The Edge Choosability of $C_n \times P_m$ *

Guoping Wang and Qiongxiang Huang
The College of Mathematics and Systems Sciences,
Xinjiang University, Urumqi, Xinjiang 830046, P.R.China
Email: wanggpxd@163.com

Abstract. Let $G_{n,m} = C_n \times P_m$ be the cartesian product of an *n*-cycle C_n and a path P_m of length m-1. We prove that $\chi'_l(G_{n,m}) = \chi'(G_{n,m}) = 4$ if $m \geq 3$, which implies that the list-edge-coloring conjecture (LECC) holds for all graphs $G_{n,m}$.

Key words: List-edge-coloring, Edge-L-colorable, Edge-k-choosable

MR Classification: 05C15

1. Introduction

Let G=(V,E) be a graph or multigraph. An edge list assignment L of G is a mapping that assigns to each $e \in E$ a set L(e) of colors. An edge-L-coloring of G is a proper edge coloring c such that $c(e) \in L(e)$ for each $e \in E$. G is edge-L-colorable if it has an edge-L-coloring. For a positive integer k, G is edge-k-choosable if it is edge-L-colorable whenever $|L(e)| \geq k$ for every $e \in E$, or, equivalently, whenever |L(e)| = k for every $e \in E$. If |L(e)| = k for every $e \in E$ then we call L an edge k-list assignment. The list chromatic index $\chi'_l(G)$ of G is the smallest integer k such that G is edge-k-choosable. Clearly $\chi'_l(G) \geq \chi'(G)$, the (ordinary) chromatic index of G, for every multigraph G.

A well-known conjecture, the *list-edge-coloring conjecture* (LECC), is that $\chi'_l(G) = \chi'(G)$ for every multigraph G. Up to now, the LECC has been proved only for a few special classes, such as planar graphs with maximum degree at least 12 [1], d-regular d-edge-colorable planar multigraphs [2],

^{*}Project 10171085 supported by Natural Science Foundation of China

bipartite multigraphs [3], complete graphs of odd order [4], line-perfect multigraphs [5], and multicircuits [6].

If X and Y are two graphs, their cartesian product $X \times Y$ has vertex-set $V(X) \times V(Y)$, and two vertices $u = (x_1, y_1)$ and $v = (x_2, y_2)$ are adjacent in $X \times Y$ if $x_1 = x_2$ and $y_1y_2 \in E(Y)$, or if $y_1 = y_2$ and $x_1x_2 \in E(X)$. Let $G_{n,m} = C_n \times P_m$, where C_n is an n-cycle and P_m is a path of length m-1. Then $G_{n,2}$ is a 3-regular edge-3-colorable planar graph, and so $\chi'_l(G_{n,2}) = \chi'(G_{n,2}) = 3$ by a result of Ellingham and Goddyn [2]. If n is even then $G_{n,m}$ is bipartite, and so $\chi'_l(G_{n,m}) = \chi'(G_{n,m})$ by a result of Galvin [3]. In this paper we will prove that $\chi'_l(G_{n,m}) = \chi'(G_{n,m}) = 4$ if $m \geq 3$ and n is odd, and this will complete the proof of the LECC for all the graphs $G_{n,m}$.

2. The main results

We start with some lemmas; Lemmas 1 and 2 will be used to prove Lemmas 3 and 4, which in turn will be used to prove our main results.

Lemma 1. Let C_n be an n-cycle, and let L be an edge list assignment of C_n such that $|L(e)| \geq 2$ for every edge $e \in E(C_n)$, and $|\bigcup_{e \in E(C_n)} L(e)| \geq 3$. Then C_n has at least two different edge-L-colorings.

Proof We may assume that the lists are minimal subject to these conditions, so that they are all of size 2 and not all identical. We can label the edges e_1, \ldots, e_n around C_n in such a way that $L(e_1) \neq L(e_n)$. Now we can color e_1 with a color $c_1 \in L(e_1) \setminus L(e_n)$, and then color each edge e_i in turn with a color $c_i \in L(e_i) \setminus \{c_{i-1}\}$ $(2 \leq i \leq n)$, to obtain an edge-L-coloring of C_n .

If at any stage in this process we have a choice of more than one possible color for some edge e_i , then we can find two different edge-L-colorings in this way. So we may assume that $L(e_i) = \{c_{i-1}, c_i\}$ for $2 \le i \le n$, and $L(e_1) = \{c_1, c_{n-1}\}$ or $\{c_1, c_n\}$. If $L(e_1) = \{c_1, c_n\}$ then we obtain a different coloring by recoloring every edge e_i with c_{i-1} (taking subscripts modulo n); and if $L(e_1) = \{c_1, c_{n-1}\}$ and $c_{n-1} \ne c_2$ then we can simply recolor e_1 with c_{n-1} . So we may assume that $c_2 = c_{n-1}$ and $L(e_1) = L(e_2) = \{c_1, c_2\}$. Now let l be the smallest index such that $c_l \notin \{c_1, c_2\}$, which exists since $c_n \notin \{c_1, c_2\}$. Then $L(e_i) = \{c_1, c_2\}$ for $1 \le i \le l-1$, and so we obtain a second edge-L-coloring by interchanging the colors c_1 and c_2 on all of e_1, \ldots, e_{l-1} .

Figure 1: C*

Let C^* be the graph formed from an odd cycle $C = y_1 y_2 \dots y_n y_1$ by adding n new mutually nonadjacent vertices z_i and n new edges $y_i z_i$ $(1 \le i \le n)$, as in Fig. 1.

Lemma 2. Suppose that each edge $y_i z_i$ of C^* is colored with color c_i , where $c_i \neq c_{i+1}$ $(1 \leq i \leq n, \text{ subscripts taken modulo } n)$, and that an edge 4-list assignment of the cycle C is given by $L(y_i y_{i+1}) = \{a, b, c_i, c_{i+1}\}$ $(1 \leq i \leq n)$. If every edge $y_i z_i$ is recolored with c_i' so that $c_k' \neq c_k$ for at least one index k, then $|\bigcup_{1 \leq i \leq n} (L(y_i y_{i+1}) \setminus \{c_i', c_{i+1}'\})| \geq 3$.

Proof Suppose on the contrary that $L(y_iy_{i+1}) = \{g, h, c'_i, c'_{i+1}\}$ $(1 \le i \le n)$. Since n is odd, every color $c \notin \{a, b\}$ is equal to c_i for at most $\frac{1}{2}(n-1)$ values of i, and so there is some i such that $c \notin L(y_iy_{i+1})$. It follows that $\{g, h\} = \{a, b\}$. Thus $\{c'_i, c'_{i+1}\} = \{c_i, c_{i+1}\}$ for each i, and so $c_i = c'_{i+1}$ and $c'_i = c_{i+1}$ (since by hypothesis there is a k such that $c'_k \ne c_k$). But this implies that $c_1 = c_3 = \cdots = c_n$, which is impossible since $c_n \ne c_1$.

If X is a subgraph of a graph G, and L is an edge list assignment of G, let L|X denote L restricted to the edges of X. For $v \in V(G)$, let $E_G(v)$ denote the set of edges of G incident with v, and let $d_G(v) = |E_G(v)|$. For $e \in E(G)$, let N(e) denote the set of edges adjacent to e.

Let H be a graph, and let v_1, v_2, \ldots, v_n be $n \geq 3$ vertices of H such that $d_H(v_i) \leq 3$ $(1 \leq i \leq n)$. Let $C = u_1 u_2 \ldots u_n u_1$ be a cycle disjoint from H. We denote by H_C the graph obtained by joining v_i to u_i for $1 \leq i \leq n$, as in Fig. 2. If $k \geq 5$, or if k = 4 and n is even, it is easy to see that H_C is edge-k-choosable if H is edge-k-choosable.

Figure 2: H_C

Lemma 3. Let H be edge-4-choosable and $n \geq 3$ be odd. Assume that either

- (i) there exists $l \in [1, n]$ such that $d_{II}(v_l) \leq 2$, or
- (ii) $d_H(v_i) = 3 \ (1 \le i \le n)$ and for every edge 4-list assignment L_H of H, H has at least two edge- L_H -colorings c_H and c'_H such that $\{c_H(e) : e \in E_H(v_l)\} \ne \{c'_H(e) : e \in E_H(v_l)\}$ for at least one $l \in [1, n]$.

Then H_C is edge-4-choosable.

Proof Suppose on the contrary that L is an edge 4-list assignment of H_C for which H_C has no edge-L-coloring. Since H is edge-4-choosable, H has an edge-L|H-coloring c_H . Color each edge u_iv_i with a color $c_i \in L(u_iv_i) \setminus \{c_H(e) : e \in N(u_iv_i) \cap E(H)\}$, and then define an edge list assignment L_C of the cycle C by setting $L_C(u_iu_{i+1}) = L(u_iu_{i+1}) \setminus \{c_i, c_{i+1}\}$ $(1 \le i \le n,$ subscripts taken modulo n). Clearly $|L_C(u_iu_{i+1})| \ge 2$ for each i, and C has no edge- L_C -coloring since otherwise H_C would have an edge-L-coloring. By Lemma 1, $|\bigcup_{e \in C} L_C(e)| \le 2$, so that $L_C(u_iu_{i+1})$ is the same set of two colors, say $L_C(u_iu_{i+1}) = \{a,b\}$, for each i. This implies that $c_i \ne c_{i+1}$ for each i (subscripts taken modulo n), so that $|\{c_i : 1 \le i \le n\}| \ge 3$ since n is odd.

If (i) holds, then we can recolor the edge $u_l v_l$ with a different color taken from its list. If (ii) holds, then we can switch to a different edge-L|H-coloring of H and then recolor edges $u_i v_i$ as necessary so that at least one edge $u_l v_l$ is colored differently from before. In either case, let c'_i denote the

new color of u_iv_i $(1 \le i \le n)$, so that $c_i' \ne c_i$. Define an edge list assignment L_C' of the cycle C by setting $L_C'(u_iu_{i+1}) = L(u_iu_{i+1}) \setminus \{c_i', c_{i+1}'\}$ $(1 \le i \le n)$. Clearly $|L_C'(u_iu_{i+1})| \ge 2$ for each i, and $|\bigcup_{1 \le i \le n} L_C'(u_iu_{i+1})| \ge 3$ by Lemma 2. By Lemma 1, the cycle C has an edge- L_C' -coloring, and this, together with colors already assigned, gives an edge-L-coloring of H_C . This contradiction completes our proof.

Lemma 4. Let $n \ge 3$ be odd and let L be an edge 4-list assignment of II_C . If H_C has an edge-L-coloring c, then H_C must have another edge-L-coloring c' such that c'(e) = c(e) for every $e \in E(II_C) \setminus E(C)$ and $\{c'(e), c'(e')\} \ne \{c(e), c(e')\}$ for some two adjacent edges e and e' of the cycle C.

Proof Let $c(u_iv_i)=c_i$ and $c(u_iu_{i+1})=\bar{c}_i$ $(1\leq i\leq n)$, where subscripts are taken modulo n. Define an edge list assignment L_C of the cycle C by setting $L_C(u_iu_{i+1})=L(u_iu_{i+1})\setminus\{c_i,c_{i+1}\}$ $(1\leq i\leq n)$. Clearly $|L_C(u_iu_{i+1})|\geq 2$, for each i. Since $\bar{c}_i\in L_C(u_iu_{i+1})$ and $|\{\bar{c}_i:1\leq i\leq n\}|\geq 3$ (since C is an odd cycle), it follows that $|\bigcup_{1\leq i\leq n}L_C(u_iu_{i+1})|\geq 3$. By Lemma 1, the cycle C has another edge- L_C -coloring, which together with the existing coloring c of edges in $E(H_C)\setminus E(C)$ gives an edge-L-coloring c' of C that is different from C.

Let $c'(u_iu_{i+1}) = \bar{c}'_i$ $(1 \le i \le n)$. Note that $\bar{c}_i \ne \bar{c}'_i$ for at least one i. If $\{\bar{c}_i, \bar{c}_{i+1}\} = \{\bar{c}'_i, \bar{c}'_{i+1}\}$ for every i, then $\bar{c}_1 = \bar{c}_3 = \cdots = \bar{c}_n$ as in the proof of Lemma 2, whereas $\bar{c}_n \ne \bar{c}_1$. This contradiction shows that $\{c'(e), c'(e')\} \ne \{c(e), c(e')\}$ for some two adjacent edges e and e' of the cycle C, as required.

As remarked in the Introduction, the final part of the following result follows from a result of Ellingham and Goddyn [2].

Lemma 5. Let $G_{n,2} = C_n \times P_2$. Then $G_{n,2}$ is a 3-regular edge-3-colorable planar graph, and $\chi'_1(G_{n,2}) = \chi'(G_{n,2}) = 3$.

Lemma 6. Let $G_{n,m} = C_n \times P_m$, where n is odd and $m \geq 2$. Then $G_{n,m}$ is edge-4-choosable.

Proof We argue by induction on m. By Lemma 5, the result is true if m=2; so suppose $m\geq 3$. Let $C_n=x_1x_2\dots x_nx_1$ and $P_m=x^1x^2\dots x^m$. Denote the element (x_i,x^j) of $V(C_n)\times V(P_m)$ by x_i^j , and for each j let C_n^j be the cycle $x_1^jx_2^j\dots x_n^jx_1^j$ in $G_{n,m}$. Let $C=C_n^m$, $C'=C_n^{m-1}$, $H=G_{n,m}-C\cong G_{n,m-1}$ and $H'=H-C'\cong G_{n,m-2}$, so that $G_{n,m}=H_C$ and $H=H'_{C'}$. By the induction hypothesis, H is edge-4-choosable. By

Lemma 4, if L_H is any edge 4-list assignment of H, then $H (= H'_{C'})$ has two edge- L_H -colorings c and c' that are identical on all edges of $E(H) \setminus E(C')$ but such that $\{c'(e), c'(e')\} \neq \{c(e), c(e')\}$ for some two adjacent edges e and e' of the cycle C'. It follows from Lemma 3 that $H_C = G_{n,m}$ is edge-4-choosable.

Theorem 7. Let $G_{n,m} = C_n \times P_m$, where n is odd and $m \geq 3$. Then $\chi'_l(G_{n,m}) = \chi'(G_{n,m}) = 4$.

Proof Since $\Delta(G_{n,m}) = 4$, $\chi'_l(G_{n,m}) \geq \chi'(G_{n,m}) \geq 4$. On the other hand, by Lemma 6, $4 \geq \chi'_l(G_{n,m}) \geq \chi'(G_{n,m})$. Thus, $\chi'_l(G_{n,m}) = \chi'(G_{n,m}) = 4$.

Combining Lemma 5 and Theorem 7 with the known result in [3], we can obtain

Corollary 8. Let $G_{n,m} = C_n \times P_m$, where $m \geq 2$. Then we have

$$\chi'_l(G_{n,m}) = \chi'(G_{n,m}) = \begin{cases} 3, & m = 2; \\ 4, & m \ge 3. \end{cases}$$

Let $G_{n,m} = C_n \times P_m$, where $C_n = x_1 x_2 \dots x_n x_1$, $P_m = x^1 x^2 \dots x^m$ and x_i^j denotes the element (x_i, x^j) of $V(C_n) \times V(P_m)$. Suppose that $G_{n,m}$ is disjoint from H_C ; then we denote by $G_{n,m} \biguplus H_C$ the graph obtained by joining x_i^j to u_i for $1 \le i \le n$.

Theorem 9. Suppose that H_C is edge-4-choosable. Then $G_{n,m} \biguplus H_C$ is also edge-4-choosable, and further, $\chi'_1(G_{n,m} \biguplus H_C) = \chi'(G_{n,m} \biguplus H_C) = 4$.

Proof If n is even, then it is clear that $G_{n,m} \biguplus H_C$ is edge-4-choosable. If n is odd, then by the inductive proof that is essentially the same as the proof of Lemma 6, we can know that $G_{n,m} \biguplus H_C$ is also edge-4-choosable. Noting that $\triangle(G_{n,m} \biguplus H_C) = 4$ we have $\chi'_l(G_{n,m} \biguplus H_C) = \chi'(G_{n,m} \biguplus H_C) = 4$. \square

3. Acknowledgment

We thank the referce very much for help in improving the presentation of the paper.

References

- [1] O.V.Borodin, A.V.Kostochka, D.R.Woodall, List edge and list total coloring of multigraphs, J. Combin. Theory Ser. B 71 (1997) 184-204.
- [2] M.N.Ellingham and Luis Goddyn, List edge colorings of some 1-factorable multigraphs, Combinatorica 16(3) (1996) 343-352.
- [3] F.Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory Ser. B 63 (1995) 153-158.
- [4] R.Häggkvist, J.Janssen, New bounds on the list-chromatic index of the complete graph and other simple graph, Combin. Probab. Comput. 6 (1997) 295-313.
- [5] D.Peterson, D.R.Woodall, Edge-choosability in line-perfect multigraphs, Discrete Math. 202 (1999) 191-199.
- [6] D.R.Woodall, Edge-choosability of multicircuits, Discrete Math. 202 (1999) 271-277.