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Abstract

Let D = (V, E) be a primitive digraph. The exponent of D at a
vertex u € V, denoted by expp(u), is defined to be the least integer
k such that there is a walk of length k from u to v for each v € V.
Let V = {v1,v2, - ,un}. The vertices of V can be ordered so that
expp(vi,) < expp(vi,) < -+ < expp(vi,). The number expp(vi,)
is called k-exponent of D, denoted by expp(k). In this paper, we
completely characterize 1-exponent set of primitive, minimally strong
digraphs with n vertices.
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1 Introduction

We consider only the digraphs without multiple arcs. Let D = (V, E)
be a digraph with n vertices. A walk uWwv of length p from u to v in D is
a sequence of vertices u,uy, ..., up = v and a sequence of arcs (u,u1), (u1,
u2), ..., (¥p—1,v), where the vertices and arcs need not to be distinct, and
denoted by uWv = (u,u,, ..., up—1,v). The initial vertex of uWwv is u, the
terminal vertex is v, and w1, ug, ..., up—1 are the internal vertices of uWwv.
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If u = v, then uWwv is a circuit (or a closed walk). A path is a walk with
distinct vertices. A cycle(an elementary circuit) is a circuit with distinct
vertices except for u = v. For convenience, we treat a cycle as a path (a
closed path) in this paper. The girth s of D is the length of a shortest
cycle in D. An r-cycle is a cycle of length . By L(D) we denote the set
of distinct lengths of the cycles of D, and |[L(D)| the number of distinct
lengths of the cycles of D.

For the sake of simplicity, we use notation [a,...,b] to denote the set
of all integers between a and b, namely [a,...,bj={m |m € Z and a <
m < b}. We use notation |a] and [a], respectively, to denote the greatest
integer which is not greater than a and the least integer which is not less
than a.

The digraph D is called strongly connected(or strong) if for each ordered
pair of distinct vertices u,v there is a walk from « to v. A strongly con-
nected digraph D is called minimally strong(or ministrong) provided each
digraph obtained from D by removing an arc is not strongly connected.
A digraph D is primitive if there exists an integer £ > 0 such that for
each ordered pair of vertices u,v € V(D) (not necessarily distinct), there
is a walk of length k from u to v in D, and the least such k is called the
exponent of D, denoted by exp(D). It is well known that a digraph D is
primitive if and only if D is strongly connected and the greatest common
divisor of the lengths of its cycles is 1.

In 1990, from the background of memoryless communication system,
R. A. Brualdi and Bolian Liu (1] generalized the concept of the exponent
for a primitive digraph and introduced the concept of k-exponent. Let
D = (V, E) be a primitive digraph with n vertices vy, vs, ..., vn. For any
vi, v; € V, let expp(vi,v;) := the smallest integer p such that there is a
walk of length ¢ from v; to v; for each integer ¢ > p. Let the exponent
of vertex v; be defined by expp(v;) := max{expp(v;,v;) : v; € V}. Then
expp(v;) is the smallest integer p such that there is a walk of length p
from v; to each vertex of D. We arrange the vertices of D in such a way
that expp(vi,) < expp(vi,) < -+ < expp(vi,), and we call the number
expp(vi,) the k-point exponent of D (the k-exponent for short), which is
denoted by expp(k).

Let PMSD,, be the set of all primitive, ministrong digraphs of order
n. We define ME,(k) : = {expp(k) : D € PMSD,} (k = 1,2,...,n). Ji-
ayu Shao [9] characterized M E,(n). Bolian Liu[5] obtained the maximum
value of the k-exponent for PMSD,,. Bo Zhou [11] characterized primi-
tive, ministrong digraphs with n vertices whose k-exponent (1 < k < n)
achieve the maximum value. In 2002, Bo Zhou [11] pointed out that the
complete determination of M E,(k) (1 £ k < n — 1) is an interesting and
difficult problem. Recently Yahui Hu,etal.[3] characterized 1-exponent sets
of primitive, ministrong digraphs with n vertices and L(D) = {p, q}, where
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3<p<gandp+g>n.
In this paper, we shall completely characterize M E,(1) for n > 14 (see
Theorem 4.1).

2 expp(l) < 3(n®>—7n+16) whenn > 14 and
IL(D)| >3

Let D = (V, E) be a digraph. D’ = (V’, E’) is called a subdigraph
of Dif V. CV and E' C E, and denoted by D' C D. We call D' a
proper subdigraph of D (write D' C D) if D’ C D and D’ # D. Let
D, = (1, E1) and Dy = (Va, E3) be two subdigraphs of D. We call the
digraphs Dy N Dy = (V1 N Vo, Ey NE;) and DU D, = (1 UV, Ey U Ey)
the intersection and the union of Dy, Da, respectively. _

Let D = (V, E) be a digraph. We use |V| to denote the number of the
vertices in V', R;(u) the set of vertices of D that can be reached by a walk
with initial vertex u of length ¢ (for t = 0, we define R;(u) = {u}). Let
uWwv be a walk from vertex u to vertex v. We use n(uWv) to denote the
length of the walk uWwv. Let vW'w be a walk from vertex v to vertex w.
For convenience, we also use uWvW'w to denote the walk uWv + vW'w
from u to w.

Let D be a digraph, C a cycle of D with length at least 2. Let u and v
be two vertices in V(C). We define uC®u = u, uC(®y the path from u to
v in C for u # v, and uC®y(k > 1) the walk uC®y + C +--- 4 C from

N e,
k times
u to v.

Let D = (V, E) be a primitive digraph, and L(D) = {ry,72, ...,72} the
set of distinct lengths of the cycles of D, where 1y > r > -+ > r) and
ged(ry,re, ...,72) = 1. For u,v € V(D), the distance d(u,v) from u to v
is defined to be the length of shortest walk from u to v in D, the relative
distance dy(p)(u,v) from u to v is defined to be the length of the shortest
walk from u to v that meets at least one cycle of each length r; fori = 1,2,

Y :

Let a3, ay, ...,a, be distinct positive integers with ged(a,, ao, - - ., ax)
= 1. The Frobenius number ¢(a,,a, ..., ax) is defined to be the smallest
integer m such that every integer with t > m can be represented in the form
t = 2z1a1 +20a2 + -+ +2zrag, where 21, 22, ..., z; are nonnegative integers.
It is well known that ¢(ai,az, ...,ax) is finite if ged(ay,az, ...,a) = 1
and that ¢(a1,a2) = (a1 — 1)(az — 1).

Lemma 2.1 ([7]) Let D = (V, E) be a primitive digraph and L(D) = {r,
T2, ..., Ta}. Let Ly(D) = {ry;,7izy...,7i } € L(D) and ged(ry,, Tig, - - -,
i) = 1. Then for any u,v € V, we have expp(u,v) < dp,(p)(u,v) +

103



éL,(D)> where ¢, (D) = &(Tiy, iy .., T4y ). Furthermore, we have expp(u) <
ma'x{dLn(D)(u’ v):veV}+ ALy (D)

Lemma 2.2 ([4], Theorem 1.1) Let D € PMSD, with girth s. Then

k+1+s(n-3) for 1<k<s,
exPD(k)s{k+s(n—3) for s+1<k<n.

Lemma 2.3 ([10], Theorem 4) Let a1,as,...,a, be positive integers with
ay > ag > -+ > as and ged(ay,az,...,a;) = 1. Let i be the greatest
subscript such that a; # ka, for integral k. If there is an a; such that
a; # pas + va; for all nonnegative integers p,v, then ¢(ay,az,...,a;) <
L3as](a1 — 2). Otherwise ¢(a1,az,...,85) = (as — 1)(a; — 1).

Lemma 2.4 ([10], Page 83) Let r(> 3) be a positive integer, k a positive
integer with k | (r — 2). Then ¢(*32,r —1,7) = |552)(r — 2). In the case
k=1, ¢(r—2,r-1,r) = |5F2|(r-2).

Lemma 2.5 Let D € PMSD,, and L(D) = {ry,re,...,r\}, where A >
yra+rac1>nandry >rp > - > 1A Let Cr, and Cy, _,, respectively,
be r)-cycle and ra_1-cycle in D. If u is a vertex in V(C,,) NV(C,,_,),
then dy(py(u,v) < n—2 for any v € V(D).

Proof. Clearly 71 < n—2 and r) > 2 by D ministrong and A > 3. Let
uPv be the shortest path from « to v. We first prove that n(uPv) < n—2.

If v € V(Cr,_,), then there exists a path from u to v in C;,_, whose
length is not greater than r\_;, and so n(uPv) < ra1 < <n—-2. If
v € V(Cr,), then there exists a path from « to v in Cy, whose length is
not greater than ry, and so n(uPv) <7y <7 <n-2.

Now we suppose that v ¢ V(Cy, UC;,_,). Let w be a vertex in
V(Cy, U Cy,_,) such that d(w,v) = min{d(z,v) : z € V(C,, UC;,_,)}
and let wPv be a shortest path from w to v. If w € V(C,,_,), note that
the path uC,(-g)_,va contains no vertex in V(C,, \V(Cr, NC;,_,), and
[V(C:,\V(Cry, NCr,_,)| 2 1 by D ministrong, it follows that n(uPv) <
n(qug)_,va) <n-2. Ifw e V(C;,), note that the path uCﬁE)va from v
to v contains no vertex in V(C;, _, \V(C;,NC, _,), and |V(C;,_, \V(Cr,N
Cri.y)] 2 2 by D ministrong and ry_; > 73, it follows that n(uPv)
<nuCPwPv) <n-3<n-2.

To sum up, we have n{(uPv) < n —2.

Now we prove that dz(p)(u,v) < n—2. If p(uPv) > n—ra_2+1, then
fori =1,2,...,) — 2, uPv must meet at least one cycle of length r; by
ri + n(uPv) 2 n+ 1, and so uPv meets at least one cycle of length r; for
i=1,2,...,\ Hence dy(p)(u,v) = n(uPv) < n-2. If n(uPv) < n—ryr_y,
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note that the walk uC,(-,l\) uPv from u to v meets at least one cycle of length
rifori=1,2,...,A by r» + ra_; > n, then dr(py(u,v) < n(uC'g)qu)
=7xA+n(uPv) < n—ryag2+7y £ n-2 The proof of Lemma 2.5 is
complete. O

Lemma 2.6 Let D = (V,E) be a primitive digraph with n vertices and
L(D) = {r1,r2, ..., 72}, where n =221 > 13> - >y > (n—3)/2
andry+7\ > n. Letu € V(Cr,)NV(Cy,). Then dp(p)(u,v) < (3n—3)/2
foranyveV,

Proof. Let uPv be the shortest path from u to v in D. If n(uPv) > n -
Ta-1+1, thenfori=1,2,...,A—1, uPv meets at least one cycle of length
r; since 7 +7(uPv) > n+1, and so uPv meets at least one cycle of length ;
fori=1,2,..., . Therefore d;(py(u,v) = n(uPv) <n-1< (3n-3)/2. If
n(uPv) < n—ry_1, note that the walk uC$,1 )uPy meets at least one cycle of
length r; fori =1,2,...,A by ry +7\ > n, then dr(py(u,v) < n(uCﬁf)qu)
=nuPv)+r <n-ry14+rm <n- ("T's +1)+n-2= # The proof
of Lemma 2.6 is complete. O

Lemma 2.7 Let D = (V,E) be a primitive digraph with n vertices and
L(D) = {r1,r2, ...,7»}, where (n+3)/2> 7 > 1y > - > ra, T <
(n—1)/2 and 3ry > n. Let C,, be a ry-cycle and u € V(C:,). Then
drp)(u,v) < (5n—3)/2 for anyv e V.

Proof. Let uPv be the shortest path from u to v in D. If for each i €
{1,2,...,)}, C;, meets at least one cycle of length r;, then dr(p)(u,v) <
(uC)uPu) = n(uPv)+r) < n—1+(n—1)/2 = (3n — 3)/2 < (5n — 3)/2.

If there exists some j € {1,2,...,A — 1} such that C,, does not meet
any cycle of length r;, let C;, be a cycle of length r;, then V(Cy;) NV(C;,)
= 0. From 3ry, > n, Cr, U C;; must meet at least one cycle of length
ri for i = 1,2,...,A. Let z be a vertex in V(Cy,) such that d(u,z) =
min{d(u,y) : y € V(C;,)}, and let uPy2, zPsv, respectively, be a shortest
path from u to z and from 2 to v. We can check that d(u, z) < n —r;. Note
that the walk uC,(-:)uPl zC,(-})ngv from u to v meets at least one cycle of
length r; for i = 1,2, ..., A\. Hence drpy(u,v) < n(uC'g)uPl zC,(-; )ngv)
=ra+nuPiz)+7r;+9(zPw) Sra+(n—r))+ri+(n—1) =2n+ry -1
<2n+ 271 —1 =323 The proof of Lemma 2.7 is complete. O]

Lemma 2.8 Let D = (V,E) be a primitive digraph which contains pre-
cisely three cycles C,, ,C,, and Cry, where 1y > 19 > 1r3,C,, is a cycle of
lengthr; fori=1,2,3, and V(C,, )NV (Cy, )NV (C,,) # 0. For any nonneg-
ative integert, writeY = {a | t = kyry +koro+ksra+a, ki(i=1,2,3) and a
are nonnegative integers and a < r1—1}. Ifu € V(C,,)NV(C,,)NV(C,,).
Then Ri(u) = |J Ra(u).

a€Y
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Proof. First we prove that Re(u) 2 |J Ra(u). From the definition of Y,
€Y

for any a € Y, there is nonnegative integers k1, k2,ks and a € [0,...,71—1)
such that ¢ = kiry + koro + kara + a. If the vertex v € R,(u), namely
there is a walk from u to v of length a, then there is a walk from u to v of
length ¢ since u € V(Cr,) NV(Cr,) NV(Cs;), and so v € Re(u). Therefore
Ro(u) C Ry(u), and thus |J Ra(u) C Re(u).

a€Y
Now we prove that Ry(u) € | Ro(u). If v € Ri(u), since D is
Y

a€
primitive, then there must exist ¢ € {1,2,3} such that v € V(Cy,). Let
uWv be a walk from u to v of length ¢. Since D is primitive and u €
V(Cr,) N V(Cr,) NV(Cry), then uWw can be expressed as
uWv=Cp, + -+ +Cr, +Cry+ -+ Cry + Crs + 0+ + Cry +uCPv,

k; times kg times k3 times

where kj, ko, k3 are nonnegative integers. Write b = n(uCﬁ?)fu) (then v €

Ry(u)). Clearly0 <b<ri—1<r—landt= kyry+kore+kars+b, namely

beY,andsov € Ry(u) € U Ra(u). Therefore Ry(u) C | Ra(u). The
a€Y a€Y

proof of Lemma 2.8 is complete. [

Lemma 2.9 (i) Let n be an odd with n > 14, Y1 = {a | (n? —9n +22)/2
= ky(n—3)/2 +ka(n — 2) + a, k1, k2 are nonnegative integers and a €
0,...,n -3}, Y2 = {a | (n? —9n+24)/2 = k1(n—3)/2 + ka(n — 2) +
a, ki,ko are nonnegative integers and a € [0,...,n — 3]}. Then ) =
[01 o $n'—3]\{3a (n+3)/2’ (n+5)/2}: Y2 = [0: cee sn—3]\{4a (n+5)/21 (n+
7)/2}.

(ii) Letn be an even withn > 14, Y3 = {a | (n® —9n+22)/2 = k1(n -
2)/2+ ka(n—3) +a, ki, ke are nonnegative integers and a € [0,...,n—3}},
Y, = {a| (n? —9n +24)/2 = ky(n — 2)/2 +ka(n — 3) + a, kn, k2 are
nonnegative integers and a € [0,...,n — 3]}, Y5 = {a | (n? — Tn + 16)/2
= ky(n — 2)/2 +ka(n — 3) + a, ki1,kz are nonnegative integers and a €
0,...,n—3]}. Then ¥s =[0,...,n—3\{3,(n+2)/2,(n+4)/2}, Ya =
[0,...,n=3\{4,(n+4)/2,(n+6)/2}, Ys=[0,...,n— 3\ {(n+2)/2}.

Proof. Since

n? — 9n + 22
2

n—11
5 )

= (2k+1)ﬁ§§+(ﬁl2'l-k)(n-2)+(k—

= 2k’-‘—‘-§+(”—;—7-k)(n-2)+(k+4)

2
= @k T K- + e+ 2E).
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Hence
n—11 -11 n— 9 n—"7T

k-5 |k= —. Yu{k+4]k=
0,1,2,...,m="yu {k+zl—i§|k_12 211}
={0,1,2}u{4,5,.. "“}u{n+7 ";’9 .m—3}CY.

By the definition of Frobenius number, ¢((n—3)/2,n—2)—1 = (n2 —8n+
13)/2 can not be represented in the form ky(n—3)/2+k2(n—2), where ki, k2
are nonnegative integers. Hence every one of the numbers (n? — 8n +13)/2
—(n—3)/2 = (n2—9n+16)/2, (n?—8n+13)/2—(n—3) = (n2—10n+19)/2,
and (n? - 8n+13)/2 — (n —2) = (n? — 10n +17)/2 can not be represented
in the form kj(n — 3)/2 + k2(n — 2) (k1,k2 are nonnegative integers). It
follows that (n? — 9n 4 22)/2 can not be represented in any one of the
forms ky(n — 3)/2 +ka(n —2) + 3, k1(n — 3)/2 +k2(n — 2) +(n+3)/2 and
k1(n—3)/2 +ka(n—2) +(n+5)/2. In other words, 3¢ Y3, (n+3)/2¢ 11,
and (n+5)/2 € Y;. Therefore Y1 = [0,...,7—3] \{3,(n+3)/2,(n+5)/2}.

For Y;(i = 2,3,4,5), we can prove the results in the similar method.
The proof of Lemma 2.9 is complete. 0

Theorem 2.1 Let D € PMSD, withn > 14 and |L(D)| > 3. Then
expp(1) £ %(n2 - Tn + 16).

Proof. Let L(D) = {ry,r2, ...,mA} withry > 19> -.- >75. Thenry >2
and 7y < n— 2 by D ministrong and A = |L(D)]| > 3. We divide the proof
into the following five cases.

Case 1: 7y < (n—4)/2. It follows from Lemma 2.2 that

n?2—-7n+16
5 .

Case 2: n/2 <ry <n-=>5. Then ¢r(p) < [rr/2)(r1—2) by Lemma 2.3.
Let Cy, be ary-cycle and C;, _, arx_1-cyclein D. Then V(C;, )NV (C, _,)
# 0 since 7y + ra-1 > n. Let u be a vertex in V( C.,)nV(C,,_,). By
Lemmas 2.1 and 2.5,

expp(l) <2+ n_4(n-—3) =

expp(u) < max{dy(p)(x,v):v € V}+dr(p)
< n—2+l_%\J(7’1— 2)<n- 2‘|‘|.

2 j(n-4)

< -2+ -0 = (w2 —7n+16).
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Case 3: ry =n —4. Then L(D) = {n—4,n - 3,n — 2}, and so ¢(p)
= |(n — 4)/2](n — 4) by Lemma 2.4. Write

E' = {('via 'U:'-l-l) = 1v21 ceey N — 3} U {(vn—Zavl)a (vn—49 vn)) (vny '01)}.

We can check that D must be isomorphic to one of the digraphs D; ~ D7:
D;=(V,,E)(i=1,2,...,7), where

Vi={v,ve,...,0n}(i=1,2,...,7),

Ey=E"U {(vk,¥n-1), (9n-1,vk+3)} (1 Sk Sn - T7),
E;=FE'U {(00—77'”11—1)7 ('Un-la'vn—s)}:

Es =E'U {('Un-(:‘nvn—l)y (vn—l:vn—Z)}’

Ey=E'U {(Vn-5,vn-1), (¥a-1,11)},

Es=FE'U {(vn-4,n-1), (tn—1,%2)},

Eg=E'U {{vn-3,Vn-1), (vn-1,3)},

E7=E’ U {(vﬂ—%vn—l)v (05-11'04)}'

Subcase 3.1: D = D;. We can check that for any positive integer ¢,
Ri(vk) = Riyi+1(vn—3) and Ri(vn-4) = Riyn—k-5(Vk+1). It follows that
expp, (vk) = expp, (vn-3) — (k+1) and expp, (vn-4) = expp, (Vk+1) — (n —
k - 5). Hence

expp, (1) < min{expp, (vk),expp, (va—4)}
= min{expp, (vn-3) — (k + 1),expp, (Vk4+1) — (n — k - 5)}.

By Lemma 2.1, expp, (vn-3) < max{d(p,)(vn-3,v) : v € V} + d1(p,) =
dr(D,)(Vn-3,Vn—2) + ér(p,) = n— 2+ | 25%)(n ~ 4) and expp, (vk+1) <
max{dr(p,)(vk+1,v) : v € V} + érD,) = dp(p,)(Vk+1, Vk+2) +bL(Dy)
=n-2+|25%](n - 4). Hence

expp, (1) < (n—-2) + [nT_‘lj(n—4) —max{k + 1,n — k — 5}.

Since k+ 1+ (n—k—5) =n—4, then max{k+1,n— k -5} > (n - 4)/2,
and so
n-—4

expp(l) = expp, (1) S n -2+ 250 (- 4) - 25

n
2

I

+ “T"i(n _4)= %(n2 —7n+16).

Subcase 3.2: D = D,. Clearly for any positive integer t, R;(vn—7) =
R4 (n—8)(v1). Hence expp, (vn-7) = expp,(v1) — (n — 8). By Lemma 2.1,
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we have

expp,(v1) < max{dy(p,)(v1,v):v € V} +dr(D,)
= dL(Dz)(vly Ul) + ¢(n -4,n— 3’“’ - 2)

-4
I L TS
Hence
n—4
exPp, (tn-1) < (n = 4) + |5~ (0 = 4) = (n - 8)

<4+ ﬁ;—4(n-4) = %(n2 — 8n+24)

< %(n2 — 7n + 16) since n > 14.
Therefore expp(1) = expp, (1) < expp, (vn-7) < 3(n? — Tn + 16).

Subcase 3.3: D is isomorphic to one of the the digraphs D3 ~ D;. By

using the same method as in the proof of Subcase 3.2, we obtain that

eXpp, (Vn-6) =expp,(v1) = (R = 7)

<-4 122 m -9~ (=7

< -;—(n2 — Tn + 16),

expp, (va-s5) =expp, (v1) — (n — 6)

<=3+ 12 )m~4) - (- 6)

€XPp, (Yn-4) =expp,(v2) — (n — 6)

<-0)+125" -4~ (n~6)

< -;-(n2 - 7n + 16),

eXppg(Vn-4) = expp,(v3) — (n - 7)

< -9+l = 0= (=)

IA

%(nZ - Tn + 16),
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and

expp, (vn-4) = expp,(v4) — (n —8)

< (-9 +|25 -0~ (o~ 8)

< %(n? —n+16).

Therefore
expp(1) < -;-('n2 —Tn+16) for D= D; (i=3,4,...,7).

Case 4: (n —3)/2 < 75 < (n—1)/2 and there exists r; € L(D) such
that r; # pur; +vr) for all nonnegative integers u, v, where ¢ is the greatest
subscript such that r; # kr), for integral k.

Subcase 4.1: (n+3)/2 <7, <n—2. Thenry +ry > n. Let C,, be a
r1-cycle in D and C;, a ra-cycle in D. It follows that V(C,, )NV (Cy,) # 0.
Let u be a vertex in V(Cy,) NV(C,,) and v any vertex in D. By Lemmas
2.1, 2.3 and 2.6, we have

expp(1) <expp(u) < max{drpy(v,v) : v € V} + ér(D)

n-3 . n-3 n-1

< —_ -2)<L —_—(n—-

<E -0 s T+ B -y
2 -

=%n2 < %(n2 —7n+16) since n > 14.

Subcase 4.2: r < (n+3)/2. Note that 3ry > (3n—-9)/2>nbyn > 14.
Let u € V(C;,), where C;, is a ry-cycle of D. Then for any v € V, we have
dr(p)(u,v) < (5n — 3)/2 by Lemma 2.7. By Lemmas 2.1, 2.3 and n > 14,

expp(1) < expp(u) < max{dy(py(u,v) : v € V} + o1 (p)
< (5n—3)/2+ |ra/2)(m —2) < =3 (BoD°

2 8
2 -
= L’.’MSE( 2 _ 7Tn + 16).
8 2
Case 5: (n—3)/2 < ry < (n—1)/2 and for each j € {1,2,...,A},r;
can be expressed as r; = ur; +vr), where p, v are nonnegative integers and
i is the greatest subscript such that r; # kry for integral k. Then ¢.(p) =
&(ri, 7)) by Lemma 2.3. Let j; be any number in {1,2,...,A}\{%, A}. Then
Tj = 2T,
Subcase 5.1: If r; + 7y < n, then

b0 = #ra) = (s~ Dira 1) < (ER 22 ¢ (222
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Let C;, be a ri-cycle in D and C,, be a ry-cycle in D. Since

_9>n by n > 14,

In
rIH+rA2ri A>3y 2

then V(C,,) N V(C,,) # 0. Let vertex u € V(C,) N V(C;,). Then by
Lemma 2.6, dy(p)(u,v) < (3n — 3)/2 for any vertex v € V.
By Lemma 2.1 and n > 14,

expp(l) < expp(u) < max{dr(p)(u,v) :v € V}+ dr(p)
3n-3 (n—2)2 n24+2n—2
< =
=5t 1
—;-(n2 — Tn +16).

IA

Subcasse 5.2: If r;+ry > n, then2r) < r; < 3ry by 3ry > 3(n-3)/2 >
n. We claim that r;, = 2r\. Otherwise, r;, can not be expressed as
5, = uri + vry (pu, v are nonnegative integers), which is a contradiction.
Therefore L(D) = {r;,rx,2r)}. For the sake of simplicity, we denote r; by
r, namely L(D) = {r,rx,2r}. Since 2r) < n — 2, namely r) < (n — 2)/2,
Then 7y € {(n — 2)/2,(n — 3)/2} by ra > (n - 3)/2.

(i) Suppose that ry = (n—3)/2and r < 2ry =n—23. If C, is a r-cycle
in D and C;, ary-cycle in D, then V(C,)NV(C,,) # @ by r+ry > n. Let
u be a vertex in V(C,) N V(C;,). Then dp(py(u,v) < n— 2 for any vertex
v € V by Lemma 2.5. It follows from Lemma 2.1 and n > 14 that

expp(u) < max{dp(p)(u,v):v €V} + ¢y D)
<n-2+(52 - 6=
n? —Tn+16
5 :

(ii) Suppose thatry =(n—3)/2andr >2ry=n—-3. Thenr=n-2,
and so L(D) = {(n — 8)/2,n — 3,n — 2}. Write

-5
<n-242 o=

E={(vi,vit1):i=1,2,...,n =3} U{(vn-2,01), (vnT-s,v,,_l),(vn_l,vl)}.

Then D is isomorphic to one of the digraphs D; = (V;, E;)(i = 8,9,...,13),
where V; = {v1,v2,...,v,}(1 =8,9,...,13),

Eg = EU{(vj,va), (Un:"’3+3)}((n 5)/2 <js<n-5),

Ey = Ey {(vn_4, Vn), (Vn, 1)}, Ero = E':J {(vn-3,v4), (vn, 'UZ)}a

Ell =FEU {(vn—2) Un)a ('Un, 'U3)}, El2 =Eu {('ULE_Q,'Un), (vn’vlg_:’)}’

E13 = EU {('UL;_"a'Un)3 ('Un,'ULE_l)}-
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Now we prove that
expp, (1) < %(n"’ ~Tn+16) for i=8,9,...,13.

Clearly for D;(i = 8,9,10,12,13), Vs € V(Cn-s)ﬂV(Cn_z), where Cn-3

and C,_, are respectively the "'3 -cycle and (n 2)-cycle.of D;. erte
Li(D;) = {25%,n - 2}(i = 8,9, 10 12,13). We can check that for each
i € {8,9,10,12,13},

n+1
max{dL,(Di)(vn-s v):veV}= dLl(D‘)(v..-s Un—2) < 5
By Lemma 2.1,

expp,(Va-s) < max{dp,(p,)(vazs,v) : v € V}+ ¢1,(p,)
= =5

n+1
<
=72

2 _
= %"“6 (i = 8,9,10,12,13).
Hence
2 _
expp,(1) < 3—72"i1§ (i = 8,9,10,12,13).

To prove that expp,, (1) < (n?~7n+16)/2, we first prove that expp, , (vags)
(n? — Tn + 16)/2. Since

Rn2—7ut!6 ('v&;_ii) = Rn’-snin (Rga_i (‘Ugi.é )) = Rn’-anil'r ('Un—2)
= Rnﬁ-anixs (Rl ('Un-2)) = Rn’-s»im (vn) U Rnﬂ—anils ('Ul)
= Rn2-9n124 ('U."_;_S) U an-snizﬁ ('Ug;_ﬁ ),

and by Lemma 2.9, we have

(o) TEEM 28 k-8 4 ka(n- D)+, b kaky
are nonnegative integers and 0 < a < n-— 3}
n? —-9n+24 n-3
={a| 2 =k1 2 +k2(n—2)+a, kl,kz
are nonnegative integers and 0 <a < n -3}
= {0,1,2,...,n—3) — {4,2F° ’“'5 "T'”},
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{a | "2‘92"*22 =k1n;3+k2(n—3)+k3(n—2)+a, k1, k2, ka
are nonnegative integers and 0 < a < n— 3}
= {a] "2"'92"*22 =h22 b -2+, kb
are nonnegative integers and 0 <a < n -3}
={0,1,2,...,n—3} - {3,222 ”+3 ";5}.

Note that Vacs € V(CH_S_) nV(Cn_s) NV(Cr-2), where C'# Cp—3, and

Cr-2, respectwely, are the 272-cycle, the (n—3)-cycle and the (n—2)-cycle
of D1;. By Lemma 2.8, we ha.ve

Rnﬁ-‘rnim (’U"T—ii) = U .R;'(‘ULE_B_).
0<i<n-3
i 20
n+3
We can check that 1LH)0 R.(vn-s) = V. It follows that R ,2_rn416 (11'2;_3 )=V,
and so 1
expp,, (vg;_a) < E(n2 — Tn + 16).
Therefore

1
expp,, (1) < expo,l(vg;_s) < 5(71.2 — Tn + 186).

(ili) Suppose that ry = (n—2)/2. Then L(D) = {(n—2)/2,7,n—2}.
We can check that r < n—2and 7+ (n - 2)/2 = r + 7\ > n, and so
(n+4)/2 <r <n-3. Write

E ={(Ujsvj+l): .7 = 1: 2’ cey— 3} U {(vn-27 ’01), (vz,;_",vn—l), (Un—la 1)1)}.
Then D is isomorphic to one of the digraph D; = Vi, E;) (i =14,15,16),
where V; = {v1,vs,...,v,} (i = 14,15,16),
N n—4 .
Euy=FEU {(”js Un), (n, 'Un—r+j)} (_2_ <j<r-2),
Eys = EU {(vjsvn),(vﬂ!vj+2—7‘)} (T -1<j<n- 2)’
n+2 . _n-—6

Bis = BU{(4,9), (o tnorss)} (1= 3= <5< ),
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First we consider D14. We have

max {dL(D14)('Un1—_4,'U) 1v € Vig}
= ma.x{d(vn-.a ’Ug;_d),d(vg;_g,vn_2),d(vg;_4,’Un_r+j_1)}
2 n—4 n+2

—max{ 7 TTT T -7 +j}.
Since
'r—n_4<n n—-4 n-2
2 2
and
n+2 . _n+2 n—2
-—2—-—r+,1$ 2 —r+(r—2)—-—2—-,
then max{dz(p,)(vazs,v) : v € Vig} = 2>2, By Lemma 2.1, we have

expD;.‘(l) S expDu ('Ug;__d_)
< max{dL(D)(vn-4,v) v E V} + ¢L(D)
n—2 n 4 n—-2 n-—4

= < P2 P )
_ n2—7n+14<n -+ 16
= 5 5 .

Next we consider D;5. We have
max {dL(Dls)(vn_rq,v) 1v € Vig}
= max{d(vn-4 vn-,a),d(vgi_g,v,._g) d(vn-a,-vn)}

—ma.x{n 2 n ._n46} n/2, if j<n-3,
19l T T (n+2)/2, if j=n—2.

If j <n -3, it follows from Lemma 2.1 that

exprs (1) S expD15 (’v"—‘ )
< max{dL(D;s)('v"“ v) v € Vis} + dr(Dy)

-2'+

%(n" ~Tn + 16).

(T—I)S§+T(n—4)
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Ifj=n-2and r <n-4,it follows from Lemma 2.1 that

exp5(1) < expp,, (vazs)

< max{dy(D,s)(Vaze,v) 1 v € Vis} + br(Dys)

n;—Z n- 4( _1)<n—;2+n—4(n_5)

n2—8n+22 -7+ 16
< .
2 - 2

If j =n—2 and » = n — 3, we come to prove that

n? - Tn+ 16
expD;s(vﬂ-;—’-) < —2_'

We have
nz—?nile ('Un—?) = nz-ﬁn 14 J(R n-2 (vl‘rz ))

= Ru2_6n 14_j(vj)— n2-6n412 _ (RI(U]))
= R,1_¢n ,,_J.('vn) URp2_6ns12 _j(vl)

= Rp-onias ('Un1—_5) U Rn2-gnj:22 ('vlﬂ-_4).

By Lemma 2.9, we have

2-9 24 -2
{a] 2 2""' =k 22+ ka(n = 3) + ka(n = 2) +a, ki ke, ko
are nonnegative integers and 0 < e <n -3}
2 _ -
= {a|® 92n+24=k1n22+k2(n—3)+a, ko, ks
are nonnegative integers and 0 <a <n -3}
= (0.1,2,...,n-3]\(4, 255, 220,

n? - 9n + 22 n-2
{a | 2 =k

+ko(n—3)+ ks(n—2)+a, ki, ks, k3

2
are nonnegative integers and 0 < a < n—3}
2-9n+22 -2
= (0| R ek B k=) o, bk

are nonnegative integers and 0 <a < n -3}

={0,1,2,...,n— 3}\(3,2E2 ”"’2 "'2"4}.
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Note that Unos € V(C%_a) NV (Cp=3) NV(Cn—-2), where ng_z, n—3 and
Cp—2, respectively, denote the l;—z-cycle, (n — 3)-cycle, and (n — 2)-cycle
of D15. By Lemma 2.8, we have

R;t_’_—_?an_-{ﬁ (vaz2) = nU3 Ri(vazd).
gt
ni2 :
We can check that i-L_-Jo Ri(vlh-_a ) = Vi5. Hence R,,z_.,i,lﬂg ('Ul;_a ) = Vis.

Therefore
1
expp,,(1) < expp,,(vn-2) < -2-(n2 — 7n + 16).

Now we consider D;g. Since

n+4 n—-6 n-—2
—r—-1< —_—_———] = —_—,—.—.— —
n—-r—1<n ) 1 3 < B
we have

max{dL(Dm)(vj,v) IV E Vm}
= max{d(vj, v;), d(v;, ¥n—2), A(Vj, Vn—r+j-1)}
n —

2
n-—2

2

Suppose that r < n — 4. Note that r — j < (n + 2)/2. Then by Lemma 2.1
and n > 14,

= max{ r—jn—r—1}

= max{ ,r—3}

expp,(1) < expp,,(v;) < max{dy(p,s)(v;,v) : v € Vie} + bL(Dye)
n+2 n-—-4 n+2
< e T Ttr—1) <
<= + 5 (r-1< 3

= %(n2 —8n+22) < %(n2 — Tn + 16).

+ nT-‘i(n—S)

Suppose that r = n—3 and r—j < n/2. Then max{dy(p,q)(v;,v) : v € Vi6}
< n/2. By Lemma 2.1,

expp,,(1) < expp,,(v;) < max{dr(p,e)(vjsv) : v € Vag} + r(Dye)
n n2—Tn+16

<
-2 2
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Suppose that 7 = n—3 and r— j = (n+2)/2. Then Eg = EU{(vnq‘-Fs,vn),
(vn, 11#)}. We come to prove that
1
expp,(vi)(= expr(vg;_g)) < §(n2 —Tn +16).

By Lemmas 2.8 and 2.9,

n-3
Rn’—?nila (vg;_E) = 'UO Ri('ug;_g).
1=
i# o
We can check that
Roge(vags) = {vn;2,v3,%-2,Vn-1,01},
R"—‘# ('UL;_S) = {vliiﬁvl;zfvn—& vn—2}a
R§ (02;—8-) = {vl‘.g_"’vns Un—4,Un-3},
Ra(vnge) = {vgi_c,v,_i_g}.
It follows that
Rq_g ('vgig) - Rg(‘vnT—s) URg (vla_g) U Rg_;_g(‘vgs_a).

We still can check that

L.#
U Ri(vazs) = Vis.
i=0
Thus
’ 1;—2 2 n=3
Vis= | Ri(va=s) C Rage(vaze) U UR;(vgn-_a) c U Ri(vass).
i=0 i=0 i=0
i 242
Hence
Rn’—?nilﬁ (v."_;_s.) = I,16'
Therefore

1
expp,q(1) < expp,q(vaze) < -2-(n.2 — 7n + 16).

The proof of the Theorem 2.1 is complete. O
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3 [4,...,1n*—7Tn+16)]C ME,(1) for n>14

Let D be a strong digraph. The vertex v is called an antinode of D if
both the indegree d~(v) and the outdegree d*(v) equal to 1.

Lemma 3.1 ([8], Corollary of Lemma 2.1) Every ministrong digraph D
contains an antinode.

Lemma 3.2 ([8], Lemma 2.2) Let D = (V, E) be a ministrong digraph, v
an antinode of D with (u1,v) € E and (v,u2) € E. Define D = (V,E)
to be a new digraph with V=VU{d) (where 5 ¢ V) and E = EU
{(u1,), (B,u2)}. Then D is also ministrong.

Lemma 3.3 ME, (1) C ME,.1(1) (n > 4).

Proof. If m € ME,(1), then there exists a primitive, minimally strong
digraph D = (V, E) with n vertices such that expp(1) = m. By Lemma 3.1,
we may suppose that v is an antinode of D, and  (u1,v) € E, (v,u2) € E.
Let D= (V,E) with V=V U{3} (5¢ V) and E = EU {(u1,9), (,u2)}.
Then by Lemma 3.2, D is a primitive, minimally strong digraph with n+1
vertices. We use Rt(u), Ry(u) respectively to denote the set of vertices
which can be reached in D, D by a walk with the initial vertexu of length
t. Then for any positive integer z,

Ro(u) =V <= Ry(u) =V for u ¢ {v,7},
R.(v) =V & R, (v) =V <= R.(9) =V,

and so

expp(u) = expp(u) for u & {v,3},
expp(v) = expp(v) = expp(9).

It follows that

expp(l) = expp(l) =m,
and thus m € ME,,(1). Therefore ME,(1) € M E,;1(1). The proof of
Lemma 3.3 is complete. O

Lemma 3.4 [3] Let S be the set of 1-ezponent of all primitive, minimally
strong digraphs with n vertices and L(D) = {p,q}, where 3 < p < q,
ptqg>n.
()Ifg+[L3] < n, then S = [(p—-1)(g—1)+1,..., (p—1)(g—1)+n—p].
(ii)If g+ [£=5] > n, then S = [p(g— 1)~ (n—@)(P—2), ..., (P—1)(¢—
1) +n—p).
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For the sake of simplicity, we write f, = 3(n? — Tn + 16).

Theorem 3.1 Let n = 0(mod 4) and n > 12. Then [fa-1+1,...,fa] C
ME,(1).

Proof. Let n =4k (k > 3).

(i) Let p= (n - 2)/2, g =n—4,ie., p=2k -1, ¢g=2(2k — 2). Then
(p,q)=1,3<p<q<n—-1,p+q>nandq+[g—:—g]=n—2<n. By
Lemma 3.4,

[(P-1g-1)+1,....,(p—1){g—1) +n—p] C ME,(1).

Equivalently,

[%(rﬁ -9n+22),..., %(n2 —8n+22)] C ME,(1).

(i) Lt p=(n-2)/2,g=n-3,ie,p=2k-1,g=4k-3 =
(2k - 1)+ (2k—2). Then (p,g) =1,3<p<g<n-1,p+q>nand

q+ [g%.] =n. By Lemma 3.4,

[(P—1)(q—-1)+1,...,(p—1)(q—1)+n-p]gMEn(l).

Equivalently,

[%(n2 —8n+18),..., %(n2 ~Tn+18)] C ME,(1).
By (i)(ii), we have

[fr-1+1,..., fn]=[%(n2 —9n +26),..., %(nZ —Tn+ 16)]CME,(1).

The proof of Theorem 3.1 is complete. O

Theorem 3.2 Let n = 2(mod 4) and n > 14. Then [fo—1 +1,...,[n] C
ME,(1). ‘

Proof. Let n =4k +2 (k > 3).
(i) Letp=(n—4)/2,g=n—-2,ie.,p=2k—1,qg=4k =2-2k. Then

(rg)=1,3<p<g<n-1,p+g>nandg+ [g—:%] > n. By Lemma 3.4,

Plg-1)-(n-g)p-2);....(p—1(g-1) +n-p] C ME,(1).

Equivalently,

[-;-(n"’ —9n +28),..., %(n2 — 8n + 22)] € ME,(1).
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(ii) Let p= (n—2)/2, g =n-3,ie.,p =2k, g=4k—1=2k+(2k-1).
Then (p,q)=1,3<p<q<n—1,p+q>nandq+[g:—§'| = n. By

Lemma 3.4,
(p-1(g-1)+1,...,(p—1)(g-1) +n—p| C ME,(1).

Namely
[-;-(n2 —8n+18),..., 5 (n? = Tn+18)] C ME.(1).

(iii) Let p = (n—4)/2, ¢ = n-3,ie.,p = 2k—1, q = 4k—1 = 2k+(2k-1).
Then(p,q)=1,3<p<q<n—1,p+q>nandq+|'§_'_—§'| =n. By
Lemma 3.4,

(P-1(g-1)+1,...,(p—1)(g— 1) +n—p] C ME,(1).
Equivalently,

[-;-(n2 —10n+26),..., %(n2 — 9n+28)] C MEa(1).
By (i)(ii)(iii), we have
(fac1 +1,.. .,f,,]=[%(n2 —9n+26),..., %(1# — n+ 16)|C ME,(1).

The proof of Theorem 3.2 is complete. O

Lemma 3.5 Let t; = 3,ta = 7,3 =11, ¢4 =19, t5 = 23, ..., be a
sequence of prime numbers which can be represented in the form 4k + 3,
where k is nonnegative integer. Then

(i) tiy1 < 2t; (2 2).

(ii) 1 < 2t3ts - t-1 — 1 (1 2 6).

Proof. (i) This is a result of Lemma 4.3 of [9].

(ii) We prove the conclusion by induction. Clearly the conclusion holds
for ! = 6. If the conclusion holds for I = k (k > 6), i,e., tx < /2t3tq - tx—1 — 1.
Then by (i), we have

2,1 < 42 <4(2stq- - tpoy — 1) < te(stq - th—1 — 1)
= gty ot — U < gtq -t — 1.

Namely the conclusion holds for I = k+ 1. Therefore, for each each integer
1>6,t < /2%, -1j—1 — 1. The proof of Lemma 3.5 is complete. O

Lemma 3.6 Let n be a positive integer with n > 135. Then there must
ezist a prime number t such that t = 3 (mod 4), n # 42 (mod t) and

11 <t < v4n-11.
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Proof. We prove this lemma by using the same method as in the proof of
Lemma 4.4 of [9]. Let {t;} be a sequence defined in Lemma 3.5,

t,+5

l=min{i:¢>3 and n ¥ —— (mod ¢;)} and t=1¢,.

Clearly ¢t = 3 (mod 4), n # 42 (mod t)and t > 11. Now we prove that

t<V4n-11. Ifl < 5, then
t=1t <ts =23 < vdn—11 since n > 135.

If | > 6, then for each i € {3,4,...,0 - 1}, n = %f2 (mod ¢;) by the
definition of !, and so t; | (2n — 5) for each ¢ € {3,4,...,l — 1}. Since ¢;
(¢=3,4,...,1 — 1) are prime numbers, then t3ty---#_; | (2n — 5), and so

tatg - ti_1 +5 <n
2
By Lemma 3.5, we have /d4n — 11 > /2834 -- - {;—; — 1 > t;. The proof of
Lemma 3.6 is complete. O

Theorem 3.3 Let n = 1 (mod 4) and n > 17. Then [3(n? - 9n + 26),
v 3(n?—8n+ 7)) U[3(n? - 8n+23), ..., 1(n? -7n+16)] C ME,(1).

Proof. Let n =4k + 1 (k > 4).

(i) Letp=(n+1)/2,q=n-17,ie.,p=2k+1, g=4k—6 = 2(2k - 3).
Then (p,q) = 1, 3<p<q<n—l,p+q>nandq+|' ]<'n, By
Lemma 3.4,

[%(nz—-9n+10),...,%(n2—8n+7)]
=[p-1)g-1)+1,...,(p—-1)g-1)+n—p] C ME,(1).

(ii) Let p = (n—3)/2,9 = n—2,i,e.,p = 2k-1, ¢ = 4k— 1—2k+(2k 1).
Then (p,q) = 1, 3<p<g<n-l,pt+g>nandqg+[i3 2] > n. By
Lemma 3.4,

lé(,ﬁ —8n+23),...,=(n? — Tn +18)]

=[p(g-1) -(n—q)(;o 2),...,(p—-1)(g=1)+n—p
C ME,(1).

By(i) and (ii),

Nl'—‘

[%(n2 - 9n + 26),...,%(7;2 —8n+7))

Ln2— n+16)] € ME,(1).

1
U[i(n2-8n+23),...,2(

. The proof of Theorem 3.3 is complete. O
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Theorem 3.4 Let n > 15. We have :
(i) Ifn = 1 (mod 4), then [3(n®—8n+9),...,3(n?—8n+21)] C ME,(1).
(ii) If n =3 (mod 4), then 3(n® — 8n +21) € MEx(1).

Proof. (a) Ifn > 135 and n is odd, then by Lemma 3.6, there exists a prime
number ¢ such that ¢ = 3 (mod 4), n # 42 (mod t)and 11 < ¢ < Vdn - 11
Let p = 3(n+ 552), ¢ = n— 3. Then ¢ = 2p —t. Since ¢ is a prime
number and ¢ { (n — $2) (namely ¢  g), then (p,g) = 1. We can check
from 11 < t < /4n — 11 that

p+q=3?n_t-i-4152§22_v‘4n—411+15>n’

3<p<g<n-1 and q+[;—_—_—§]<n.
By 11 <t < v4n - 11 and Lemma 3.4,

[-21-(1'1,2 -8n+9),..., l(n2 —8n +21)]

Q[%(nz—Sn-—M‘flti))+l,...,%(n2—7n—bt2:73)]

=[(P—1)(q—-1)+1,,(p—l)(q—1)+n—p]§MEn(1).

(b) If n € [15,...,133)\{27, 41, 55,69,83,97,111,125} and n is odd, we
take p = (n+1)/2 and ¢ = n — 6, then ¢ = 2p— 7 and 7 { p, and so
(p,q) = 1. It is easy to check that 3 < p<g<n-1,p+g >n and

q+ [g%-g] < n. By n > 15 and Lemma 3.4,

[%(nz--811.-{-‘.)),...,-1-(;7,2 - 8n + 21)]
c [-;—(n?—8n+9),...,%(n2—7n+6)]
=[(p—l)(q—1)+1,...,(p—1)(q—1)+n—p]gME,.(1).

(c) If n € {55,69,83,97,111,125}, we take p = (n+3)/2 and ¢ =n - 8§,
then ¢ = 2p — 11 and 11 { p, and so (p, qg = 1. It is easy to check that
3<p<q<n—l,p+q>na.ndq+|'§§§'| < n. By n > 55 and Lemma
34,

[%(n2 -8n+9),..., %(n2 - 8n +21))

c [%(n?—8n—7),...,1(n2—7n—12)]
=[p-1)(g-1)+1,...,(p=1)g— 1) +n—p| S ME,(1).
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(d) If n = 41, we take p = 25 and g = 29, then (p,q) = 1,3 <p<g<
n—l,p+q>nandq+|'§§§-'| < n. By Lemma 3.4,

[-2-(n —-8n+9),. -;—(n2 - 8n +21)]
= [681,...,687) C [673,...,688]
=[(p- 1)(q— D+1,...,(p—1)g—1)+n—p] C ME,(1).
(e) If n = 27, we take p = 13 and ¢ = 23, then (p,q) = 1,3 <p<g<
n—1,p+g>nandg+ [9;2-] < n. By Lemma 3.4,
§(n2 — 8n 4 21) = 267 € [265,278]
=[p-g-1+1,...,(p-1)(g-1) +n—p] € ME,(1).
By (a), (b), (c) and (d), (i)holds. By (a), (b), (c) and (e), (ii) holds.
The proof of Theorem 3.4 is complete. [
Theorem 3.5 Let n =1 (mod 4) and n > 17. Then [fa—1 +1,...,fn] C
ME,(1).
Proof. By Theorems 3.3 and 3.4(i), we have

l('n2 —Tn+16)] C ME,(1).

[fn—1+1,...,fn]=[%(n2—9n+26),...,2

The proof of Theorem 3.5 is complete. O

Theorem 3.6 Let n =3 (mod 4) and n > 15. Then [fn—1+1,...,fa] C
ME,(1).
Proof. Let n =4k +3 (k > 3).

()Letp=(n—1)/2, g=n—5,ie,p=2k+1,q=4k—2=2(2k—-1).
Then (p,q) = 1. It is easy to check that 3<p<g<n-—-1,p+¢>nand

g+ [g%g—] < n. By Lemma 3.4,

[-;-(n2 -9n +20),..., %(nz —8n+19))

=[p-1)(g-1)+1,...,(p—1)(g—1)+n—p] C ME,(1).

(i) Let p=(n—3)/2,g=n—2,ie,p=2k,g=4k+1=2k+(2k+1).
Then (p,q) = 1. It is easy to check that 3<p<g<n—1,p+¢g>nand

g+ [%=2] > n. By Lemma 3.4,
p—2

[%(n2 — 8n+23),. ..,%(n2 —7n+18))

=[p(g-1)-(n-q)(p-2),...,(p—1)(g—1) +n —p|
C ME,(1).
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(iii) By Theorem 3.4(ii), (n% —8n + 21) C ME,(1). By (i), (ii) and
(iii), we have

[fn-l+1)""fﬂ] '
- [%(n2 —9n+26),..., %(n2 —n+16)] C ME,(1).

The proof of Theorem 3.6 is complete.
Theorem 3.7 Letn > 14. Then [4,...,4(n% — Tn +16)] C ME,(1).

Proof. We first prove that {4,5,6} C ME,(1). Consider the digraphs
Ty = (Vi, Bx) (k = 1,2,3), where

‘,1 = {vlv V2,y... 106}: V'2 = {vlin) e ’05}) ‘/3 = {'U],’U2,'U3,'U4},

By = {(vi,vi41) : 1= 1,2,8,4,5} U {(v2, 1), (va, v2), (ve, v4) },

E; = {((vi"ui+l) 11=1,2, 3’4} U {(112,'01), (va, v2), (1’5’”3)}1

E3 = {((vi,vi1) : i = 1,2,3} U {(v2, 1), (va, v2)}.
Clearly, I'x (k = 1,2,3) are all primitive, minimally strong digraphs with
L(Tx) = {2,3} (k = 1,2,3). It is not difficult to prove that expr, (1) =
expr, (v2) = 6, expp, (1) = expr,(v2) = 5, expr,(1) = expr,(v2) = 4. By
Lemma 3.3, {4,5,6} C ME,(1) for n > 14.

Next we prove that [7,...,47] C ME,(1). By Lemma 3.4, we have

Table 3.1, where S is the set of 1-exponent of primitive, minimally strong
digraph with n vertices and L(D) = {p, q}.

Table 3.1

n P q S

14 5 11 [41,..49]
13 5 9 33,...,40]
10 5 8 29,...,34]
10 5 7 [25....,29]
10 4 7 [19....,24]
9 3 7 (16,...,18]
8 4 5 (13,...,16]
7 3 5 [10,...,12]
6 3 4 [7,...,9]

By Table 3.1 and Lemma 3.3, (7,..,47] € ME,(1) for n > 14.
Finally we prove that [48,..., (n?—7n+16)] C ME,(1). By Theorems
3.1, 3.2, 3.5 and 3.6, we have
[fac1+1,..., fa] € ME,(1) for n>17,
[fiz+1,..., /1] € MEWu(), [fuu+1,..., fis] € ME15(1),
[fis +1,..., fie] © ME6(1).
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By Lemma 3.3, [48,...,3(n% = Tn+16)) = [fis +1,..., fn] C ME,(1)
for n > 14.

In conclusion, [4,...,3(n%—7n+16)] C ME,(1) for n > 14. The proof
of Theorem 3.7 is complete. O '

4 Characterization of ME,(1)

Lemma 4.1 ([6], Theorem 3.5) Let D be a primitive digraph with n ver-
2
tices and L(D) = {p,q} withp+ q < n. Then expp(l) < [g"—;l)—-] +1.

Lemma 4.2 ([2], Lemma 2.5)Let D be a minimally strong digraph, and let
Wy be a walk from vertez x to vertex y of length k(> 2) and zPy be a
path from x to y of length k — 1. Then some arc of zPy is not an arc of
zWy.

Lemma 4.3 Let D € PMSD,,. Then expp(l) > 4.

Proof. Since there is no loop in D, then for any v € V(D), there exists no
walk v to v of length 1, and so expp(1) > 2.

If expp(1) = 2, let v be a vertex such that expp(v) = 2 and (v,u) be
an arc beginning at vertex v, then there exists a walk vWwu from v to u of
length 2. By D minimally strong, the walk vWu contains the arc (v,u).
This contradicts that Lemma 4.2. Hence expp(1) > 3.

If expp(1) = 3, let v be a vertex such that expp(v) = 3, then there exists
a walk vWv = (v, u, w, v) from v to v of length 3. Since D contains no loop
and expp(v) = 3, then v, u,w are distinct and there exists a walk v u
from v to u of length 3. We claim that vWju contain the arc (v,u) by D
minimally strong. So vWju can be expressed as either vWju = (v,u, z,u)
or vwWiu = (v,2,v,u), where z ¢ {u,v,w} by D ministrong. Without
loss of generality we assume that the former holds. Since expp(v) = 3,
then there exists a walk vWaz = (v, z,¥, z) from v to z of length 3, where
z # v by D ministrong. It follows that z = u (otherwise, there exists
the walk (v, z,y, z,u) not containing the arc (v,u). This contradicts that
D ministrong). Then vWaz = (v,u,¥,2), and so y & {u,z} by the walk
(v,u,, 2) containing no loops. Thus there exists the walk (u,y,z) not
containing the arc (u,2). However, (u,2) € E(wWyu) C E(D). This
contradicts that D ministrong. Consequently expp(1) > 4. The proof
of Lemma 4.3 is complete. O

Theorem 4.1 Let n > 14. Then ME,(1) = S, US2 U S3, where §; =
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[,...,1(n? - Tn + 16)],

S = U (P-1)(g-1)+1,...,(p—1)(g~1)+n—p]|
6<p<gsn-1
ged(p,q) =1
p+g>n
g+[=21<n

p-2
Ss = U [plg—1)~(n=g)(p—2),...,(p~1)(g— 1) +n—p].
6<p<gsn-1
ng(plq) =1
ptg>n

g+[L31>n

Proof. By Theorem 3.7, S; C ME,(1). If D contains at least three
distinct lengths of cycles, it follows from Theorem 2.1 and Lemma 4.3 that
expp(l) € S1 C ME,(1).

If L(D) = {p,q} and p+q < =, it follows from Lemmas 4.1 and 4.3 that

(n—1)° 1 2
4 <expp(l) < |_—4—-—J +1< E(n -7+ 16) by n > 14,

and so expp(l) € 5.
If L(D) = {p,q}, p < g and p < 5, it follows from Lemmas 2.2 and 4.3
that

4<expp(l) £2+5(n-3)< %(n2 —Tn+16) by n > 14,

and so expp(1) € Si. Therefore, by Lemma 3.4,
ME,(1) = ME,(1) = S US; U Ss.

The proof of Theorem 4.1 is complete. O
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