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Abstract

In this paper we consider the problem as follows: Given a bi-
partite graph G = (W4, Ve; E) with |Vi| = |V2| = n and a posi-
tive integer k, what degree condition is sufficient to ensure that for
any k distinct vertices vy,v2, -+ ,vx of G, G contains k indepen-
dent quadrilaterals Q1,Q2,- - ,Qx such that v; € V(Q;) for every
i € {1,2,--- ,k}, or G has a 2-factor with k independent cycles of
specified lengths with respect to {v1, vz, - - ,v:}? We will prove that
if d(z) + d(y) > [(4n + k)/3] for each pair of nonadjacent vertices
x € V1 and y € V2, then, for any k distinct vertices v1,vz,-- , vk of
G, G contains k independent quadrilaterals @1, Q2, - - , Q& such that
v; € V(Q:) for each i € {1,--- ,k}. Moreover, G has a 2-factor with

k cycles with respect to {v1,v2,--- , vk} such that k — 1 of them are
quadrilaterals. We also discuss the degree conditions in the above
results.
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1 Introduction

We only consider finite graphs without loops and multiple edges. Let G =
(V, E) be a graph. The order of G is |G| = |V/| and its size is e(G) = |E(G)|-
For two subgraphs G; and G2, the set of edges incident to one vertex in G
and one in G2 will be written as E(G, G2), and e(G1,Gz) = |E(G,,G2)|-
Let H be a subgraph of G and z € V(G) a vertex, N(z, H) is the set of
neighbors of = contained in H. We let d(z, H) = |N(z, H)|. Thus, d(z, H)
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is the degree of z in H, d(z, G) is the degree of z in G, and we write d(z) to
replace d(z, G). The minimum degree of G will be denoted by §(G). For a
subset U of V(G), G[U] denotes the subgraph of G induced by U. Let v be
a vertex of G, a v-subgraph of G is a subgraph H of G such that v € V(H).
A hamiltonian cycle of G is a cycle of G which contains every vertex of
G. A 2-factor of G is a 2-regular spanning subgraph of G. Clearly, each
component of a 2-factor of G is a cycle. Let Hy, Hy,- - - , Hy be subgraphs of
G. We say that Hy, Hy,- -, Hy, are independent, if V(H;) N V(H;) = 0 for
any {i,5} C {1,2,--- ,k} and i # j. Let vy, vs,- - - , v be k distinct vertices,
and let C1,Cs,- -+ ,C) be k independent cycles that contain vy, s, , vk,
respectively, in G. We say that G has a 2-factor with k cycles C;,Ca, -+ ,Ch
with respect to {v1,va,- -+ , v}, if V(G) = V(C1UCU---UCy). Let C be
a cycle, use /(C) to denote the length of C. That is, {(C) is the number of
vertices of C'. A cycle of length 4 is called a quadrilateral. For a bipartite
graph G = (W1, Vp; E), if |V}| = |V2|, then G is called balanced. We define
01,1(G) = min{d(z) + d(y) : £ € W1,y € Va,zy & E(G)}. Unexplained
terminology and notation can be found in [1].

The problem on graph partition into cycles is one of the most interesting
problems. Corrddi and Hajnal [3] proved that if G is a graph of order n > 3k
with the minimum degree at least 2k, then G contains k independent cycles.
When n = 3k, G contains k independent triangles. El-Zahar [4] conjectured
that if a graph G of order n = ny +na+- - - +n with n; > 3(1 <i < k) has
minimum degree at least [n;/2] + [n2/2] + - - - + [ni/2], then G contains
k independent cycles of lengths ny,ng,- -« ,nk, respectively. He proved it
for k = 2. For a bipartite graph, Wang proved the following result.

Theorem A [6]. Let G = (V1,Vz; E) be a bipartite graph with |V3| =
|Vo| =n > 2 and 6(G) > [n/2]+1. Ifk > 0 andt > 3 are two integers such
that n = 2k 4-t, then G contains k independent quadrilaterals and a cycle
of order 2t such that the cycle is independent of all the k quadrilaterals.

Clearly, for a bipartite graph, quadrilateral is the smallest cycle. Re-
cently, Wang considered the independent small cycles containing specified
edges in a bipartite graph, proved the following theorem.

Theorem B [7]. Let G = (W4, Vz; E) be a bipartite graph with |V;| =
|Va| = n > 3k, where k > 2 is an integer. Suppose that d(z)+d(y) > n+k
for each pair of nonadjacent vertices x and y of G withz € V] and y € Vs.
Then, for any k independent edges ey, - - ,ex of G, G has k vertez-disjoint
cycles Cy,--- ,Cr of length at most 6 such that e; € E(C;) for each i €
{a,-- k).

In this paper, we consider the independent quadrilaterals containing
specified vertices in a bipartite graph, give the following results.
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Theorem 1. Letk > 1 be an integer. Let G = (Vy, Va; E) be a bipartite
graph with |V1| = |Va| = n > 2k + 1. Suppose that 011(G) > [(4n +
k)/3]. Then for any k distinct vertices v1,v2,--- ,ux of G, G contains k
independent quadrilaterals Q1,Q2, - ,Qk such that v; € V(Q;) for every
i€{1,2,--- ,k}.

Theorem 2. Let k > 1 be an integer and G = (W1, Va; E) be a bipartite
graph with || = |Vo| = n > 2k + 1. If 511(G) > [(4n + k)/3], then for
any k distinct vertices v1,v2,--- ,vx of G, G has a 2-factor with k cycles
C1,Cs,- -+ ,Ck such that k — 1 of them are quadrilaterals and v; € V(C;)
for every i€ {1,2,--. ,k}. '

Remark. The degree condition of G in Theorem 1 is sharp when
2n = 4k+2. Generally, we can give an example to show that 01,1 (G) > n+k
is necessary.

Example 1. Let G be a bipartite graph with the bipartition (AU B U
{91,98,95}, X UY U {u,y0,56}) with 4] = |B| = |X| = |¥] = k1
such that the subgraph G[AU B, X UY] is a complete bipartite graph, and
C = y1y2y3y4ysYey is a cycle of length 6 satisfying y1y4 € E, ysys ¢ E and
y2ys € E. Let H = G[AUB, XUY]. We construct G as follows. N(y,H) =
XUY, N(y:,H) =B, N(y3,H) =X, N(ys, H) = A, N(ys5, H) = X UY,
N(ys, H) = AU B. Clearly, G is of order 2k + 1 and 02(G) > 3k+1 =
(4n+k-1)/3. Set X = {v1,vs," -+ ,Uk—1} and y3 = vi. It is easy to see that
each quadrilateral containing vy is joint some v; for ¢ € {1,2,--- ,k — 1}.
Therefore, there are no k independent quadrilaterals in G satisfying the
requirement.

Example 2. Let G be a bipartite graph with the bipartition (AU B U
{ur,u2}, X UY U {ug}) with |A| = |X| =k -1, |B|+1=|Y|=n—-k.
We obtain the graph G as follows: From the complete bipartite graph
(AUBU {u3,u2}, X UY U {u3}), we delete the edge uju3 and the edges
between ug and Y. Then 1,1(G) > n+k — 1. Let X = {vy,v2,--- ,vk-1}
and uy = vx. Then each quadrilateral containing vy is joint some v; for
i € {1,2,--- ,k —1}. Consequently, there are no k required quadrilaterals
in G. :

We would like to mention a result in [2]. In [2], Chen etc. proved that,
if k is a positive integer and G is a balanced bipartite graph of order 2n
with n > 9k and §(G) > (n + 2)/2, then, for every perfect matching M, G
has a 2-factor with exactly & components including every edge of M.
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2 Lemmas

Let G = (V4,V2; E) be a balanced bipartite graph with |Vj| = |V3| =
n 2 2. If P is a v-path of G, we define

A(v, P) = min{|V(P)|, [V(P)]}-

Where P, and P, are the two components of P — v. In the following, we
give a number of lemmas. Lemma 2.4 and Lemma 2.6 are easy observations

Lemma 2.1 [5]. Let P = z1y; - - - zxyx be a path of G with k > 2. If
d(z1, P) +d(yk, P) 2 k+1, then G has a cycle C such that V(C) = V(P).

Lemma 2.2 [5]. Let z and y be any pair of nonadjacent vertices with
ze€Vi andy € Va. Ifd(z) +d(y) 2 n+1, then G is hamiltonian.

Lemma 2.3. Let P = x113 - - - Tor4q be a path in G, whered =0 or 1.
Let y € V(G) — V(P) such that {zar4+d,y} € V; for everyi € {1,2}. Then
the following two statements hold.

(a) If d(y, P)+d(z2r+4, P) > 742, then G[V (P)U{y}] has a hamiltonian
path P’ with two endvertices z, and y.

(b) If d(y, P)+d(z2r+d, P) 2 T+1, then G[V(P)U{y}] has a hamiltonian
path.

Proof. Clearly, if yzo,44 € E, then P! = 2125 - - - 9,44y is the required
hamiltonian path. In the following, we may assume that yrs,4+q € E. Let
S = {zi+1|ziZ2r+qa € E}. Clearly, d(zar44, P) = |S|. First we suppose that
d(y, P) + d(z2y44, P) 2 v + 2. Then

IN(y, P)N S| =N (y, P)| +15| - [N(y, P)US| 2r+2 - (r+1) =1

This implies that there exists ;41 € N(y,P)N S. It follows that P/ =
T1T2 - - TiTor4d T2r4d—1 ° * - Ti+1Y is the required hamiltonian path of G[V(P)U
{y}]- Second, we assume that d(y, P) + d(Z2r4+4,P) 2 r+1. If d=1 and
yz, € E, then P + y is a hamiltonian path of G[V(P) U {y}]. Hence
if d = 1 then yz, € E. Consequently, we have |[N(y,P)U S| < r, and
then |N(y,P)N S| > 1. By the same argument as above, we see that
G[V(P) U {y}] has a hamiltonian path. ]

Lemma 2.4. Let Q be a v-quadrilateral . Letz € V] andy € V, be two
vertices not on Q. Suppose that d(z,Q) + d(y, Q) = 4. Then there exist
two vertices u; € V) and ug € Vo of Q such that Q — uy + x contains a
v-quadrilateral and w1y € E, and QQ —uz +y contains a v-quadrilateral and
usz € E.

Lemma 2.5. Let Q be a v-quadrilateral and P a u-path of length 5 such
that they are independent. Suppose that A(u, P) # 0 and 1. Ife(Q, P) > 10,
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then G[V(QU P)] contains two independent quadrilaterals Q, and Qs such
that u € V(Q1) and v € V(Q2).

Proof. Let Q = ajaza3a4a1 and P = z, ---z¢ with {a1,2:} C V1. As
Mu,P) # 0 and 1, 4 = z3 or 4. If u = z3 and u,v are in the same
bipartition of G, without loss of generality, we may assume that v = a;. If
u = 3 and u,v are in the different bipartition of G, we may assume that
v = ap. Similarly, if u = x4, we may assume that v = a5 or v = a; according
to u,v being in the same bipartition or different bipartition of G. By
symmetry, we only prove the two cases v =a;,u = z3 and v = a;,u = z4.

Case 1. v=a; and u = z3.

Let P, = z122z3z4. It is not difficult to see that if e(Q, P,) = 8, then
we have two independent quadrilaterals @, and Q2 such that u € V(Q;)
and v € V(Q2). So in the following we assume that e(Q, P,) < 7. On the
other hand, e(Q, P) > 10. Therefore, 6 < e(Q, P;) < 7. We distinguish the
following three cases.

Case 1.1. e(Q, P,) = 7 and d(z4,Q) = 2.

Since e(Q, P,) = 7, there exists i € {2,4} such that {a;z1,a;z3} C E.
Then we have two independent quadrilaterals Q, = z1x2z3a;z1 and Q2 =
a1Q@;a3T4a1 for {’l,J} = {2, 4}

Case 1.2. C(Q,Pl) =7 and d($4,Q) =1.

Note that d(z1,Q) = d(z2,Q) = d(z3,Q) = 2. If agrq4 € E, then
G|V(Q U P1)] contains two independent quadrilaterals Q; = azasz3r4as
and Q; = a102%1%2a; such that v € V(Q,) and v € V(Q3). Otherwise
a1z4 € E. As e(Q, P) > 10, we have e(z5z6,Q) > 3 and then d(z5,Q) >
1. Suppose that a;zs € E. Then G[V(Q U P)| contains two required
quadrilaterals Q) = x3z4750;23 and Q2 = a1a;z1220, for {i,j} = {2,4}.

Case 1.3. ¢(Q, P,) = 6.

In this case, we see that d(zs, Q) = d(z6, Q) = 2 because e(Q, P) > 10.
If there exists ¢ € {2,4} such that a;z3 € E, say ¢ = 2, then we have two
independent quadrilaterals @, = z3z4Z5a223 and Q2 = aja4a3z6a;. Oth-
erwise d(z3,Q) = 0. As e(Q, P) > 10, we see that d(z4,Q) = d(z:1,Q) =
d(z2,Q) = 2. Then G[V(Q U P)| contains two independent quadrilater-
als Q1 = a3zz3z4a3 and Q2 = a102%104a1 such that u € V(Q,) and
v € V(Qa).

Case 2. v=2¢a; and u = z4.

Let P, = z3z4z526. Similar as the discussion in Case 1, if e(Q, P) =
8, then there exist two independent quadrilaterals ; and Q3 such that
v € V(@) and v € V(Q2). So we may assume that (Q,P) < 7. Since
e(Q,P) = 10, we have e(Q,P;) = 7 or e(Q,P,) = 6. We consider the
following two cases.
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Case 2.1. ¢(Q,P) =T.

In this case, d(zs, Q) > 1. Suppose that d(zs, Q) = 2. Since e(Q, P;) =
7, there exists i € {2,4} such that {a;z3,a;z5} C E , say i = 2. Conse-
quently, G[V(QUP, )] contains two required quadrilaterals Q, = z3T4z5a23
and Q2 = aja4a37a;. Otherwise d(zs, Q) = 1. It follows that d(z3,Q) =
d(z4,Q) = d(z5,Q) = 2. If agzs € E, then we obtain two independent
quadrilaterals Q; = a3z4Z5z6a3 and Q2 = z3a2a1a423 such that u € V(Q,)
and v € V(Q2). If a1z6 € E. Then G[V(Q U P,)] contains two required
independent quadrilaterals Q; = aza4z3z4a3 and Q2 = a1a225T6a1.

Case 2.2 ¢(Q, P,) = 6.

In this case, d(z1,Q) = d(z2,Q) = 2. If {a;z3,aiz5} C E holds for
some i € {2,4}, say ¢ = 2, then we obtain two independent quadrilaterals
Q1 = apzr3z4T502 and Q2 = T2a1a4a372. Otherwise, e({z3,25},Q) < 2and
then d(z4,Q) = d(z6,Q) = 2 as e(Q, P;) = 6. So G[V(Q U P)] contains
two independent quadrilaterals Q1 = azz4zszsaz and Q2 = T1a0a1047;.
The lemma is proved. ]

Lemma 2.6. Let C be a guadrilateral and P a path with two end-
vertices u € V) and v € Va in G such that C and P are independent. If
d(u,C) +d(v,C) > 3, then G has a cycle C' such that V(C') = V(CU P).

3 Proof of Theorem 1

Let k be a positive integer and G = (V1, V2; E) a bipartite graph with
V1] = |Va| = n > 2k + 1. We assume that 01,1(G) > [(4n + k)/3]. Sup-
pose, for a contradiction, that there exist k distinct vertices vy, v, -+ , vk
of G such that G does not contain k independent quadrilaterals with re-
spect to {v1,vs,- -+ ,vr}. Without loss of generality, we may assume that
G is an edge-maximal counterexample. That is, for any two nonadjacent
vertices © € V; and v € V2, G + uv contains k independent quadrilater-
als Q1,Q2, -+ ,Qx such that v; € V(Q;) for each i € {1,2,--- ,k}. We
distinguish the following two cases: k =1 and k > 2.

Case 1. k=1.

Since d(z) +d(y) > (4n+1)/3 > n+1 for any two nonadjacent vertices
z and y with z € V; and y € V5, G has a hamiltonian cycle by Lemma 2.2.
Let C = zy311 - - TnYnZ1 be the hamiltonian cycle of G. Without loss of .
generality, we may assume that v; = o (Otherwise, we may renumber the
vertices-of C). Let P = z1y;122y223y3 be a subpath of G. Since G does not
contain a v;-quadrilateral, we must have that

N(z2,G) N N(z1,G) = {n}
N(z2,G) N {N(z3,G) = {y2}.
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N(y1,G) N {N(y2, G) = {z2}.
It follows that

d(z2) + d(z1) = |N(z2,G) U N(z1,G)| + [N(z2,G) N N(21,G)] < n + 1.

Similarly, we have d(z3) + d(z3) < n+1 and d(y;) +d(y2) < n+1. Since G
does not contain v;-quadrilateral, we have d(y;) < n—1. Clearly, d(z2) > 2.
Then we have

> d(u) < 3n+3 - d(z2) + d(ys) < 4n.
u€V(P)

On the other hand, {z1,¥2},{z2,¥3},{Z3,v:1} are three pairs of nonad-
jacent vertices in different bipartition of P as G does not contain a v;-
quadrilateral. Therefore, we have 3, .y /(p)d(u) > 4n + 1, a contradiction.

Case 2. k> 2.

Since G is an edge-maximal counterexample, there exists at least one
vertex of {v1,v2,--- ,ux}, say v, such that G contains k — 1 independent
quadrilaterals @Y,Q3, -, Qf_, such that v ¢ V(Uf__fllQ}’). We choose
v € {v1,v2,"-- ,vx} and QY,Q%, -+ ,Q}_, such that

G- V(Uf;llQ}’) has the longest v — path. (1)

Let P be the longest v-path of G — V(USZ1Q?). Subject to (1), we choose
v E {'Ul,‘Uz, te avk}y QY,QZ,v [ an—l and P such that

A(v, P) is maximum. (2)

Without loss of generality, suppose that v = vx. Let Q; = QY and v; €
V(Q:) for all i € {1,2,--- ,k—1}. Set H = US2!Q;, D = G — V(H)
and |V(D)| = 2t. Clearly, n = 2(k — 1)+t and {(Q;) = 4 for all i €
{1,2,--- ,k—1}. Since n > 2k + 1, we see that t > 3. Let P=z122---2p
be the longest vg-path with z; € V;. By the assumption on G, D contains
a vi-path of length at least 3. Thus, p > 4.

Claim 1. p=2t.

Proof of Claim 1. On the contrary, suppose that p < 2. Set p = 2r+4,
where § =0 or 1. Let u € D — V(P) be a vertex with {u,z,} € V; for each
i € {1,2}. We claim that d(u, Q;) +d(zp, Q;) < 3foreveryi € {1,2,---k—
1}. If it is not true, then there exists ¢ € {1,2,--- ,k — 1} such that
d(u, Q;) + d(zp, Q;) = 4. By Lemma 2.4, there exists a vertex w in V(Q;)
such that Q; —w +u contains a v;-quadrilateral and wz, € E. Thus, P+w
has a vg-path longer than P, contradicting (1). So d(u, Q;)+d(zp, Q;) < 3
for each i € {1,2,--- ,k—1}. It follows that d(u, H) + d(zp, H) < 3(k-1).
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Clearly, d(u,D — V(P)) < t - r and d(zp,D — V(P)) = 0. Since n =
2(k — 1) + t, we have

d(u, P) + d(z,,P) > [4n;k]—3(k—1)—(t—-r)
[S(k_1)3+4t+k]—3(k—1)—(t—r)
> r+1.

By Lemma 2,3, G[V(P)U{u}] has a hamiltonian path, this contradicts (1).
So Claim 1 holds.

Claim 2. If A(vg, P) =0 or 1, then D has a hamiltonian cycle.

Proof of Claim 2. If z1xz9¢ € E, then we have nothing to prove. In
the following, we assume that z;z5; ¢ E. By symmetry, we assume that
v = z if A, P) = 0 and vy = z, if A(vg, P) = 1. We consider the
endvertices z; and za; of P. If there exists Q; in H such that d(z,Q;) =
d(z2:,Q;) = 2, then, by Lemma 2.4, there is a vertex in V(Q;), say w,
such that Q; — w + zg; contains a v;-quadrilateral and wz, € E. Then
we obtain a vi-path P/ = P + w — z2; and A(vg, P’') = A(vi, P) + 1 as
t > 3, which contradicts (2) while (1) is maintained. Therefore, we have
d(z1,Q:) + d(x2¢, Qi) < 3 for each i € {1,2,--- ,k — 1}. It follows that

4t +1

>t+1.

d(.’l)l, D) + d(:l:gt, D) > 41’1;- k

~3(k-1)=

By Lemma 2.1, D contains a hamiltonian cycle. So Claim 2 holds.

Now we are in the position to complete the proof. As ¢ > 3, by Claim
1 and Claim 2, we may choose a subpath P’ of length 5 of P such that
A(vk,P) = 2. Let P’ = y192y3¥ays¥e be such a path with y; € V;. Then
U = y3 or y4. As D does not contain a vi-quadrilateral, we obtain

N(ys, D)N N(ys, D) = {ya}

and
N(y2, D) N N(ys, D) = {ys}.

If Vg = y31. then N(ylaD) n N(y3iD) = {y2} If Vg = Ya, then N(y47D) n
N(ys, D) = y5. So we obtain d(ys, D) +d(ys, D) = |N(ys, D)U N(ys, D)| +
|N(ys, D)NN(ys, D)| < t+1. Similarly, we have d(y2, D)+d(ys, D) < t+1,
either d(y1, D)+d(ys, D) < t+1 or d(ys, D)+d(ys, D) < t+1. Suppose that
v = y3. As D does not contain a vg-quadrilateral, we have d(yg, D) < t—1.

Then
6

> d(wi, D) < 3t + 3 — d(ys, D) + d(ys, D) < 4t.

i=1
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As D does not contain a vg-quadrilateral, we have three pairs of non-
adjacent vertices {y1,¥s}, {ys,¥s}, {¥s,¥2} in different bipartition in P’.
Therefore,

> dynH)>dn+k—4t=8(k—1)+4t+k— 4t =9(k 1)+ 1.
wEV(P)

This implies that there exists Q; in H such that zyi ev(p) 4¥i, Q) > 10.
By Lemma 2.5, G[V(Q; U P’)] contains two independent quadrilaterals Q;
and Q; such that v; € V(Q;) and v € V(Q}), a contradiction. Similarly,
if vy = y4, we can obtain the same contradiction. The proof is completed.O

4 Proof of Theorem 2

Let G = (W}, V2; F) be a bipartite graph satisfying the conditions of
Theorem 2. If k = 1, by Lemma 2.2 and the degree condition, we have that
G has a hamiltonian cycle. Thus the theorem holds. In the following we
assume that k > 2. Suppose, for a contradiction, that there exist k distinct

vertices v1,va,- -+ , U of G such that G does not have a 2-factor with &
required cycles Cy,Cs, - - ,Cy with respect to {v1,vs,--- ,v¢}. By Theo-
rem 1, G contains k independent quadrilaterals Cy, - - - , Cy with respect to

{n, Vg, , Uk }. We choose such k quadrilaterals Cy, - - - , Cj such that
The length of the longest path of G — V(UL C;) is maximum.  (3)

We may assume that v; € V(C;) for all i € {1,2,--- ,k}. Set H = UX_,C;
and D =G - V(H). Let |V(D)| = 2t, then n = 2k + t. Clearly, I(C;) = 4
for all i € {1,2,--- ,k}. Let P = z1z3 - - - T, be the longest path of D with
zy €V;. Let p=2r+q, whereg=0or 1.

Claim 3. D is hamiltonian.

Proof of Claim 3. First, we show that p = 2¢. Suppose, for a contra-
diction, that p < 2¢. We choose an arbitrary vertex zo in D — V(P) such
that {zo,z,} Z V; for each i € {1,2}. If there exists C; in H such that
d(zp, C;) = d(zp, Ci) = 2, By Lemma 2.4, there is a vertex z € V(C;) such
that C; — z + zo is an v;-quadrilateral and z,z € E. Then P + z is a path
of D longer than P, a contradiction with (3). So d(zo, C;) + d(zp,C;) < 3
for each i € {1,2,--- ,k}. Clearly, for any z; € D — V(P), z;z, ¢ E and
d(z;, D — V(P)) <t —r. Therefore,

d(zo, P) + d(zp, P) 2 4n?-’i-k -3k—-(t-r)>r+1.

By Lemma 2.3, G[V(P) U {zo}] contains a hamiltonian path, this contra-
dicts (3). So D has a hamiltonian path P = zz5 - - - 7.
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If z,z9; € E, then we have nothing to prove. So 1z € E. By Lemma
2.6, d(x,,C;) + d(zg:,C;) <2 for alli € {1,--- ,k} since G does not has a
2-factor with k required cycles. Therefore,

in+k
3

So D is hamiltonian by Lemma 2.1. The claim holds.

d(z1, P) + d(za, P) > -2k>t4+1.

By Claim 3, we may assume that z;z5; € E. Without loss of gen-
erality, suppose that d(z,,C1) > d(z;,C;) for all j € {1,2,---,2t} and
i € {1,2,---,k}. Let C, = ajazazaqa; with a; € V;. Since G is con-
nected, we see that d(z,,C1) > 1. We may assume that z,a; € E. If
d(z2,Ci) = 1 or d(z2:,C1) = 1, then we have a hamiltonian cycle of
G[V(C1 U P)], a contradiction. So d(z2,C)) = 0 and d(z9;,C1) = 0. If
d(ay, P—z1)+d(za:, P—z1) > (t—1)+2, By Lemma 2.3, G[V(P-z1+a,))
has a hamiltonian path P’ from a; to z3, and then G{V(C; U P)| has a
hamiltonian cycle z1a2a3a4a1P'222,, a contradiction. Therefore, we have
d(ay, P) +d(z2, P) <t + 1.

Claim 4. d(xl,Cl) =2.
Proof of Claim 4. On the contrary, suppose that d(z;,C;) = 1. As
t 21, d(ay, P) + d(za:, P) <t + 1, we have

mmﬂ—andu%H-cgz%;k

—(t+3)23(k-1)+1.

This implies that there exists C; in H — V(C}) such that d(zs:,C;) = 2,
this contradicts the maximality of d(z,C1). So Claim 4 holds.

‘We continue to prove the theorem. We assume that v; = a3 if v; € W)
and vy = a4 if v, € V5. Then Cf = C; — a1 + 21 is a v1-quadrilateral. Note
that d(a, P) + d(z2;, P) < t+1 and d(z2¢, Cy) = 0. By the same argument
as the proof of Claim 4, we have d(a;, H — V(C1)) + d(z2:, H — V(C1)) >
3(k — 1) + 1. This implies that there exists C; in H — V(C}), say Cs, such
that d(a1,C2) = d(z2¢,C2) = 2. Let C2 = bybobszbsb; with by € V. We
assume that v = b; if vo € Vi and v = by if v € V5. If t = 1, then
C; = C2 + a1 + z2; has a hamiltonian cycle bibsa1bsbsz2cby. Hence, G
has a 2-factor with & independent cycles Cty,C3,C3, - - ,C with respect
to {v1,v2,- -+ ,vx} such that k—1 of them are quadrilaterals. Sot > 2. Let
C3 = Ca — by + x2¢ and R = {a1,b4, T2, Tae-1}-

In the following, we show that > . d(z,V(C1 UC; U P)) < 2t +12.
If d(a), P — z1) + d(z2, P — 1) = (t — 1) + 2, then, by Lemma 2.3,
we have a hamiltonian path P, of G[V(P — 1 + a1)] from z3 to a;.
Consequently, we see that G, = G[V(Cy; U P — z;) U {a;}] has an v,-
hamiltonian cycle C; = a1 P za;bi1bobsbsay. Therefore, G has a 2-factor
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with k independent cycles Cy, C3, C3, - - - Ci with respect to {vy,ve,- -+ , vk}
such that k — 1 of the cycles are quadrilaterals, a contradiction. Hence,
d(a1, P)+d(z2, P) < t+1. Since z,T2; € E, we renumber the hamiltonian
path P = 2oz - - £94—1. Similarly, if d(b4,P) -+ d(wzt_l, P) > t+2,
then G[V(P) U {b4}) has a hamiltonian path P, from zo; to bs. Therefore,
G[V(C3 U P)] has a vy-hamiltonian cycle Cj = by Pyx2:b3bab by, and then
G has a 2-factor with k independent cycles Cy,C}, Cj, - - - Ci with respect
to {v1,v2, - , vk} such that k — 1 of the cycles are quadrilaterals, a con-
tradiction. Hence, we have d(bs, P) + d(z2:~1, P) < t 4+ 1. On the other
hand, as Cj is v;-hamiltonian, G|V (C2UP —z;)U{a, }] is not hamiltonian,
and then d(z2,Cs) = 0. Otherwise, if d(z2,C2) > 1, say z2b3 € E, Since
d(ay, Cs) = d(z3:,C2) = 2, then G[V(C2 U P ~ z1) U {a;}] has a hamilto-
nian cycle x2b3zbaa1bsb1z; - - - T2, a contradiction. Note that d(z2,C;) = 0.
Clearly, d(z2:-1,C1) < 2, d(a1,C1 U Cs) < 4 and d(by,Cy U Cp) < 4.
Let P = zoix1Z---T—1. Since G[V(C, U D)| is not vo-hamiltonian
and d(z2,C2) = 2, we have d(z2:-1,C2) = 0 by Lemma 2.6. Then
2 2erd(z,V(CLUC, UP)) < 2t+12.

As d(a,,C3) = 2, we have a,by € E. Note that ayz2 ¢ E. Since
d(z24-1,C2) = 0, byzo—) & E. By the degree condition on G, we have that

8n + 2k

Z d(z,H-V(CLUGCy)) 2
zER

This implies that there exists C, in H — V(C; U Cs), say Cs, such that
Y 2crd(2,C3) > 7. Thus, e(a1bs,C3) > 3 and e({z2,z2¢-1},C3) > 3.
By Lemma 2.6, C3 + a; + by contains a hamiltonian cycle C*. Let C* =
c1cac3cscsegey with ¢; € V4. Since d({2, z2:-1}, C3) = 3, there exist ¢; and
ci+1 in C* such that e({x2, 21}, {ci, ci+1}) = 2, where ¢; = ¢;. We may
assume that {zz¢;,Z2—1¢2} C E. It follows that G[V(C* U P — z; — z3;))
has a vz-hamiltonian cycle C3 = ¢1z2%3 - - - Tat—102¢3¢4¢5¢6¢1. Then G has
a 2-factor with k independent cycles Ct,C3,C3,Cy, - - - , Cy. with respect to

—(2t+12)=6(k-2)+33f.

{v1,v2,--- , v} such that k — 1 of them are quadrilaterals, a contradiction.
The theorem is proved. m]
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