Asymptotic density of brick and word codes

Malgorzata Moczurad and Wlodzimierz Moczurad
Institute of Computer Science, Jagiellonian University
Nawojki 11, 30-072 Krakéw, Poland
e-mail: {mmoczurad,wkm}@ii.uj.edu.pl

Abstract: Bricks are polyominoes with labelled cells. The problem whether
a given set of bricks is a code is undecidable in general. We consider sets
consisting of square bricks only. We have shown that in this setting, the
codicity of small sets (two bricks) is decidable, but 15 bricks are enough to
make the problem undecidable. Thus the step from words to even simple
shapes changes the algorithmic properties significantly (codicity is easily
decidable for words). In the present paper we are interested whether this
is reflected by quantitative properties of words and bricks. We use their
combinatorial properties to show that the proportion of codes among all
sets is asymptotically equal to 1 in both cases.

1 Introduction

Let A be a finite alphabet. We use the usual notation of A* to denote
the free monoid over A, and X* to denote the submonoid generated by
X C A*. A set of words X C A* is a code, if X* is free over X, i.e., every
word in X* has a unique factorization over X.

A brick is a partial mapping z : Z? — A, where the domain of z (domz)
is finite and connected (in the polyomino sense, i.e., points have to be unit
distance apart to be considered adjacent). It can be viewed as a polyomino
with its cells labelled with the symbols of A. If |A| = 1, there is an obvious
natural correspondence between bricks and polyominoes. The set of all
bricks over A is denoted by A™.

Given a set of bricks X C A™, the set of all bricks tilable with (translated
copies of) the elements of X is denoted by X™. Note that we do not allow
rotations of bricks. X C A™ is a brick code, if every element of X™ admits
exactly one tiling with the elements of X.

The effective alphabet of X C A™ is the set of all symbols that appear on
bricks in X, i.e., U ¢ x z(domz). If z € A™ is a square brick, then by lenz

we denote the edge length of z, i.e., /|dom z|.

The problem whether a given set of bricks (even polyominoes) is a code
is undecidable in general. In contrast, polynomial-time algorithms exist
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for (finite) sets of words, cf. [3, 14]. The general problem of counting
polyominoes or bricks of a given size is hard; e.g. no exact formula or
generating function is known for the sequence p, = |{z € A% : ||z|| = n}|,
cf. [16). On the other hand, the problem is trivial for words.

The undecidability of codicity testing for bricks can be proved by reduction
from the Wang tilabilty problem, see {1, 2, 12]. The problem is open for two-
element sets. In this paper we consider sets consisting of square bricks only.
We have shown that in this setting, the codicity of small sets {two bricks)
is decidable, but 15 bricks are enough to make the problem undecidable;
see [9, 10]. Thus, with bricks restricted to squares, the problem remains
algorithmically hard. The combinatorial properties, however, are now much
easier.

We use the following counting principle, cf. [11, 17]: Given a set of objects,
choose those of size n and count those that have a desired property. We are
interested in the proportion of objects with the desired property (codicity
in our case) as n tends to infinity.

More formally, let F be the set of objects and let 4 C F be the set of
objects having the desired property. The asymptotic density (or asymptotic
probability) p,(A) of Ain F is defined as

X eA: Xl =n}|
wA) = e e X =n)

where || X|| denotes the size of X.

The existence and value of u.(.A) depend on the choice of || - [|. If u;(A)
exists, it is within [0,1]). Note that u is not a probability in the classical
sense since the enumerable additivity axiom does not hold.

For the sake of clarity, in the sequel we assume a two-element alphabet.
All results, however, can be easily generalized to any |A| > 2. The results
become trivial when |A| = 1.

2 Counting brick codes

We use the following size measure for sets of bricks. Let By C P(A™)
denote the family of all sets containing k squares; Kx C B will denote the
family of codes containing k squares. Define the size of a set X € By as
the size of the largest square in X, i.e, || X|| = max{lenz : z € X}.

We define the numbers By =n, Bk,«<n and B < as follows:
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e By _n is the number of sets containing k squares, each of them of size
nxn

® By «n is the the number of sets containing k squares, each of them
strictly smaller than n x n

¢ Br<n = |{X € Bk : || X]| = n}| is the number of sets containing k
squares, with the biggest one of size n x n.

Similarly, Kk =n, Kk,<n and K, <n will denote the number of codes contain-
ing k squares of respective sizes. All numbers defined above are assumed
to be 1 when k =0.

Obviously By =n = 2" and for arbitrary n > 1, k > 0 we have Bx -, =
Bl,=n
A .

We are interested in finding the asymptotic density of k-element codes, i.e.,
the limit

Kegn _ 1 X € Ky : | X]|| = n}|
ug,(Ke) = lim Br.<n Am, {X € Br: | Xl =n}|

The following propositions, stating basic combinatorial properties of the
By,...n numbers, are easily proved.

Proposition 2.1 For any k,n > 1

Br<n = ZBk,Si
i=0

k
Bk,Sn = Z Bi,=n * Bk—i,(n
i=1

Proof: Note that B <n includes sets of k squares that contain at least one
n X n square. O

Proposition 2.2 For any k,n > 1

Be<n = (21“0 B, ».)
Bicn = (E,-=ok31,=.-) (z,_o B, _,)
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Lemma 2.3
e Vk>13c=c(k): By an < & -2

o Vk>13c=c(k): Bign < (& +5%) 2
Proof: The proof is a simple induction on k. O

Recall that Ky <n is the number of codes containing k bricks, with the
biggest one of size n x n. Any set containing k squares of fixed size is
a code, hence Ki<n > Bk =n. We can now compute the approximate
proportion:

Kk <n > Bk.:n

B <n Bi,<n
LBy cn(B1,=n — 1).(Bi,=n — (k= 1))
L2 4 %;221:117
o' (27" —1)..(2" = (k- 1))
Qkn? 4 c!l;nz-k!ymz

(1-34)..(1-53)

k)-k!
1+ ﬂzn_

Since ug, (Kk) is bounded by 1, the limit is

(1= g)-(1 - 55)
/"’Bk(lck) n]grolo 2 c(k)-&! 2
1+ =5%
= 1

We have thus proved:

Theorem 2.4 For any fixed k, the densily of codes among sets containing
k squares, ug, (Ki), is equal to 1.

Note that the codes with squares of fixed size are enough to make the
density of codes equal to 1. This is not true in the one-dimensional case
of words; the density of fixed-length word codes is strictly less than 1, see
Remark 3.4.
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3 Counting word codes

We now consider ordinary word codes. Although they differ from brick
codes in that codicity testing is decidable, their probabilistic behaviour is
similar in that the density of codes is equal to 1.

By Sk C P(A*) we denote the family of all sets containing k& words; C;, C Sk
is the family of codes containing k words. The size || X|| of a set X € Sk is
the length of the longest word in X.

Similarly to the brick case, Sk =n, Sk,<n and Sk <n denote the number of
sets containing k words with respective lengths (all of length n, all shorter
than n, the longest one of length n) and Ck —n, Ck,<n and Cg <, denote
the number of codes containing k words with respective lengths.

Once again, we are interested in finding the asymptotic density of k-element
codes, i.e., the limit

. Cr<n . H{X eCx:||X] =n}|
Cx) = lim = = ] .
m (G = dim s = L (X e 8, X =n)|

Clearly S1,=» = 2™ and basic combinatorial properties follow those of the
B, ..n numbers.

Proposition 3.1 For any k,n > 1

n—1
Sk,<n = Zsk,Si
=0
k
Sk,<n = Si,=n - Sk—i,<n

Proposition 3.2 For any k,n > 1

n—1
S S =i
Sk,(n = ( 1=0k 1,=i )

n . n-1 .
Sk,Sn = (Ei=(}csl,=t ) - ( Zi:OkSl,'—"t )

Lemma 3.3 s o
. k,<n __ -1
AT Skn = Rl
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Proof: By Proposition 3.2

'.. S =1 n_—l S =1
Sk.Sﬂ = (21:(;6 1, ) - (Zs—ok 1, )
_ ontl _q _ an 1
3 (2n+1 - k)...(2n+] -1 (@ -k)..(2-1)
= k! - k!
Hence
P k 1 k 1
_ 2k _1
- k!

Remark 3.4 As noted earlier, the densily of fired-length word codes is
strictly less than 1, hence different estimates will have to be used. Note
that for k,n>1

211.
Cr=n  _ (k)
Sk<n 2ntl — 1 2" —1
k T\ k

_ (1-54..0-%
2-£)2-%=)-(1-%).(1-%
1
T

k—00 0

We now estimate Ci,<n, the number of codes containing k words, with the
longest one of length n.

Lemma 3.5
Sk,<n — Cr,<n <kn: Sk_1,<n

Proof: The number on the left-hand side is the number of all non-codes
(with given cardinality and size). This is less than e.g. the number of all
non-prefix sets. O
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Lemma 3.6
-C
lim Skign — Chign

n—oo 2kn =0
Proof: By Lemma 3.3 and 3.5 we have
. Sk<n=Clcn . kn-Sk_1<n
T S AT
_ . sk—l,s'n . n
= ke im S n A
211 n
=k (k - 1)! A on
= 0

a

The approximate proportion of codes among words can now be computed
as

Cegn _  Skgn — (Skgn — Chicn)
Sk,<n Sk,<n
_ 1 Sksn—Chgn 2
- kn Sk,<n
Thus, by Lemma 3.3 and 3.6
. Ck,sn _ k!
Jim Se<n 1-0-5—
= 1

We have now proved:

Theorem 3.7 For any fized k, the density of codes among sets containing
k words, us, (Cx), is equal to 1.

Note that the estimate used to prove Theorem 3.7 is based on prefix codes

alone. Consequently, the density of prefix codes among all word codes is
equal to 1.

Corollary 3.8

Jim pg, (Ki) = Hm ps, (Ce) =1
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4 Conclusions

We have proved that for both square bricks and words the asymptotic
densities are equal to 1. Thus, what we know about the decidability and
density of brick codes with square bricks amounts to the following:

o If the effective alphabet is non-trivial, we have decidability for two-
element sets and undecidability for sets with at least 15 elements.
o The proportion of codes among all sets of square bricks is asymptot-

ically equal to 1.

The obvious direction for further research is to generalize these results to
wider classes of brick codes.
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