On 2-Factors with Quadrilaterals Containing Specified Vertices in a Bipartite Graph*

Jin Yan[†], Guizhen Liu School of Mathematics & System Sciences, Shandong University, Jinan 250100, P. R. China

Abstract

In this paper we consider the problem as follows: Given a bipartite graph $G=(V_1,V_2;E)$ with $|V_1|=|V_2|=n$ and a positive integer k, what degree condition is sufficient to ensure that for any k distinct vertices v_1,v_2,\cdots,v_k of G, G contains k independent quadrilaterals Q_1,Q_2,\cdots,Q_k such that $v_i\in V(Q_i)$ for every $i\in\{1,2,\cdots,k\}$, or G has a 2-factor with k independent cycles of specified lengths with respect to $\{v_1,v_2,\cdots,v_k\}$? We will prove that if $d(x)+d(y)\geq \lceil (4n+k)/3 \rceil$ for each pair of nonadjacent vertices $x\in V_1$ and $y\in V_2$, then, for any k distinct vertices v_1,v_2,\cdots,v_k of G, G contains k independent quadrilaterals Q_1,Q_2,\cdots,Q_k such that $v_i\in V(Q_i)$ for each $i\in\{1,\cdots,k\}$. Moreover, G has a 2-factor with k cycles with respect to $\{v_1,v_2,\cdots,v_k\}$ such that k-1 of them are quadrilaterals. We also discuss the degree conditions in the above results.

Keywords: bipartite graph, cycle, quadrilateral, 2-factor MR(2000)Subject Classification: 05C70, 05C38

1 Introduction

We only consider finite graphs without loops and multiple edges. Let G = (V, E) be a graph. The order of G is |G| = |V| and its size is e(G) = |E(G)|. For two subgraphs G_1 and G_2 , the set of edges incident to one vertex in G_1 and one in G_2 will be written as $E(G_1, G_2)$, and $e(G_1, G_2) = |E(G_1, G_2)|$. Let H be a subgraph of G and $x \in V(G)$ a vertex, N(x, H) is the set of neighbors of x contained in x. We let x derivatives x derivati

^{*}This work is supported by NNSF of China(10471078).

[†]E-mail address: yanj@sdu.edu.cn

is the degree of x in H, d(x,G) is the degree of x in G, and we write d(x) to replace d(x,G). The minimum degree of G will be denoted by $\delta(G)$. For a subset U of V(G), G[U] denotes the subgraph of G induced by U. Let v be a vertex of G, a v-subgraph of G is a subgraph H of G such that $v \in V(H)$. A hamiltonian cycle of G is a cycle of G which contains every vertex of G. A 2-factor of G is a 2-regular spanning subgraph of G. Clearly, each component of a 2-factor of G is a cycle. Let H_1, H_2, \dots, H_k be subgraphs of G. We say that H_1, H_2, \dots, H_k are independent, if $V(H_i) \cap V(H_i) = \emptyset$ for any $\{i, j\} \subseteq \{1, 2, \dots, k\}$ and $i \neq j$. Let v_1, v_2, \dots, v_k be k distinct vertices, and let C_1, C_2, \dots, C_k be k independent cycles that contain v_1, v_2, \dots, v_k respectively, in G. We say that G has a 2-factor with k cycles C_1, C_2, \cdots, C_k with respect to $\{v_1, v_2, \dots, v_k\}$, if $V(G) = V(C_1 \cup C_2 \cup \dots \cup C_k)$. Let C be a cycle, use l(C) to denote the length of C. That is, l(C) is the number of vertices of C. A cycle of length 4 is called a quadrilateral. For a bipartite graph $G = (V_1, V_2; E)$, if $|V_1| = |V_2|$, then G is called balanced. We define $\sigma_{1,1}(G) = \min\{d(x) + d(y) : x \in V_1, y \in V_2, xy \notin E(G)\}$. Unexplained terminology and notation can be found in |1|.

The problem on graph partition into cycles is one of the most interesting problems. Corrádi and Hajnal [3] proved that if G is a graph of order $n \geq 3k$ with the minimum degree at least 2k, then G contains k independent cycles. When n = 3k, G contains k independent triangles. El-Zahar [4] conjectured that if a graph G of order $n = n_1 + n_2 + \cdots + n_k$ with $n_i \geq 3(1 \leq i \leq k)$ has minimum degree at least $\lceil n_1/2 \rceil + \lceil n_2/2 \rceil + \cdots + \lceil n_k/2 \rceil$, then G contains k independent cycles of lengths n_1, n_2, \cdots, n_k , respectively. He proved it for k = 2. For a bipartite graph, Wang proved the following result.

Theorem A [6]. Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n \ge 2$ and $\delta(G) \ge \lceil n/2 \rceil + 1$. If $k \ge 0$ and $t \ge 3$ are two integers such that n = 2k + t, then G contains k independent quadrilaterals and a cycle of order 2t such that the cycle is independent of all the k quadrilaterals.

Clearly, for a bipartite graph, quadrilateral is the smallest cycle. Recently, Wang considered the independent small cycles containing specified edges in a bipartite graph, proved the following theorem.

Theorem B [7]. Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n \ge 3k$, where $k \ge 2$ is an integer. Suppose that $d(x) + d(y) \ge n + k$ for each pair of nonadjacent vertices x and y of G with $x \in V_1$ and $y \in V_2$. Then, for any k independent edges e_1, \dots, e_k of G, G has k vertex-disjoint cycles C_1, \dots, C_k of length at most G such that $e_i \in E(C_i)$ for each G in G in

In this paper, we consider the independent quadrilaterals containing specified vertices in a bipartite graph, give the following results.

Theorem 1. Let $k \geq 1$ be an integer. Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n \geq 2k + 1$. Suppose that $\sigma_{1,1}(G) \geq \lceil (4n + k)/3 \rceil$. Then for any k distinct vertices v_1, v_2, \dots, v_k of G, G contains k independent quadrilaterals Q_1, Q_2, \dots, Q_k such that $v_i \in V(Q_i)$ for every $i \in \{1, 2, \dots, k\}$.

Theorem 2. Let $k \geq 1$ be an integer and $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n \geq 2k + 1$. If $\sigma_{1,1}(G) \geq \lceil (4n + k)/3 \rceil$, then for any k distinct vertices v_1, v_2, \cdots, v_k of G, G has a 2-factor with k cycles C_1, C_2, \cdots, C_k such that k - 1 of them are quadrilaterals and $v_i \in V(C_i)$ for every $i \in \{1, 2, \cdots, k\}$.

Remark. The degree condition of G in Theorem 1 is sharp when 2n = 4k+2. Generally, we can give an example to show that $\sigma_{1,1}(G) \ge n+k$ is necessary.

Example 1. Let G be a bipartite graph with the bipartition $(A \cup B \cup \{y_1, y_3, y_5\}, X \cup Y \cup \{y_2, y_4, y_6\})$ with |A| = |B| = |X| = |Y| = k-1 such that the subgraph $G[A \cup B, X \cup Y]$ is a complete bipartite graph, and $C = y_1y_2y_3y_4y_5y_6y_1$ is a cycle of length 6 satisfying $y_1y_4 \notin E$, $y_3y_6 \notin E$ and $y_2y_5 \notin E$. Let $H = G[A \cup B, X \cup Y]$. We construct G as follows. $N(y_1, H) = X \cup Y$, $N(y_2, H) = B$, $N(y_3, H) = X$, $N(y_4, H) = A$, $N(y_5, H) = X \cup Y$, $N(y_6, H) = A \cup B$. Clearly, G is of order 2k + 1 and $\sigma_2(G) \ge 3k + 1 = (4n+k-1)/3$. Set $X = \{v_1, v_2, \cdots, v_{k-1}\}$ and $y_3 = v_k$. It is easy to see that each quadrilateral containing v_k is joint some v_i for $i \in \{1, 2, \cdots, k-1\}$. Therefore, there are no k independent quadrilaterals in G satisfying the requirement.

Example 2. Let G be a bipartite graph with the bipartition $(A \cup B \cup \{u_1, u_2\}, X \cup Y \cup \{u_3\})$ with |A| = |X| = k - 1, |B| + 1 = |Y| = n - k. We obtain the graph G as follows: From the complete bipartite graph $(A \cup B \cup \{u_1, u_2\}, X \cup Y \cup \{u_3\})$, we delete the edge u_1u_3 and the edges between u_2 and Y. Then $\sigma_{1,1}(G) \geq n + k - 1$. Let $X = \{v_1, v_2, \cdots, v_{k-1}\}$ and $u_2 = v_k$. Then each quadrilateral containing v_k is joint some v_i for $i \in \{1, 2, \cdots, k-1\}$. Consequently, there are no k required quadrilaterals in G.

We would like to mention a result in [2]. In [2], Chen etc. proved that, if k is a positive integer and G is a balanced bipartite graph of order 2n with $n \geq 9k$ and $\delta(G) \geq (n+2)/2$, then, for every perfect matching M, G has a 2-factor with exactly k components including every edge of M.

2 Lemmas

Let $G = (V_1, V_2; E)$ be a balanced bipartite graph with $|V_1| = |V_2| = n \ge 2$. If P is a v-path of G, we define

$$\lambda(v, P) = \min\{|V(P_1)|, |V(P_2)|\}.$$

Where P_1 and P_2 are the two components of P - v. In the following, we give a number of lemmas. Lemma 2.4 and Lemma 2.6 are easy observations

Lemma 2.1 [5]. Let $P = x_1y_1 \cdots x_ky_k$ be a path of G with $k \geq 2$. If $d(x_1, P) + d(y_k, P) \geq k + 1$, then G has a cycle C such that V(C) = V(P).

Lemma 2.2 [5]. Let x and y be any pair of nonadjacent vertices with $x \in V_1$ and $y \in V_2$. If $d(x) + d(y) \ge n + 1$, then G is hamiltonian.

Lemma 2.3. Let $P = x_1x_2 \cdots x_{2r+d}$ be a path in G, where d = 0 or 1. Let $y \in V(G) - V(P)$ such that $\{x_{2r+d}, y\} \not\subseteq V_i$ for every $i \in \{1, 2\}$. Then the following two statements hold.

- (a) If $d(y, P)+d(x_{2r+d}, P) \ge r+2$, then $G[V(P)\cup \{y\}]$ has a hamiltonian path P' with two endvertices x_1 and y.
- (b) If $d(y, P)+d(x_{2r+d}, P) \ge r+1$, then $G[V(P)\cup \{y\}]$ has a hamiltonian path.

Proof. Clearly, if $yx_{2r+d} \in E$, then $P' = x_1x_2 \cdots x_{2r+d}y$ is the required hamiltonian path. In the following, we may assume that $yx_{2r+d} \notin E$. Let $S = \{x_{i+1} | x_ix_{2r+d} \in E\}$. Clearly, $d(x_{2r+d}, P) = |S|$. First we suppose that $d(y, P) + d(x_{2r+d}, P) \ge r + 2$. Then

$$|N(y,P)\cap S| = |N(y,P)| + |S| - |N(y,P)\cup S| \ge r+2 - (r+1) = 1.$$

This implies that there exists $x_{i+1} \in N(y,P) \cap S$. It follows that $P' = x_1x_2 \cdots x_ix_{2r+d} x_{2r+d-1} \cdots x_{i+1}y$ is the required hamiltonian path of $G[V(P) \cup \{y\}]$. Second, we assume that $d(y,P) + d(x_{2r+d},P) \geq r+1$. If d=1 and $yx_1 \in E$, then P+y is a hamiltonian path of $G[V(P) \cup \{y\}]$. Hence if d=1 then $yx_1 \notin E$. Consequently, we have $|N(y,P) \cup S| \leq r$, and then $|N(y,P) \cap S| \geq 1$. By the same argument as above, we see that $G[V(P) \cup \{y\}]$ has a hamiltonian path.

Lemma 2.4. Let Q be a v-quadrilateral . Let $x \in V_1$ and $y \in V_2$ be two vertices not on Q. Suppose that d(x,Q)+d(y,Q)=4. Then there exist two vertices $u_1 \in V_1$ and $u_2 \in V_2$ of Q such that $Q-u_1+x$ contains a v-quadrilateral and $u_1y \in E$, and $Q-u_2+y$ contains a v-quadrilateral and $u_2x \in E$.

Lemma 2.5. Let Q be a v-quadrilateral and P a u-path of length 5 such that they are independent. Suppose that $\lambda(u, P) \neq 0$ and 1. If $e(Q, P) \geq 10$,

then $G[V(Q \cup P)]$ contains two independent quadrilaterals Q_1 and Q_2 such that $u \in V(Q_1)$ and $v \in V(Q_2)$.

Proof. Let $Q = a_1 a_2 a_3 a_4 a_1$ and $P = x_1 \cdots x_6$ with $\{a_1, x_1\} \subseteq V_1$. As $\lambda(u, P) \neq 0$ and 1, $u = x_3$ or x_4 . If $u = x_3$ and u, v are in the same bipartition of G, without loss of generality, we may assume that $v = a_1$. If $u = x_3$ and u, v are in the different bipartition of G, we may assume that $v = a_2$. Similarly, if $u = x_4$, we may assume that $v = a_2$ or $v = a_1$ according to u, v being in the same bipartition or different bipartition of G. By symmetry, we only prove the two cases $v = a_1, u = x_3$ and $v = a_1, u = x_4$.

Case 1. $v = a_1$ and $u = x_3$.

Let $P_1=x_1x_2x_3x_4$. It is not difficult to see that if $e(Q,P_1)=8$, then we have two independent quadrilaterals Q_1 and Q_2 such that $u\in V(Q_1)$ and $v\in V(Q_2)$. So in the following we assume that $e(Q,P_1)\leq 7$. On the other hand, $e(Q,P)\geq 10$. Therefore, $6\leq e(Q,P_1)\leq 7$. We distinguish the following three cases.

Case 1.1. $e(Q, P_1) = 7$ and $d(x_4, Q) = 2$.

Since $e(Q, P_1) = 7$, there exists $i \in \{2, 4\}$ such that $\{a_i x_1, a_i x_3\} \subseteq E$. Then we have two independent quadrilaterals $Q_1 = x_1 x_2 x_3 a_i x_1$ and $Q_2 = a_1 a_j a_3 x_4 a_1$ for $\{i, j\} = \{2, 4\}$.

Case 1.2. $e(Q, P_1) = 7$ and $d(x_4, Q) = 1$.

Note that $d(x_1,Q)=d(x_2,Q)=d(x_3,Q)=2$. If $a_3x_4\in E$, then $G[V(Q\cup P_1)]$ contains two independent quadrilaterals $Q_1=a_3a_4x_3x_4a_3$ and $Q_2=a_1a_2x_1x_2a_1$ such that $u\in V(Q_1)$ and $v\in V(Q_2)$. Otherwise $a_1x_4\in E$. As $e(Q,P)\geq 10$, we have $e(x_5x_6,Q)\geq 3$ and then $d(x_5,Q)\geq 1$. Suppose that $a_ix_5\in E$. Then $G[V(Q\cup P)]$ contains two required quadrilaterals $Q_1=x_3x_4x_5a_ix_3$ and $Q_2=a_1a_jx_1x_2a_1$ for $\{i,j\}=\{2,4\}$.

Case 1.3. $e(Q, P_1) = 6$.

In this case, we see that $d(x_5,Q)=d(x_6,Q)=2$ because $e(Q,P)\geq 10$. If there exists $i\in\{2,4\}$ such that $a_ix_3\in E$, say i=2, then we have two independent quadrilaterals $Q_1=x_3x_4x_5a_2x_3$ and $Q_2=a_1a_4a_3x_6a_1$. Otherwise $d(x_3,Q)=0$. As $e(Q,P)\geq 10$, we see that $d(x_4,Q)=d(x_1,Q)=d(x_2,Q)=2$. Then $G[V(Q\cup P)]$ contains two independent quadrilaterals $Q_1=a_3x_2x_3x_4a_3$ and $Q_2=a_1a_2x_1a_4a_1$ such that $u\in V(Q_1)$ and $v\in V(Q_2)$.

Case 2. $v = a_1$ and $u = x_4$.

Let $P_1 = x_3x_4x_5x_6$. Similar as the discussion in Case 1, if $e(Q, P_1) = 8$, then there exist two independent quadrilaterals Q_1 and Q_2 such that $u \in V(Q_1)$ and $v \in V(Q_2)$. So we may assume that $(Q, P) \leq 7$. Since $e(Q, P) \geq 10$, we have $e(Q, P_1) = 7$ or $e(Q, P_1) = 6$. We consider the following two cases.

Case 2.1. $e(Q, P_1) = 7$.

In this case, $d(x_6,Q) \ge 1$. Suppose that $d(x_6,Q) = 2$. Since $e(Q,P_1) = 7$, there exists $i \in \{2,4\}$ such that $\{a_ix_3,a_ix_5\} \subseteq E$, say i=2. Consequently, $G[V(Q \cup P_1)]$ contains two required quadrilaterals $Q_1 = x_3x_4x_5a_2x_3$ and $Q_2 = a_1a_4a_3x_6a_1$. Otherwise $d(x_6,Q) = 1$. It follows that $d(x_3,Q) = d(x_4,Q) = d(x_5,Q) = 2$. If $a_3x_6 \in E$, then we obtain two independent quadrilaterals $Q_1 = a_3x_4x_5x_6a_3$ and $Q_2 = x_3a_2a_1a_4x_3$ such that $u \in V(Q_1)$ and $v \in V(Q_2)$. If $a_1x_6 \in E$. Then $G[V(Q \cup P_1)]$ contains two required independent quadrilaterals $Q_1 = a_3a_4x_3x_4a_3$ and $Q_2 = a_1a_2x_5x_6a_1$.

Case 2.2 $e(Q, P_1) = 6$.

In this case, $d(x_1,Q)=d(x_2,Q)=2$. If $\{a_ix_3,a_ix_5\}\subseteq E$ holds for some $i\in\{2,4\}$, say i=2, then we obtain two independent quadrilaterals $Q_1=a_2x_3x_4x_5a_2$ and $Q_2=x_2a_1a_4a_3x_2$. Otherwise, $e(\{x_3,x_5\},Q)\leq 2$ and then $d(x_4,Q)=d(x_6,Q)=2$ as $e(Q,P_1)=6$. So $G[V(Q\cup P)]$ contains two independent quadrilaterals $Q_1=a_3x_4x_5x_6a_3$ and $Q_2=x_1a_2a_1a_4x_1$. The lemma is proved.

Lemma 2.6. Let C be a quadrilateral and P a path with two endvertices $u \in V_1$ and $v \in V_2$ in G such that C and P are independent. If $d(u,C)+d(v,C) \geq 3$, then G has a cycle C' such that $V(C')=V(C \cup P)$.

3 Proof of Theorem 1

Let k be a positive integer and $G=(V_1,V_2;E)$ a bipartite graph with $|V_1|=|V_2|=n\geq 2k+1$. We assume that $\sigma_{1,1}(G)\geq \lceil (4n+k)/3\rceil$. Suppose, for a contradiction, that there exist k distinct vertices v_1,v_2,\cdots,v_k of G such that G does not contain k independent quadrilaterals with respect to $\{v_1,v_2,\cdots,v_k\}$. Without loss of generality, we may assume that G is an edge-maximal counterexample. That is, for any two nonadjacent vertices $u\in V_1$ and $v\in V_2$, G+uv contains k independent quadrilaterals Q_1,Q_2,\cdots,Q_k such that $v_i\in V(Q_i)$ for each $i\in\{1,2,\cdots,k\}$. We distinguish the following two cases: k=1 and $k\geq 2$.

Case 1. k = 1.

Since $d(x) + d(y) \ge (4n+1)/3 \ge n+1$ for any two nonadjacent vertices x and y with $x \in V_1$ and $y \in V_2$, G has a hamiltonian cycle by Lemma 2.2. Let $C = x_1y_1 \cdots x_ny_nx_1$ be the hamiltonian cycle of G. Without loss of generality, we may assume that $v_1 = x_2$ (Otherwise, we may renumber the vertices of G). Let $P = x_1y_1x_2y_2x_3y_3$ be a subpath of G. Since G does not contain a v_1 -quadrilateral, we must have that

$$N(x_2, G) \cap N(x_1, G) = \{y_1\}.$$

$$N(x_2, G) \cap \{N(x_3, G) = \{y_2\}.$$

$$N(y_1,G) \cap \{N(y_2,G) = \{x_2\}.$$

It follows that

$$d(x_2) + d(x_1) = |N(x_2, G) \cup N(x_1, G)| + |N(x_2, G) \cap N(x_1, G)| \le n + 1.$$

Similarly, we have $d(x_2) + d(x_3) \le n+1$ and $d(y_1) + d(y_2) \le n+1$. Since G does not contain v_1 -quadrilateral, we have $d(y_3) \le n-1$. Clearly, $d(x_2) \ge 2$. Then we have

$$\sum_{u \in V(P)} d(u) \le 3n + 3 - d(x_2) + d(y_3) \le 4n.$$

On the other hand, $\{x_1, y_2\}, \{x_2, y_3\}, \{x_3, y_1\}$ are three pairs of nonadjacent vertices in different bipartition of P as G does not contain a v_1 -quadrilateral. Therefore, we have $\sum_{u \in V(P)} d(u) \ge 4n + 1$, a contradiction.

Case 2. $k \geq 2$.

Since G is an edge-maximal counterexample, there exists at least one vertex of $\{v_1, v_2, \cdots, v_k\}$, say v, such that G contains k-1 independent quadrilaterals $Q_1^v, Q_2^v, \cdots, Q_{k-1}^v$ such that $v \notin V(\bigcup_{i=1}^{k-1} Q_i^v)$. We choose $v \in \{v_1, v_2, \cdots, v_k\}$ and $Q_1^v, Q_2^v, \cdots, Q_{k-1}^v$ such that

$$G - V(\bigcup_{i=1}^{k-1} Q_i^v)$$
 has the longest v – path. (1)

Let P be the longest v-path of $G - V(\bigcup_{i=1}^{k-1} Q_i^v)$. Subject to (1), we choose $v \in \{v_1, v_2, \dots, v_k\}, Q_1^v, Q_2, v, \dots, Q_{k-1}^v$ and P such that

$$\lambda(v, P)$$
 is maximum. (2)

Without loss of generality, suppose that $v=v_k$. Let $Q_i=Q_i^v$ and $v_i\in V(Q_i)$ for all $i\in\{1,2,\cdots,k-1\}$. Set $H=\cup_{i=1}^{k-1}Q_i$, D=G-V(H) and |V(D)|=2t. Clearly, n=2(k-1)+t and $l(Q_i)=4$ for all $i\in\{1,2,\cdots,k-1\}$. Since $n\geq 2k+1$, we see that $t\geq 3$. Let $P=x_1x_2\cdots x_p$ be the longest v_k -path with $x_1\in V_1$. By the assumption on G, D contains a v_k -path of length at least 3. Thus, $p\geq 4$.

Claim 1. p=2t.

Proof of Claim 1. On the contrary, suppose that p < 2t. Set $p = 2r + \delta$, where $\delta = 0$ or 1. Let $u \in D - V(P)$ be a vertex with $\{u, x_p\} \not\subseteq V_i$ for each $i \in \{1, 2\}$. We claim that $d(u, Q_i) + d(x_p, Q_i) \leq 3$ for every $i \in \{1, 2, \dots k - 1\}$. If it is not true, then there exists $i \in \{1, 2, \dots, k - 1\}$ such that $d(u, Q_i) + d(x_p, Q_i) = 4$. By Lemma 2.4, there exists a vertex w in $V(Q_i)$ such that $Q_i - w + u$ contains a v_i -quadrilateral and $wx_p \in E$. Thus, P + w has a v_k -path longer than P, contradicting (1). So $d(u, Q_i) + d(x_p, Q_i) \leq 3$ for each $i \in \{1, 2, \dots, k - 1\}$. It follows that $d(u, H) + d(x_p, H) \leq 3(k - 1)$.

Clearly, $d(u, D - V(P)) \le t - r$ and $d(x_p, D - V(P)) = 0$. Since n = 2(k-1) + t, we have

$$d(u,P) + d(x_p,P) \ge \lceil \frac{4n+k}{3} \rceil - 3(k-1) - (t-r)$$

$$= \lceil \frac{8(k-1) + 4t + k}{3} \rceil - 3(k-1) - (t-r)$$

$$> r+1.$$

By Lemma 2,3, $G[V(P) \cup \{u\}]$ has a hamiltonian path, this contradicts (1). So Claim 1 holds.

Claim 2. If $\lambda(v_k, P) = 0$ or 1, then D has a hamiltonian cycle.

Proof of Claim 2. If $x_1x_{2t} \in E$, then we have nothing to prove. In the following, we assume that $x_1x_{2t} \notin E$. By symmetry, we assume that $v_k = x_1$ if $\lambda(v_k, P) = 0$ and $v_k = x_2$ if $\lambda(v_k, P) = 1$. We consider the endvertices x_1 and x_{2t} of P. If there exists Q_i in H such that $d(x_1, Q_i) = d(x_{2t}, Q_i) = 2$, then, by Lemma 2.4, there is a vertex in $V(Q_i)$, say w, such that $Q_i - w + x_{2t}$ contains a v_i -quadrilateral and $wx_1 \in E$. Then we obtain a v_k -path $P' = P + w - x_{2t}$ and $\lambda(v_k, P') = \lambda(v_k, P) + 1$ as $t \geq 3$, which contradicts (2) while (1) is maintained. Therefore, we have $d(x_1, Q_i) + d(x_{2t}, Q_i) \leq 3$ for each $i \in \{1, 2, \dots, k-1\}$. It follows that

$$d(x_1, D) + d(x_{2t}, D) \ge \frac{4n + k}{3} - 3(k - 1) = \frac{4t + 1}{3} \ge t + 1.$$

By Lemma 2.1, D contains a hamiltonian cycle. So Claim 2 holds.

Now we are in the position to complete the proof. As $t \geq 3$, by Claim 1 and Claim 2, we may choose a subpath P' of length 5 of P such that $\lambda(v_k, P) = 2$. Let $P' = y_1y_2y_3y_4y_5y_6$ be such a path with $y_1 \in V_1$. Then $v_k = y_3$ or y_4 . As D does not contain a v_k -quadrilateral, we obtain

$$N(y_3, D) \cap N(y_5, D) = \{y_4\}$$

and

$$N(y_2, D) \cap N(y_4, D) = \{y_3\}.$$

If $v_k = y_3$, then $N(y_1, D) \cap N(y_3, D) = \{y_2\}$. If $v_k = y_4$, then $N(y_4, D) \cap N(y_6, D) = y_5$. So we obtain $d(y_3, D) + d(y_5, D) = |N(y_3, D) \cup N(y_5, D)| + |N(y_3, D) \cap N(y_5, D)| \le t+1$. Similarly, we have $d(y_2, D) + d(y_4, D) \le t+1$, either $d(y_1, D) + d(y_3, D) \le t+1$ or $d(y_4, D) + d(y_6, D) \le t+1$. Suppose that $v_k = y_3$. As D does not contain a v_k -quadrilateral, we have $d(y_6, D) \le t-1$. Then

$$\sum_{i=1}^{6} d(y_i, D) \le 3t + 3 - d(y_3, D) + d(y_6, D) \le 4t.$$

As D does not contain a v_k -quadrilateral, we have three pairs of non-adjacent vertices $\{y_1, y_4\}, \{y_3, y_6\}, \{y_5, y_2\}$ in different bipartition in P'. Therefore,

$$\sum_{y_i \in V(P')} d(y_i, H) \ge 4n + k - 4t = 8(k - 1) + 4t + k - 4t = 9(k - 1) + 1.$$

This implies that there exists Q_j in H such that $\sum_{y_i \in V(P')} d(y_i, Q_j) \ge 10$. By Lemma 2.5, $G[V(Q_j \cup P')]$ contains two independent quadrilaterals Q_j and Q'_j such that $v_j \in V(Q_j)$ and $v_k \in V(Q'_j)$, a contradiction. Similarly, if $v_k = y_4$, we can obtain the same contradiction. The proof is completed.

4 Proof of Theorem 2

Let $G=(V_1,V_2;E)$ be a bipartite graph satisfying the conditions of Theorem 2. If k=1, by Lemma 2.2 and the degree condition, we have that G has a hamiltonian cycle. Thus the theorem holds. In the following we assume that $k\geq 2$. Suppose, for a contradiction, that there exist k distinct vertices v_1,v_2,\cdots,v_k of G such that G does not have a 2-factor with k required cycles C_1,C_2,\cdots,C_k with respect to $\{v_1,v_2,\cdots,v_k\}$. By Theorem 1, G contains k independent quadrilaterals C_1,\cdots,C_k with respect to $\{v_1,v_2,\cdots,v_k\}$. We choose such k quadrilaterals C_1,\cdots,C_k such that

The length of the longest path of
$$G - V(\bigcup_{i=1}^{k} C_i)$$
 is maximum. (3)

We may assume that $v_i \in V(C_i)$ for all $i \in \{1, 2, \dots, k\}$. Set $H = \bigcup_{i=1}^k C_i$ and D = G - V(H). Let |V(D)| = 2t, then n = 2k + t. Clearly, $l(C_i) = 4$ for all $i \in \{1, 2, \dots, k\}$. Let $P = x_1 x_2 \cdots x_p$ be the longest path of D with $x_1 \in V_1$. Let p = 2r + q, where q = 0 or 1.

Claim 3. D is hamiltonian.

Proof of Claim 3. First, we show that p=2t. Suppose, for a contradiction, that p<2t. We choose an arbitrary vertex x_0 in D-V(P) such that $\{x_0,x_p\}\not\subseteq V_i$ for each $i\in\{1,2\}$. If there exists C_i in H such that $d(x_0,C_i)=d(x_p,C_i)=2$, By Lemma 2.4, there is a vertex $z\in V(C_i)$ such that C_i-z+x_0 is an v_i -quadrilateral and $x_pz\in E$. Then P+z is a path of D longer than P, a contradiction with (3). So $d(x_0,C_i)+d(x_p,C_i)\leq 3$ for each $i\in\{1,2,\cdots,k\}$. Clearly, for any $x_j\in D-V(P)$, $x_jx_p\notin E$ and $d(x_j,D-V(P))\leq t-r$. Therefore,

$$d(x_0, P) + d(x_p, P) \ge \frac{4n + k}{3} - 3k - (t - r) \ge r + 1.$$

By Lemma 2.3, $G[V(P) \cup \{x_0\}]$ contains a hamiltonian path, this contradicts (3). So D has a hamiltonian path $P = x_1 x_2 \cdots x_{2t}$.

If $x_1x_{2t} \in E$, then we have nothing to prove. So $x_1x_{2t} \notin E$. By Lemma 2.6, $d(x_1, C_i) + d(x_{2t}, C_i) \leq 2$ for all $i \in \{1, \dots, k\}$ since G does not has a 2-factor with k required cycles. Therefore,

$$d(x_1, P) + d(x_{2t}, P) \ge \frac{4n + k}{3} - 2k > t + 1.$$

So D is hamiltonian by Lemma 2.1. The claim holds.

By Claim 3, we may assume that $x_1x_{2t} \in E$. Without loss of generality, suppose that $d(x_1,C_1) \geq d(x_j,C_i)$ for all $j \in \{1,2,\cdots,2t\}$ and $i \in \{1,2,\cdots,k\}$. Let $C_1 = a_1a_2a_3a_4a_1$ with $a_1 \in V_1$. Since G is connected, we see that $d(x_1,C_1) \geq 1$. We may assume that $x_1a_2 \in E$. If $d(x_2,C_1)=1$ or $d(x_{2t},C_1)=1$, then we have a hamiltonian cycle of $G[V(C_1 \cup P)]$, a contradiction. So $d(x_2,C_1)=0$ and $d(x_{2t},C_1)=0$. If $d(a_1,P-x_1)+d(x_{2t},P-x_1) \geq (t-1)+2$, By Lemma 2.3, $G[V(P-x_1+a_1)]$ has a hamiltonian path P' from a_1 to a_2 , and then $a_1 \in G[V(C_1 \cup P)]$ has a hamiltonian cycle $a_1a_2a_3a_4a_1P'x_2x_1$, a contradiction. Therefore, we have $a_1 \in G[X_1,P)$ and $a_2 \in G[X_1,P)$ and $a_3 \in G[X_1,P)$ is a contradiction.

Claim 4. $d(x_1, C_1) = 2$.

Proof of Claim 4. On the contrary, suppose that $d(x_1, C_1) = 1$. As $t \ge 1$, $d(a_1, P) + d(x_{2t}, P) \le t + 1$, we have

$$d(a_1, H - C_1) + d(x_{2t}, H - C_1) \ge \frac{4n + k}{3} - (t + 3) \ge 3(k - 1) + 1.$$

This implies that there exists C_i in $H - V(C_1)$ such that $d(x_{2t}, C_i) = 2$, this contradicts the maximality of $d(x_1, C_1)$. So Claim 4 holds.

We continue to prove the theorem. We assume that $v_1=a_3$ if $v_1\in V_1$ and $v_1=a_4$ if $v_1\in V_2$. Then $C_1^*=C_1-a_1+x_1$ is a v_1 -quadrilateral. Note that $d(a_1,P)+d(x_{2t},P)\leq t+1$ and $d(x_{2t},C_1)=0$. By the same argument as the proof of Claim 4, we have $d(a_1,H-V(C_1))+d(x_{2t},H-V(C_1))\geq 3(k-1)+1$. This implies that there exists C_s in $H-V(C_1)$, say C_2 , such that $d(a_1,C_2)=d(x_{2t},C_2)=2$. Let $C_2=b_1b_2b_3b_4b_1$ with $b_1\in V_1$. We assume that $v_2=b_1$ if $v_2\in V_1$ and $v_2=b_2$ if $v_2\in V_2$. If t=1, then $C_2^*=C_2+a_1+x_{2t}$ has a hamiltonian cycle $b_1b_2a_1b_4b_3x_{2t}b_1$. Hence, $C_1^*=C_2+a_1+x_{2t}$ has a hamiltonian cycle $c_1^*,c_2^*,c_3,\cdots,c_k$ with respect to $\{v_1,v_2,\cdots,v_k\}$ such that k-1 of them are quadrilaterals. So $t\geq 2$. Let $c_2^*=C_2-b_4+x_{2t}$ and $c_1^*=c_1^*$ and $c_2^*=c_2^*$.

In the following, we show that $\sum_{z\in R} d(z, V(C_1 \cup C_2 \cup P)) \leq 2t + 12$. If $d(a_1, P - x_1) + d(x_2, P - x_1) \geq (t - 1) + 2$, then, by Lemma 2.3, we have a hamiltonian path P_1 of $G[V(P - x_1 + a_1)]$ from x_{2t} to a_1 . Consequently, we see that $G_1 = G[V(C_2 \cup P - x_1) \cup \{a_1\}]$ has an v_2 -hamiltonian cycle $C'_2 = a_1P_1x_{2t}b_1b_2b_3b_4a_1$. Therefore, G has a 2-factor

with k independent cycles $C_1^*, C_2', C_3, \dots C_k$ with respect to $\{v_1, v_2, \dots, v_k\}$ such that k-1 of the cycles are quadrilaterals, a contradiction. Hence, $d(a_1, P) + d(x_2, P) \le t + 1$. Since $x_1 x_{2t} \in E$, we renumber the hamiltonian path $P = x_{2t}x_1x_2\cdots x_{2t-1}$. Similarly, if $d(b_4, P) + d(x_{2t-1}, P) \ge t + 2$, then $G[V(P) \cup \{b_4\}]$ has a hamiltonian path P_2 from x_{2t} to b_4 . Therefore, $G[V(C_2 \cup P)]$ has a v_2 -hamiltonian cycle $C'_2 = b_4 P_2 x_{2t} b_3 b_2 b_1 b_4$, and then G has a 2-factor with k independent cycles $C_1, C'_2, C_3, \cdots C_k$ with respect to $\{v_1, v_2, \dots, v_k\}$ such that k-1 of the cycles are quadrilaterals, a contradiction. Hence, we have $d(b_4, P) + d(x_{2t-1}, P) \leq t + 1$. On the other hand, as C_1^* is v_1 -hamiltonian, $G[V(C_2 \cup P - x_1) \cup \{a_1\}]$ is not hamiltonian, and then $d(x_2, C_2) = 0$. Otherwise, if $d(x_2, C_2) \ge 1$, say $x_2b_3 \in E$, Since $d(a_1, C_2) = d(x_{2t}, C_2) = 2$, then $G[V(C_2 \cup P - x_1) \cup \{a_1\}]$ has a hamiltonian cycle $x_2b_3b_2a_1b_4b_1x_{2t}\cdots x_2$, a contradiction. Note that $d(x_2,C_1)=0$. Clearly, $d(x_{2t-1}, C_1) \leq 2$, $d(a_1, C_1 \cup C_2) \leq 4$ and $d(b_4, C_1 \cup C_2) \leq 4$. Let $P' = x_{2t}x_1x_2\cdots x_{2t-1}$. Since $G[V(C_2\cup D)]$ is not v_2 -hamiltonian and $d(x_{2t}, C_2) = 2$, we have $d(x_{2t-1}, C_2) = 0$ by Lemma 2.6. $\sum_{z \in R} d(z, V(C_1 \cup C_2 \cup P)) \le 2t + 12.$

As $d(a_1, C_2) = 2$, we have $a_1b_4 \in E$. Note that $a_1x_2 \notin E$. Since $d(x_{2t-1}, C_2) = 0$, $b_4x_{2t-1} \notin E$. By the degree condition on G, we have that

$$\sum_{z \in R} d(z, H - V(C_1 \cup C_2)) \ge \frac{8n + 2k}{3} - (2t + 12) = 6(k - 2) + \frac{2t}{3}.$$

This implies that there exists C_s in $H-V(C_1\cup C_2)$, say C_3 , such that $\sum_{z\in R}d(z,C_3)\geq 7$. Thus, $e(a_1b_4,C_3)\geq 3$ and $e(\{x_2,x_{2t-1}\},C_3)\geq 3$. By Lemma 2.6, $C_3+a_1+b_4$ contains a hamiltonian cycle C^* . Let $C^*=c_1c_2c_3c_4c_5c_6c_1$ with $c_1\in V_1$. Since $d(\{x_2,x_{2t-1}\},C_3)\geq 3$, there exist c_i and c_{i+1} in C^* such that $e(\{x_2,x_{2t-1}\},\{c_i,c_{i+1}\})=2$, where $c_7=c_1$. We may assume that $\{x_2c_1,x_{2t-1}c_2\}\subseteq E$. It follows that $G[V(C^*\cup P-x_1-x_{2t})]$ has a v_3 -hamiltonian cycle $C_3^*=c_1x_2x_3\cdots x_{2t-1}c_2c_3c_4c_5c_6c_1$. Then G has a 2-factor with k independent cycles $C_1^*,C_2^*,C_3^*,C_4,\cdots,C_k$ with respect to $\{v_1,v_2,\cdots,v_k\}$ such that k-1 of them are quadrilaterals, a contradiction. The theorem is proved.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, Amsterdam, 1976.
- [2] G. Chen, R. Gould, and M. Jacobson, On 2-factors containing 1-factors in bipartite graphs. Discrete Math. 197/198(1999), 185-194.
- [3] K. Corrádi, A. Hajnal, On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hungar. 14 (1963) 423-439.

- [4] M.El-Zahar, On circuits in graphs, Discrete Math. 50(1984), 227-230.
- [5] H.Wang, On 2-factors of a bipartite graph, J. Graph Theory 31(1999), 101-106.
- [6] H.Wang, On quadrilaterals and cycle covers in a bipartite graph, Ars Combin. 58(2001), 301-311.
- [7] H.Wang, Proof of a conjecture on cycles in a bipartite graph, J Graph Theory 31(1999), 333-343.