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Abstract

Let G = (V, E) be a k-connected graph. Fort > 3 asubset T C V
is a (t,k)-shredder if |T| = k and G — T has at least ¢ connected
components. It is known that the number of (¢, k)-shredders in a
k-connected graph on n nodes is less than 2n/(2t — 3). We show a
slightly better bound for the case k < 2t - 3.

1 Introduction

Let G = (V, E) be a k-(node) connected graph, that is, G is is simple and
there are k pairwise internally disjoint paths between every pair of its nodes.
For T C V the T-components are the connected components of G—T and let
b(T) denote the number of T-components. T with |T| = k is: a k-separator
if b(T) > 2, a k-shredder if b(T) > 3, and a (¢, k)-shredder if b(T) > ¢ > 3.
Let B(t, k,G) denote number of (¢, k)-shredders in G; note that B(3,k, G)
is just the number of k-shredders in G. Let B(t, k,n) = max B(t, k,G)
where the maximum is taken over all k-connected graphs G on n nodes.

A motivation for studying shredders comes from the node-connectivity aug-
mentation problem, see 3, 1, 5]. Cheriyan and Thurimella [1] showed that
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in a k-connected graph computing the number of k-separators (which may
be roughly 2¥n2/k?) is #-complete, while the number of k-shredders sep-
arating two given nodes r, s is O(n) and that they all can be found using
one max-flow computation. They also proved that B(3, k,n) = O(n?) and
conjectured that B(3,k,n) < n. Jorddn [4] proved this conjecture, and
established a tight bound for & < 3: if k < 3 and if G is k-connected then
B(3,k,G) < (n —k —1)/2 unless k = 3 and G = K33. For arbitrary &k,
Egawa [2] proved that B(3, k,n) < 2n/3 and that this bound is (asymptot-
ically) the best possible. Liberman and Nutov [5], and independently the
second author of this paper, considered (¢, k)-shredders and proved that
B(t, k,n) < 2n/(2t - 3).

Remark: The following simple example shows that the bound B(¢, k,n) <
2n/(2t — 3) is asymptotically tight for £ > 2(¢t — 1). Let ¢,q be integers.
Let G be (t — 1)-blow-up of a g-cycle, that is G is obtained from a cycle of
length ¢ by replacing every node a by a set V; of ¢t — 1 nodes, and every
edge abby (t — 1)2 edges, so that VoUV, induces a complete bipartite graph
Ki_14-1. For k = 2(t — 1), G is k-connected and n = ¢k/2 = q(t — 1).
Thus 2n/(2t — 3) = 2q(t —1)/(2t — 3) = ¢ +¢/(2t — 3). On the other hand,
B(t,k,G) = q. For 2t —3 = k —1 > g, the above bound is tight. This
example easily extends for the case k > 2(t — 1), by adding k — 2(t — 1)
nodes to G and connecting by an edge every added node to all the other
nodes.

We show a slightly better bound for the case k < 2t — 3, and prove the
following theorem:

Theorem Let k < 2¢—3. Then B(t, k,n) < (n—k-1)/(t-1) forn > 2k+1
and B(t,k,n) <n/{t — 1) for n < 2k.

Remark: Our bound generalizes the bound of Jorddn [4] which states:
Fork <3 andt=3, B(t,k,G) < (n—k —1)/(t — 1) unless k = 3 and
G = Kazs. A
Indeed, let ¢ = 3 and let k < 3. Then k < 2t — 3 since £ = 3. Our bound
implies that B(t,k,G) < (n—k—-1)/(t—1) forn > 2k+1. Forn £ 2k < 6,
an easy case analysis shows that this bound also holds, unless k¥ = 3 and

214



G = Ks3.

The bound in the Theorem is sharp for n > 2k + 1, in the sense that there
are infinitely many graphs that attain this bound. Let p be an integer, and
k,t be as in the Theorem. Define a graph G = (V,E) with n = |[V| =
k+tY ey (E—1)" by:

V = {a}
U {bijn:1<i<t1<i<pl<hg(t-17""}
U {ce:1<€<k-1}

E = {abi11, bijrbijerrel i<t 1<j5j<p-1,

1<hg =1y (h=1)(t-1)+1<e<h{t-1)}
U {ccll<i<j<k-1}
U {cea, cebijn|l <€<k—-1,1<i<t 1<j<p,
1<hg(t—1)Y"1).

Then G is k-connected and has 1 + tzls,-sp_l (¢ — 1)~ (¢, k)-shredders
which are:

{G,CI,...,Ck..l}
{bi,j,hacla"'sck—l} 1 SiSt,l Sj SP“LI Shs (t_l)J_l‘

Thus
n—k-1 1 i-1
— —(k+¢ t-1)y""'-k-1)
1 i-2
= m—(t(t—l)lsz:isp(t—l) -1)
= -1 Y -1 -1 = 1)
t-1 2<i<p
= L u- o= +e-1)
t-1 1<i<p—1
= 1+t »_ (t-1)""'=B(tkC)

1<i<p-1

215



2 Properties of separators and shredders

Let G = (V, E) be a k-connected graph. For Y C V let I'(Y) denote the set
of neighborsof Y in G, andlet Y* =V —-Y —-T'(Y). Y is tightif [T (Y)| = k
and Y* # 0. A separators S meshes a separator T if S intersects at least
two T-components. As was mentioned in [1], if S meshes T, then each
one of S, T intersects all the components of the other; thus “meshing” is a
symmetric relation. The following statement is immediate.

Proposition 2.1 Let S,T be distinct nonmeshing k-separators in a k-
connected graph. Then there is an S-component X and a T-component
Y sothat TC XUS and SCYUT holds; thusY* C X and X* CY.

Corollary 2.2 Let T be a family of pairwise nonmeshing k-separators in

a k-connected graph G. Then G has a node r not belonging to any member
of T.

Proof: Let C be the family of tight sets obtained by picking the T-
components for each T € 7. Let X be a an inclusion minimal set in C, and
let § =T(X). We claim that no member of T intersects X. Suppose this
is not so, that is, there is T € 7 intersecting X. Then T C X U S, since
S,T are nonmeshing. By Proposition 2.1, there is a T-component strictly
contained in X, contradicting the minimality of X. ]

Lemma 2.3 Let S, T be meshing k-separators in a k-connected graph G =
(V,E) so that SUT # V. Then k > b(S) +b(T) — 2.

Proof: Let ¢t = b(T) and s = b(S). Let Y be the union of T-components
not containing r, and let Z be the union of S-components not containing r.
Since S, T mesh, |[I(Z)NY|2t-1,|II(Y)NZ|>s—1. Let W =Y*Nn2Z".
Then r € W* # 0. Thus [[(W)]| > k, since G is k-connected. Furthermore,

Ir(W)l = In(Y™nz*)|
< ID(Y*)| +I0(Z*) - IT(Y*) N Z| +|T(Z*) N Y]
< 2-|(s—-1)+(t-1)).
Thus we have k < 2k — [(s — 1)+ (¢ —1)], that is k > s+ ¢ — 2. 0
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For r € V let B.(t, k, G) be the number of (¢, k)-shredders in G not contain-
ing r. The following statement follows from a simple averaging argument,
e.g., see [5, Lemma 2.4].

Lemma 2.4 B(t,k,G) < ;2; max,ev Br(t, k,G). Ifr is a node of G not
contained in any (¢, k)-shredder then B(t,k,G) = B.(t,k,G).

Two intersecting sets X, Y are crossing (or Y crosses X) if none of them con-
tains the other. We will use the following key statement (see [6, Lemma 3.14)
and [5, Lemma 2.3]).

Lemma 2.5 ([6, 5]) Let G be a k-connected graph, let T be a k-shredder
in G, and let Y be a tight set in G so that Y* intersects some T -component
C. ThenY does not cross V —T — C nor a T-component distinct from C.

3 Proof of the Theorem

Let » € V. Consider the family £ obtained by picking for every (¢, k)-
shredders T the T-components that do not contain r and their union; color
the former blue and the later red. Let U be the union of the sets in £; note
that U] < n—|I'(r)|-1 £ n—k—1. By Lemma 2.5, £ is laminar (that is,
if two sets in £ intersect then one of them contains the other). Thus £ can
be represented by a forest F of rooted trees, if we order the sets in £ by
inclusion: X is a child of Y if X is the largest set in £ properly contained
in Y. Note that every red set is the union of its children. The forest. F has
the following properties:

(i) every member of £ is either blue or red, but not both;

(ii) the children of every red set are blue, and there are at least ¢ — 1 of
them;

(iii) every child of a blue set is red.

Claim 3.1 If a blue set Z is the union of its children, then for every child
Q of Z there exists a child R of Z so that S = I'(Q) and T = I'(R) are
meshing. In particular, if Z has one child, then Z contains a node not
contained in its children.
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Proof: Let Q be a child of Z. Since S # I'(Z) and Q C Z, and since
Z is the union of its children, @ has a neighbor in some child R of Z.
Consequently, @ has a child X and R has a child Y, so that there is an
edge in G with one end in X and the other end in Y. This implies that S and
T mesh. Otherwise, by Proposition 2.1, Y* C X; this is a contradiction,
sincereY* - X, o

Claim 3.2 Jf every blue set has a node not contained in any of its children
then B.(t,k,G) < (n-k -1)/(t - 1).

Proof: Let £ be the number of blue sets. Then £ < |[U] £ n -k -1, since
every blue set has a node not contained in any of its children. We will show
that the number of red sets (which equals B,(t, k, G)) is at most £/(¢t —1).
We claim that in any tree 7 (and thus in any forest) that satisfies properties
(i),(ii),(iii), the number of red nodes is at most ¢/(t — 1). If T has one red
node, the statement is obvious. Otherwise, 7 has a blue node X so that
every red descendant of X is a child of X. Let ¢ be the number of children
of X. By deleting the children of X and their descendants (which are all
blue leaves) we get a tree with the same properties, and ¢ decreases by at
least g(t — 1). The claim follows. u}

Combining Corollary 2.2 and Lemma 2.4 with the two claims above, we
get:

Corollary 3.3 If no two (i, k)-shredders mesh, then B(t,k,G) < (n—k —
1)/(t - 1).

Proofof the Theorem By Lemma 2.3,ifS,T are meshing (t, k)-shredders,
then SUT = V and thus n < 2k. Thus for n > 2k+1 no two (¢, k)-shredders
mesh, and Corollary 3.3 implies the bound B(t, k,G) < (n—-k-1)/(t-1).

Assume n < 2k. Let r € V and consider the corresponding forest F.
We claim that every blue set X has a node not contained in any of its
children; thus by Claim 3.2 B.(t,k,G) < (n — k — 1)/(t — 1), implying
(via Lemma 2.4) B(t,k,G) < n/(t —1). Otherwise, by Claim 3.1, X has
two (red) children Y, Z corresponding to meshing shredders. But then by
Lemma 2.3 k > 2t — 2, contradicting the assumption of the theorem.
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