Extremal bipartite graphs with high girth
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Abstract

Let us denote by EX (m,n;{C4,...,C2}) the family of bipar-
tite graphs G with m and n vertices in its classes that contain no
cycles of length less than or equal to 2t and have maximum size. In
this paper the following question is proposed: does always such an
extremal graph G contain a (2t + 2)-cycle? The answer is shown to
be affirmative for ¢ = 2,3 or whenever m and n are large enough
in comparison with t. The latter asymptotical result needs two pre-
liminary theorems. First we prove that the diameter of an extremal
bipartite graph is at most 2¢, and afterwards we show that its girth
is equal to 2¢ + 2 when the minimum degree is at least 2 and the
maximum degree is at least ¢ 4 1.
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1 Introduction

Throughout this paper only undirected simple graphs without loops or
multiple edges are considered. Unless stated otherwise, we follow the book
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by Bollobés [2] for undefined terminology and definitions.

Let G(m, n) denote the family of bipartite graphs G = G(m,n) = (X,Y)
with m vertices in the class X and n vertices in the class Y. We will denote
by Ca: a cycle of length 2¢, t > 2. The girth of G, g(G) = g, is the length
of a shortest cycle in G. Clearly a tree is an acyclic bipartite graph, thus
we say that its girth is infinity. Let ex(m,n;{Cy,...,C2}) denote the
maximum size of a bipartite graph G = G(m, n) with girth at least 2¢ +2,
and let EX(m,n;{Cy,...,Ca}) be the corresponding family of extremal
graphs.

Erdés and Sachs [3] showed that a d-regular graph of girth at least 7+1
of the smallest order must have girth equal to 7+ 1. (A proof of this result
can be found in Lovész [8], pp. 66, 384, 385, see also the references therein.)
In this paper we consider a similar problem:

What is the girth of an extremal bipartite graph G of
EX(m,n;{Cy,...,Cz})? Is it always 2t + 2 or can it be greater?

This problem has been studied for general graphs (5, 6, 7]. Some of the
most important results contained in these references are listed below.

Theorem 1.1 Let G be a {C3,Cl4,...,Cr}-free graph of order v and maz-
imum size.
(i) [5, 6] For v 2 7 and r = 4, the girth of G is 5.
(i) [7] For v > 8 and r =5, the girth of G is 6.
(i1i) [7] If the mazimum degree of G is A 2 r then the girth is necessarily
r+1.

() [7] Letr > 12, a =7 -3~ [(r—2)/4}, v 2 ge’+a+lra  Then the
girth isr + 1.

In this paper we state several results which are similar to those in Theo-
rem 1.1, concerning the extremal bipartite family EX(m,n; {Cy, ..., Ca}).
In Section 2 we present our main theorems and prove them in Section 3.

2 Main Results

We study the extremal function ex(m,n;{Cs,...,Cz}) assuming
min{m,n} > t + 1, because in other case the problem becomes trivial.



Then ez(m,n; {Cy,...,Ca:}) > m +n, and a cycle of length 2t + 2 is an
extremal graph for which the equality holds when m = n =t + 1. So every
graph G € EX(m,n; {Cy,...,C2}) contains some cycle and the degree of
every vertex is clearly at least 1.

Our first result concerns the diameter of extremal {Cy,...,Cy}-free
bipartite graphs. We know that the diameter D of a bipartite graph with
girth g satisfies D > g/2. In the following theorem we obtain an upper
bound for the diameter of such an extremal graph.

Theorem 2.1 Let G = (X,Y) be a bipartite graph of the family
EX (m,n;{Cy,...,Cx}). Then the diameter is D(G) < 2t. Furthermore,
D(G) < 2t — 1 if there is one vertez in the class X and one verter in the
class Y both of degree 1.

A graph G is called connected if every pair of vertices is joined by a
path; that is, if D(G) < oco. If G — S is not connected for certain S C V,
then S is said to be a cut set. A (noncomplete) connected graph is called k-
connected if every cut set has cardinality at least k. The connectivity x(G)
of a (noncomplete) connected graph G is defined as the maximum integer
k such that G is k-connected. The connectivity of a complete graph K1
on k + 1 vertices is defined as (K41} = k. Connectivity has an edge
analogue. An edge-cut in a graph G is a set W of edges of G such that
G — W is nonconnected. The edge-connectivity A(G) of a graph G is the
minimum cardinality of an edge-cut of G. A classic result due to Whitney
is that £(G) < A(G) < §(G) for every graph G of minimum degree §(G).
A graph is mazimally connected if kK(G) = §(G), and maximally edge-
connected if A(G) = §(G).

Sufficient conditions for a bipartite graph G with minimum degree 6(G)
to be maximally connected have been given in terms of its diameter and
its girth. In this regard, the following result is contained in [4]:

AG)=4(G) if D(G)<g(G)-1;

&(G)=6(G) if D(G)<g(G)-2. (1)

Clearly, every extremal bipartite graph G € EX (m,n; {Cy,...,Co:}) must
be connected. By Theorem 2.1, we have D(G) < 2t < g(G) — 2, because
9(G) > 2t + 2. Hence next result concerning the connectivities of an ex-
tremal bipartite graph follows immediately from (1).

Corollary 2.1 Every bipartite graph G € EX (m,n;{Cy,...,C2}) has
k(G) = A(G) = §(G).



Based on Theorem 2.1 we deduce the following result in which we prove
that the girth of every extremal {C4}-free bipartite graph is 6.

Theorem 2.2 Every bipartite graph G € EX(m,n; {C4}) has girth 6.

It is known [2] (pp. 312—313) that ex(n,n; {C4}) < (n + nyvdn -3)/2
and equality holds when n = g +g+1 for a prime power g. More precisely,
for a prime power g all generalized triangles PG(2,q) prowde examples
proving ex(n,n; {C1}) = (n + ny/dn - 3)/2, wheren = ¢* + g + 1.

Our next theorem states that an extremal {Cy,...,Co;}-free bipartite
graph with maximum degree A >t + 1 has necessarily girth 2t + 2.

Theorem 2.3 Let G € EX (m,n;{Cy,...,C2}) be a bipartite graph with
mazimum degree A > t+1. Suppose that the degree of every verter adjacent
to any vertez of mazimum degree is at least 2. Then g(G) = 2t + 2.

As a consequence of Theorem 2.1 and Theorem 2.3 the girth of an
extremal {Cj, ..., Cy;}-free bipartite graph is proved to be equal to 2¢ + 2
provided that m + n is large in comparison with ¢.

Theorem 2.4 Let G € EX(m,n;{Cy,...,C2}). If the minimum degree
56>2,t>3 andm+n > 2((t— 1)% - 1)/(t—2), then g(G) = 2t + 2.

This result can be compared with item (iv) of Theorem 1.1. Both results
give a sufficient condition on the order of an extremal graph to contain
a cycle of minimum length 2t + 2. When r = 2t + 1 Theorem 1.1 gives
v > 207 +a+l(9t 4 1)8 for t > 6, where a = [3(¢t — 1)/2]. We have for ¢t > 6
that 2% > t, hence 2¢°+2 > t3+1 and so v > 2t3+1(2t + 1)® > 2¢2(e+D) >
2t3t—1, which is much larger than the requirement on the order obtained in

Theorem 2.4, m + 1 > 2((t 1) - 1) /(- 2).
In what follows we will prove that the girth of G € EX(m,n; {Cs,Cs})
is 8. We need first to compute some exact extremal numbers for the bipar-

tite case. In order to do that we will use Theorem 5 of [7] which proves for
general graphs that ex (2r + 2; {C3,...,Cr}) =2r +4if r > 12.

Theorem 2.5 Lett be an integer.

(i) Ift > 2 then ex (2t,2t; {C4,...,Cot}) = 4t + 1.



(i) If t > 6 then ex(2t + 1,2t + 1;{Cy,...,Cy}) = 4t + 4 and every
Ge EX(2t+1,2t+1;{Cy,...,Ca}) has girth 2t + 2.

Figure 1 depicts an extremal graph of the family
EX (2t,2t; {C4,...,C2}), and Figure 2 shows an extremal graph of
the family EX (2t + 1,2t + 1;{Cy,...,C2}), which is also of the family
EX (4t +2; {Cs, Cy4y...,C2t}).
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Figure 1: A graph belonging to the family EX(2t,2t; {Cy,...,Ca})
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Figure 2: An extremal graph of both FX (2t +1,2t+1;{Cy,...,C2}) and
EX(4t +2;{Cs,...,Cx})

Using Theorem 2.3 and Theorem 2.5, every extremal bipartite graph
free of cycles of length 4 and 6 is shown to have girth 8.

Theorem 2.6 Every bipartite graph G € EX (m,n;{C4,Cs}) has girth 8
unless G = Cyg.



3 Proofs

The degree of a vertex w in a graph G is denoted by dg(w) and Ng(w)
is the set of vertices adjacent to w in G. We also use e(G) to denote the
number of edges of G, and G[V’] stands for the induced subgraph in G
by the set of vertices V' C V(G). Moreover, let [U, W] denote the set of
edges of G with one end vertex in U C V(G) and the another end vertex
in W C V(G). A uv-path of shortest length is called a uv-geodesic.

Proof of Theorem 2.1. Let u, v be two vertices of G = (X, Y) at distance
dg(u,v) = D(G) > 3. First, suppose D(G) is even, then the vertices u and
v belong to the same class, say X. Take w € Ng(u) and let us consider
the bipartite graph G* obtained from G by adding the edge vw. Clearly
9(G*) < 2t because G € EX (m,n;{Cy,...,Ca}). Let us denote by C any
cycle of length at most 2t in G*. Since g(G) > 2t + 2 it is clear that the
edge vw must belong to E(C). But then D(G) = dg(u,v) < 1+dg(w,v) <
1+ |V(C)| — 1 < 2t and the result holds. We reason similarly for D(G)
odd, by considering G* as the result of adding the edge uv to G.

In order to finish the proof, let z; € X and 3 € Y be two vertices of
degree 1. As D(G) < 2t—1 for D(G) odd, we suppose D(G) even, and u,v €
X. The graph G’ obtained from G by deleting the edge incident with y; and
adding the edge y;u is also an extremal graph of EX (m,n; {Cy,...,Ca}),
and thus 2¢t > D(G’) > da/(y1,v) = 1+ D(G). Then D(G) < 2t — 1, and
the result is valid. =

Lemma 3.1 If there exists a bipartite graph G € EX (m,n; {Cy,...,C2})
with girth g(G) > 2t + 4, then there ezists another bipartite graph in
EX (m,n;{Cy,...,C2}) having at least one vertez of degree 1 in each ver-
tezx class.

Proof. Let G = (X,Y) € EX (m,n; {Cy,...,C2}) be with girth g(G) >
2t + 4. Let C be a shortest cycle in G and take any path zjy1z2ys of
length 3 in C with z;,2zo € X and y1,y2 € Y. Then if we denote by
G* = (X*,Y*) the bipartite graph obtained from G by identifying the
pairs of vertices (z;,z2) to one vertex z and (y1,¥2) to one vertex y, we
have G* € G(m—1,n—1), e(G*) = ¢(G)—2 and g(G*) > g(G) -2 = 2t +2.
Now we consider the bipartite graph G’ = (X’,Y”) obtained from G* by
adding two new vertices ' and y’ to the classes X* and Y™* respectively
and two edges z'y* and z*y’ for some y* € Y* and 2* € X*. Clearly,
G' € G(m,n), g(G') = g(G*) > 2t +2 and ¢(G’) = ¢(G*) + 2 = ¢(G) =



ez (m,n; {Cy,...,Ca}). Moreover, the vertices z’ € X’ and v’ € Y’ have
degree 1, so the result follows. B

Proof of Theorem 2.2. We reason by contradiction assuming g(G) >
8. By applying Lemma 3.1, there exists another bipartite graph G* =
(X*,Y*) € EX(m,n;{C4}) having one vertex of degree 1 in each class,
z € X* and y € Y*. Since g(G*) 2 6, it is clear that we can consider a
cycle C of G* and two vertices u,v € V(C) at distance 3 having degree at
least 2 in G*, so they belong to different classes, say v € X* and v € Y*.
Now, let us consider the bipartite graph G’ obtained from G* by removing
the edges incident with = and y and adding the edges zv and uy. Clearly,
e(G’') = e(G*) = e(G) = ex(m,n;{C4}) and g(G') = g(G*) > 6. Then
G’ is extremal, but D(G') > dg/(z,y) = 1 + dg-(u,v) + 1 = 5, against
Theorem 2.1. Hence, the result holds. =

Proof of Theorem 2.3. Suppose that G = (X,Y) €
EX (m,n;{Cy,...,C2}) satisfies the hypotheses of the theorem, and as-
sume g(G) > 2t+4. Let = be a vertex of X of degree A and let 1,¥2,...,ya
be all the neighbors of z. Since dg(y;) = 2 for each i = 1,..., A, there
exists z; € X — z adjacent to y;. Notice also that z; # z; for all i # j,
since g(G) > 4. Taking into account that g(G) > 2t + 4, we deduce that
dg-z(zi,z5) 2 9(G) — 4 2 2, dg—2(¥i,¥;) 2 9(G) —2 > 2t + 2 and
de_z(zi,y;) 2 9(G) —32>2t+1foralli,j=1,...,A with i # j. Let G*
be the bipartite graph obtained from G by first deleting the A — 1 edges
zY2,...,2Ya and second adding the new A edges y122,...,YA-1ZA, YA T1-
Then G* = (X,Y) € G(m,n) and e(G*) = e(G) + 1. Since G is extremal,
G* must contain a cycle of length at most 2¢. Let us denote by C* a short-
est cycle in G* (notice that z ¢ V(C*), since z has degree 1 in G*). We
denote by C the cycle z1y122y2 . .. TAYAZ1 Which has length 2A > 2t 4 2.
Observe that G*[V(C)] = C, since z; is non adjacent to y; in G, for any
i # j and the only newly introduced edges are y;z;49 fori=1,...,A -1
and yaz,. Moreover, C* # C, since g(C) 2> 2t + 2 and ¢g(C*) < 2t. Hence
we may express C* = P} U P, where P, is the longest path whose edges
belong to the set E(C*)\ E(C) C E(G-z), and P, is the rest of C*. Notice
that the end vertices of P; must belong to {z1,...,za} U {y1,...,ya} by
the construction of P;. Observe also that P, contains at least one edge of
E(C), because otherwise the cycle C* would be contained in G, against
the assumption g(G) > 2t + 4. If the end vertices of P, are z; and y;, for
some i = 1,...,4, then e(P1) > dg—z—{z.4:)}(Ti, %) 2 9(G) — 1> 2t + 3
and hence |V(C*)| = e(C*) = e(P1)+e(P2) 2 2t +3+1 > 2t +4, a



contradiction. Otherwise,
e(P1)
2 min{dG—z(xi, xj), dG—:c(yi, yj)7dc—z(zi’yj) t,j=1,... ,A,i # .7}
= 2t,

which implies that |V (C*)| = e(C*) = e(P,) +e(P2) > 2t+1 > 2t, arriving
at a contradiction. Hence, g(G) =2t+2. =

Proof of Theorem 2.4 By applying Theorem 2.1, we know that D(G) <
2t. Assume A(G) < t. As it is widely known, the order of a bipartite graph
with D(G) < 2t and maximum degree A(G) < t is upper bounded by the
Moore bound as

2t-2
1+ ) t(t— 1) + (t—1)*!

i=0
2(t —1)% -2
t—2 ’

4@l

IA

which contradicts our assumptions. Then, A(G) >t + 1, and we are done
following Theorem 2.3. =

Proof of Theorem 2.5. Let G be a graph formed by two cycles of
length 2t 4+ 2 that share a path of length 3 (see Figure 1). The new
graph belongs to G(2t,2t), clearly has girth 2t + 2 and size 4t + 1. Hence
ez (2t,2t; {C4,...,C2}) = 4t + 1. In order to see the another inequality,
any extremal graph G € EX (2t,2t;{Cy,...,C2}) is shown to be planar by
repeating the same reasoning contained in Theorem 5 of [7]. Moreover, it
is well known that for a planar graph, e(G) < (|[V(G)| —2)9(G)/(g(G) - 2).
Therefore,

e(G) < (4t-2)g9(G)/(9(G) —2) = (4t — 2) (1 + 2/(9(G) — 2))
< (4t —-2)(1+1/t) <4t +2.
Hence ex (2t,2t; {Cy,...,C2:}) < 4t+1 and item (2) of the theorem is valid.

Theorem 5 of [7] proves for general graphs that ez(2r +
2;{C3,...,C}) = 2r +4 if r > 12. If we take r = 2t then the
graph G formed by two cycles of length 2t + 2 that share an edge, plus
one edge connecting two vertices at maximum distance 2t + 1 (see Fig-

ure 2) is a bipartite graph with 2t 4+ 1 vertices in each class and size
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e(G) = 4t + 4 = ex(4t + 2;{Cs,...,C2}). Moreover, G has girth
2t + 2, hence ex(2t + 1,2t + 1;{C4,...,Cx}) > e(G) = 4t +4 =
ex(4t + 2; {C3,Cy4,...,C2}). The another inequality is simply obtained
because ex(m,n;{Cy,...,Co}) < ex(m + n;{C3,C4,...,C2}). As far as
the girth of any extremal graph of the family is concerned, we reason by con-
tradiction supposing that there exists G € EX(2t+1,2t+1;{C4,...,C2})
with girth g(G) > 2t + 4. Then, by applying Lemma 3.1, there exists an-
other bipartite graph G* € EX(2t+1,2t+1;{Cy,...,C2}) having at least
one vertex with degree 1 in each vertex class. Then the bipartite graph G’
obtained from G* by removing one vertex of degree 1 in each class satisfies
that G’ € G(2t,2t), g(G') = g(G*) 2 2t+2 and e(G') = e(G*) -2 =4t +2
and this is a contradiction with item (). So the result holds. =

Lemma 3.2 Let G be a bipartite graph with diameter D and girth 2D.
Then:

(i) dg(u) = dg(v) for every u,v € V(G) such that dg(u,v) = D.

(ii) If the diameter is D = 4 and the minimum degree is § = 2 then G is
formed by o internally disjoint paths of length 4 joining two vertices
of degree c, or G is a subdivision of a complete bipartite graph K, g,
with a, 8 > 3.

Proof. (i) Let u,v € V(G) be such that dg(u,v) = D, then it is clear
that dg(ui,v) = D — 1 holds for every u; € Ng(u) because G is bipartite.
Therefore we can find dg(w) paths of length D from u to v which must be
internally disjoint as g = 2D. Hence dg(u) = dg(v).

(#2) Notice that if G is a cycle of length 2D the lemma holds. So
assume that G is different from a cycle of length 2D, hence we can consider
u,v € V(G) such that de(u,v) = 4, with dg(u) = a > 3. By item
(3) we know dg(u) = dg(v) = a@ > 3. Clearly the graph G contains an
induced subgraph H formed by « internally disjoint paths of length 4, say
UU;1 U2 Ui3Y, With uy € NG(U), u;3 € NG(‘U), i=1,2,...,a. Notice that
for i # j, dg(ui1,uj3) = de(uiz, uj2) = 4. Therefore by item (i) we have
that dg(ui) = dg(uj;;) and dg(u) = dc(ujz) foralli,j € {1,2, vee ,a}.

First let us see that dg(ui1) = de(ujz) = 2. If not, de(un) =
de(uj3) > 3 and every t € Ng(ui) \ {u,ui2} satisfies dg(t,v) = 4, so
dg(t) = dg(v) = o > 3 because of item (3); and every t € Ng(u;j3)\ {v, uj2}
satisfies dg(t,u) = 4 hence dg(t) = dg(u) = a > 3. Moreover, if
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J # 1, dg(t,uj2) = 4 or dg(t,uiz) = 4, so dg(uj2) = dg(t) = 2 3 or
dg(uiz) = dg(t) = o > 3. This implies that u,v, Ng(u), Ng(v) and all the
vertices at distance two from both vertices u, v have degree at least three.
Therefore there exists a vertex w such that dg(w,u) > 3 and dg(w,v) = 3
with dg(w) = 2 because § = 2. Hence by taking into account again item (%)
we have dg(w, u) = dg(w,v) = 3. This means that G contains a path such
as uj twt'u;z, with j # 4, but then dg(w, u;1) = 4, so dg(w) = de(uj) > 3
which is a contradiction.

Thus, de(ui) = de(ujz) = 2 for all 4,7 € {1,2,...,a}. If dg(u) =
dg(uj2) = 2 we have finished. So assume dg(u;2) = dg(uj2) = 8 2 3. Then
every z € Ng(u;j2)—u;; has degree dg(z) = 2 because dg(z,ui1) = 4 for i #
7, and every v’ € Ng(z) —u;2 has degree dg(v') = o because dg(v',u) = 4.
Consequently, if we consider the sets Bi(u) = {w € V(G) : dg(w, u) = k}
for 1 < k < 4, then V(G) — u can be partitioned as V(G) — u = B;(u) U
Bs(u) U B3(u) U By(u). Observe that Ba(u) = U3, (Ng(uj2) — uj), for
which |B3(u)] = (B8 — 1) holds because otherwise a cycle of length at
most 6 is formed. Taking into account that both the induced subgraphs
G[Bs(u)] and G[B4(u)] contain no edges and that every vertex in Bs(u)
has exactly 1 neighbor in Bz(u), it follows that every vertex in Bs(u) has
1 neighbor in By4(u), and every vertex in By(u) has a neighbors in Bs(u).
Hence |Ba(u)| = |Bs(u)| - e, so |Bs(u)| = B — 1. Therefore, there exist
|Ba(w)| = o vertices of degree B and |{u} U By(u)| = B vertices of degree
« in G. Thus the graph G must be a subdivision of a complete bipartite
graph K, g, witha,>3. =

Proof of Theorem 2.6. We reason by contradiction assuming that G =
(X,Y) # Cyo belongs to the family EX(m,n; {C4,Cs}) and it has girth
9(G) > 10, which implies that the diameter is D(G) > 5. First, let us
see that 6(G) > 2. Otherwise, there is some vertex with degree 1, say
w € X. If we consider the graph G* obtained from G by deleting the
vertex w, it is clear that G* € EX(m — 1,n;{C4,Cs}), 9(G*) > 10 and
D(G*) > 5. Then by applying Lemma 3.1, there exists another graph
H* € EX(m—1,n;{C4,Cs}) having at least one vertex of degree 1 in each
vertex class, say £ € X —w, y € Y. Observe that g(H*) > 8 and hence,
D(H*) > 4. Then, given any cycle C of length at least 8, we can take two
vertices, u,v € V(C)NY at distance 4 in H*. In this case, it is enough
to consider the graph H’ obtained from H* by deleting the edges incident
with = and y, respectively and adding the vertex w € X and the edges of
the path wyzu. Clearly, H' = (X,Y) has girth g(H’) = g(H*) = 8 and
e(H') = e(G), so H € EX(m,n;{C4,Cs}). But its diameter is D(H') >
dy(w,v) = 3 + dy-(u,v) = 7, against Theorem 2.1. Hence, §(G) > 2.

12



Furthermore by applying Theorem 2.3 we know that maximum degree of
Gis A(G) <3

If G is 2-regular then G is a cycle C; of length at least 12 because by hy-
pothesis G # Cjo. But, G = C; with r > 14 is not in EX (m,n; {C4, Cs}),
since D(G) > 7 and this contradicts Theorem 2.1. And G = C)2 is not an
extremal graph by item (¢) of Theorem 2.5. Hence there exists some vertex
z1 € X with degree 3 in G. Let us denote Ng(z1) = {y1, 21,22} and let us
take a path z19172y2 of length 3 in G, with z; € X, y; € Y for i = 1,2.
Then we consider the graph G* = (X*,Y™*) obtained from G by identifying
the pairs of vertices (z;,z2) to one vertex = and (y;,%2) to one vertex y.
Then G* € G(m — 1,n - 1), e(G*) = e(G) - 2, g(G*) 2 g(G) -2 > 8
and any cycle containing both vertices z;,2z2 must have length at least
10. Moreover, dg-(z) > 3, since dg(z1) = 3 and dg(z2) > 2. Besides
dg-(u) = dg(u) < 3, for each u € V(G*)\ {z, y}. Let us see that g(G*) =8
and D(G*) = 4. Otherwise, we can find two vertics u € X and v € Y
at distance 5 in G* and hence, the graph G’ obtained from G* by adding
two new vertices 2’ € X*, ¥ € Y* and the edges uy’ and z'v satisfies that
G’ € G(m,n), e(G') = e(G*) +2 = e(G) and g(G') = g(G*) > 8. Then
G’ € EX(m,n;{C4,Cs}), but D(G') 2 dg'(z',y') = 1+ dg-(u,v) +1 =17,
against Theorem 2.1. Thus, g(G*) = 8 and D(G*) = 4. If G* has some ver-
tex with degree 4, this vertex must belong to {z = (z1,z2),y = (¥1,¥%2)}.
But then, given any vertex w € G* at distance 4 from z, by applying
Lemma 3.2 we have 4 = dg-(z) = dg-(w) = de(w), contradicting the
fact that A(G) < 3. Hence A(G*) = 3. If §(G*) = 2 then by applying
Lemma 3.2 there are two possible structures for G*. Either G* is formed
by a = 3 internally disjoint paths of length D = 4 connecting two vertices,
or G* is a subdivision of a complete bipartite graph K3 3. But the two pos-
sibilities imply that some cycle containing both vertices z;, zo must have
length 8, which is a contradiction. Finally, if 6(G*) = A(G*) = 3, then
G* is the cubic generalized quadrangle on 30 vertices, which also implies
that some cycle containing both vertices z;, zo must have length 8, again a
contradiction. B
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