RY), ¢ € Z can be chosen to belong to
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imp-set of G[a]. Because every vertex from R{ can be chosen on z ways, so

by fundamental combinatorial statements we have M PFy(G)z* imp-sets

having exactly k-element in G[a]. Moreover the empty set also is imp-set of

Glo], whence MPFg(z) = 1+ Y  MPFi(G)z* =) MPF;(G)z*. Thus
k>1 k20

the theorem is proved. m]

Using results from Theorem 1, Theorem 3 and applying Theorem 8 we
can determine M PFp_(z) and M PF¢,(z), respectively.
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