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Abstract. Let G, m = C, X P, be the cartesian product of an n-cycle
Cn and a path P, of length m—1. We prove that x}(Gn,m) = X'(Gnm) =4
if m > 3, which implies that the list-edge-coloring conjecture (ILECC) holds
for all graphs Gy m.
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1. Introduction

Let G = (V, E) be a graph or multigraph. An edge list assignment L of
G is a mapping that assigns to each e € E a set L(e) of colors. An edge-
L-coloring of G is a proper edge coloring ¢ such that c(e) € L(e) for each
e € E. G is edge-L-colorable if it has an edge-L-coloring. For a positive
integer k, G is edge-k-choosable if it is edge- L-colorable whenever |L(e)| > k
for every e € E, or, equivalently, whenever |L(e)| = k for every e € E. If
|L(e)| = k for every e € E then we call L an edge k-list assignment. The
list chromatic index x|(G) of G is the smallest integer k such that G is
edge-k-choosable. Clearly x;(G) > x'(G), the (ordinary) chromatic index
of G, for every multigraph G.

A well-known conjecture, the list-edge-coloring conjecture (LECC), is
that x}(G) = x'(G) for every multigraph G. Up to now, the LECC has been
proved only for a few special classes, such as planar graphs with maximum
degree at least 12 [1], d-regular d-edge-colorable planar multigraphs [2],
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bipartite multigraphs (3], complete graphs of odd order [4], line-perfect
multigraphs [5], and multicircuits [6].

If X and Y are two graphs, their cartesian product X x Y has vertex-set
V(X) x V(Y), and two vertices u = (z1,¥1) and v = (2, y2) are adjacent
in X xY if z; = z2 and y192 € E(Y), or if y1 = y2 and z122 € E(X).
Let Gpm = Cn X Pp, where C,, is an n-cycle and P, is a path of length
m — 1. Then G, 2 is a 3-regular edge-3-colorable planar graph, and so
X{(Gn,2) = X'(Gnz2) = 3 by a result of Ellingham and Goddyn [2]. If n
is even then Gy, is bipartite, and s0 x;(Gn,m) = X'(Gn,m) by a result of
Galvin [3]. In this paper we will prove that x{(Gnm) = X/(Gn,m) = 4 if
m > 3 and n is odd, and this will complete the proof of the LECC for all
the graphs G m.

2. The main results

We start with some lemmas; Lemmas 1 and 2 will be used Lo prove Lemmas
3 and 4, which in turn will be used to prove our main results.

Lemma 1. Let Cy, be an n-cycle, and let L be an edge list assignment of
Cn such that |L(e)| 2 2 for every edge e € E(C,), and | U,eg(c,) L(e)l 2 3.
Then C,, has at least two different edge-L-colorings.

Proof We may assume that the lists are minimal subject to these con-
ditions, so that they are all of size 2 and not all identical. We can label the
edges ey, ..., e, around Cy, in such a way that L(e;) # L(en). Now we can
color e; with a color c¢; € L(ey)\ L(en), and then color cach edge e; in turn
with a color ¢; € L{e;) \ {¢ci-1} (2 £ i < n), to obtain an edge-L-coloring
of C,.

If at any stage in this process we have a choice of more than one possible
color for some edge ¢;, then we can find two different edge- L-colorings in
this way. So we may assume that L{e;) = {ci-1,¢} for 2 < i < =, and
L{e1) = {c1,en-1} or {c1,cn}. If L(e1) = {c1, cn} then we obtain a different
coloring by recoloring every edge e; with ¢;_; (taking subscripts modulo n);
and if L{e;) = {c1, cn-1} and ¢,,—1 # c2 then we can simply recolor ¢; with
cn—1. So we may assume that c2 = cn—; and L(e;) = L(e2) = {c1,c2}.
Now let I be the smallest index such that ¢; ¢ {ci,c2}, which exists since
cn & {c1,c2}. Then L(e;) = {c1,c2} for 1 <1 <1 -1, and so we obtain
a second edge-L-coloring by interchanging the colors ¢; and ¢z on all of
€1,+..49€1—1. ]
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Figure 1: C*

Let C* be the graph formed from an odd cycle C = y1ys...yny1 by
adding n new mutually nonadjacent vertices z; and n new edges ;% 1<
t £ n), as in Fig. 1.

Lemma 2. Suppose that each edge y;z; of C* is colored with color c;, where
¢ # ciy1 (1 < i< n, subscripts taken modulo n), and that an edge 4-list
assignment of the cycle C is given by L(yiyit1) = {a,b,ci,cie1} (1 < i <
n). If every edge y;z; is recolored with c, so that ¢ # cx for at least one
indez k, then |, <; <, (LWivis1) \ {clr i1 1] 2 3.

Proof Suppose on the contrary that L(y:yi+1) = {g, h, iy} (1<i<
n). Since n is odd, every color ¢ ¢ {a, b} is equal to ¢; for at most 3(n-1)
values of ¢, and so there is some i such that ¢ ¢ L(yy:4.). It follows that
{9,h} = {a,b}. Thus {c},c},,} = {ci,cit1} for each i, and so ¢; = iy
and ¢ = ¢4 (since by hypothesis there is a k such that ¢}, # cx). But this
implies that ¢; = c3 = --- = ¢y, which is impossible since ¢, # c1. (m}

If X is a subgraph of a graph G, and L is an edge list assignment of G,
let L|X denote L restricted to the edges of X. For v € V(G), let Eg(v)
denote the set of edges of G incident with v, and let dg(v) = |Eg(v)|. For
e € E(G), let N(e) denote the set of edges adjacent to e.

Let H be a graph, and let v;, vy, ..., v, be n > 3 vertices of /7 such that
dy(vi) <3(1<i<n) Let C =uug... unu; be a cycle disjoint from H.
We denote by Hc the graph obtained by joining v; to u; for 1 <i<mn,as
in Fig. 2. If k > 5, or if k = 4 and = is even, it is easy to see that H¢ is
edge-k-choosable if H is edge-k-choosable.
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Figure 2: He

Lemma 3. Let H be edge-4-choosable and n > 3 be odd. Assume that
either

(i) there exists L € [1,n] such that dj(w) <2, or

(ii) dy(vi) =3 (1 < i < n) and for every edge A-list assignment Ly of H,
H has at least two edge-Ly-colorings cy and c); such thal {ci(e) :
e€ Ey(u)} # {cy(e) : e € Ey(v)} for at least one l € [1,n].

Then H¢ is edge-4-choosable.

Proof Suppose on the contrary that L is an edge 4-list assignment of He
for which H¢ has no edge-L-coloring. Since H is edge-4-choosable, H has
an edge-L|H-coloring cy. Color each edge u;v; with a color ¢; € L(uv;) \
{cu(e) : e € N(u;v;) N E(H)}, and then define an cdge list assignment L¢
of the cycle C by setting Lo(uiui+1) = L(uiuir) \ {ci, 61} (1 £ i < m,
subscripts taken modulo n). Clearly |Lo(u;uiq1)| 2 2 for each i, and C has
no edge- L-coloring since otherwise He would have an edge- L-coloring. By
Lemma 1, |U,cc Lele)| € 2, so that Lo(usuit) is the same set of two
colors, say Lo(uiui+1) = {e,b}, for each i. This implies that ¢; # ¢4 for
each i (subscripts taken modulo n), so that |[{¢; : 1 < i < n}| > 3 sincen
is odd.

If (i) holds, then we can recolor the edge u/v with a different color
taken from its list. If (ii) holds, then we can switch to a different edge-L|H-
coloring of H and then recolor edges u;v; as necessary so that at least one
edge wv; is colored differently from before. In cither case, let ¢} denote the
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new color of u;v; (1 < i < n), so that ¢} # ¢;. Define an edge list assignment
L, of the cycle C by setting L (u,u.+1) = L(ugui41) \ {¢},ci;1} (1 i <
n). Clearly |Lg(uiuiy1)] = 2 I'or each 4, and || ¢;<, Lc(u,u.+,)| >3by
Lemma 2. By Lemma 1, the cycle C has an edge-L}-coloring, and this,
together with colors already assigned, gives an edge- L-coloring of Flc. This
contradiction completes our proof. (]

Lemma 4. Let n > 3 be odd and let L be an edge 4-list assignment of Ilc.
If Hc has an edge-L-coloring c, then Hc must have another edge-1,-coloring
¢’ such that c'(e) = c(e) for every e € E(Iic)\ E(C) and {c/(e),c'(e')} #
{c(e),c(e’)} for some two adjacent edges e and €' of the cycle C.

Proof Let c(uiv;) = ¢ and c(uiuit1) = & (1 < i € n), where sub-
scripts are taken modulo n. Define an edge list assignment L¢c of the
cycle C by setting L (usuir1) = L(wiuis1)\ {ci cie1} (1 < i < n). Clearly
|Lo(uiuir)] = 2, for each <. Since & € Leo(uiuizy)and [{&:1 <i<n}| >
3 (since C is an odd cycle), it follows that |U,<‘<" Le(uiuigpy)| 2 3. By
Lemma 1, the cycle C has another edge- Lc-coloring, which together with
the existing coloring ¢ of edges in E(H¢) \ E(C) gives an edge- L-coloring
¢’ of He that is different from c.

Let d(usuit1) = & (1 £ ¢ < n). Note that & # & for at least one
i. If {&,&41} = {g,¢&,,} for every 4, then & =& = --- = &, as in
the proof of Lemma 2, whereas &, # €. This contradiction shows that
{c(e),c'(e)} # {c(e),c(e’)} for some two adjacent edges e and €’ of the
cycle C, as required. (m]

As remarked in the Introduction, the final part of the following result
follows from a result of Ellingham and Goddyn [2].

Lemma 5. Let Gn o = Cp, x Py. Then G 2 is a 3-regular edge-3-colorable
planar graph, and x;(Gn,2) = x'(Gn,2) = 3.

Lemma 6. Let Gpm = Cn X P, where n is odd and m > 2. Then Gpm
is edge-4-choosable.

Proof We argue by induction on m. By Lemma 5, the result is true if

= 2; so suppose m > 3. Let C,, = £1Z3...2,7, and P,, = z'z%...z™.
Denote the element (x,,x’) of V(Cp) x V(P ) by zZ, and for each 7 let
CJ be the cycle z3z}...23z] in Gpm. Lt C=C™, ¢’ =C™ !, H =
G,,m —C = Gpym-y and H’ =H - C" = Gn -2, so that G, ,n = He
and H = H¢g,. By the induction hypothesis, H is edge-4-choosable. By
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Lemma 4, if Ly is any edge 4-list assignment of H, then H (= H(,) has two
edge-L y-colorings ¢ and ¢’ that are identical on all edges of E(H)\ E(C’)
but such that {c’(e),c/(e')} # {c(e),c(e’)} for some two adjacent edges
e and e’ of the cycle C'. It follows from Lemma 3 that Hc = Gp s is
edge-4-choosable. a

Theorem 7. Let Gpym = Cp X P, where n is odd and m > 3. Then
Xf(cﬂ.m) = x'(Gn,m) =4,

Proof Since A(Gnm) = 4, Xi(Gnm) 2 X' (Gnm) 2 4. On the other
hand, by Lemma 6,4 > x{(Gn,m) 2 X'(Gn,m). Thus, x{(Cam) = X'(Gn,m) =
4, a

Combining Lemma 5 and Theorem 7 with the known result in [3], we
can obtain

Corollary 8. Let Gpm = Cn X P, where m > 2. Then we have

3, m=2
Xi(Gnm) = X'(Gnm) = { h m>3

Let Gnm = Cn X Py, where Cp, = 2122 .. . Zn Ty, P = z'z?...z™ and

z? denotes the clement (z;,z7) of V(Cy) x V(Pm). Suppose that Gp  is
disjoint from H¢; then we denote by G, m |4 e the graph obtained by
joining z! tou; for 1 < i < n.

Theorem 9. Suppose that Hc is edge-A-choosable. Then Gn,nl He is -
also edge-4-choosable, and further, x}(Gnm\ Hec) = X' (CnmH He) = 4.

Proof Ifniseven, then it is clear that G, m i) He is edge-4-choosable. If
n is odd, then by the inductive proof that is essentially the same as the proofl
of Lemma 6, we can know that G, m l# Hc is also edge-4-choosable. Noting
that A(Gnm ) Hc) = 4 we have X{(Cnm W He) = X' (Cnm W Hc)=4.0
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