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Abstract

By introducing 4 colour classes in projective planes with non-
Fano quads, discussion of the planes of small order is simplified.

1 Introduction

This is a continuation of the discussion in [7]. For simplicity, we repeat
some of the arguments there. We take the non-Fano quad based on A, B,
C, D, in the form

ABE4
CDE1
ACF5
BDEF2 | blue
ADG6
BCG3
EFé63

FG41 | green
GE52

If this quad occurs in a plane with n2 4+ n + 1 points, there are n — 3
additional points on each of the 9 lines of the non-Fano quad. The 6(n—3)
points on the first 6 lines are coloured blue; the 3(n — 3) points determined
by the 3 diagonal lines are coloured green; the 6 numbered points are
coloured yellow. This gives a total of 9(n — 3) + 13 = 9n — 14 points. So
there are n2 + n + 1 — (9n — 14) = (n — 3)(n — 5) additional points. We
colour these “foreign” points red.
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Each of A, B, C, D, occurs with all the red points, all the green points,
half of the blue points, and 3 yellow points (A with 1,2,3; B with 1,5,6; C
with 2,4,6; D with 3,4,5). This gives a total of (n—3)(n—5)+6(n—3)+3 =
n(n — 2) points with each of A, B, C, D.

Each of E, F, G, occurs with one-third of the green points, all the red
points, two-thirds of the blue points, for a total of 5(n—3)+(n—3)(n—5) =
n(n — 3) points.

Additionally, there are (n2 +n+1)—9—4(n—2) —3(n —3) = (n — 3)?
lines. These “foreign” lines contain 6(n — 3) yellow points, 6(n — 3)(n —4)
blue points, 3(n — 3)(n — 5) green points, (n — 3)(n — 5)(n — 6) red points,
for a total of (n—3)[6+3(n—5)+6(n—4)+(n—5)(n—6)] = (n—3)%(n+1)
points.

Of course, some of these sets may be empty for values of n less than 7.

We might also remark that when we assign 41 to the diagonal line FG,
we could have denoted the lines ABE and CDE by ABE1, CDE4. If we
had made that allotment, the triples occuring with A, B, C, D, would (in
a different order) be 4,5,6; 2,3,4; 1,3,5; 1,2,6. A change of allotment of 2
and 5 as well as 1 and 4 would preserve the triples 1,2,3; 1,5,6; 2,4,6; 3,4,5;
although in a different order.

2 The Pattern Theorem

Altogether, there are 3(n — 3) + 6 = 3(n — 1) green and yellow points.
We will indicate the points which are either green or yellow as the green-
yellow points. So the total number of pairs involving green-yellow points is
(3n — 3)(3n — 4)/2 = (9n? — 21n 4+ 12)/2.

Now there are 3 sets of n — 1 green-yellow points in the lines EG, EF,
FG. Each of A, B, C, D, must occur with 3 + 3(n — 3) = 3(n — 2) green-
yellow points. Note that each of A, B, C, D, must occur n — 2 more times.
The (n — 3)? foreign lines have 3(n — 3)? green-yellow points. So the total
number of green-yellow pairs is at least

M—z) +4(3)(n—2) + (n—3)%3
9n2 - 21n + 12
—

This is because the number of pairs in a collection of sets is minimal when
the sets all have the same cardinality, or when the cardinalities are as nearly
equal as possible (see, for example, [8]). But this is the proper total, and
80 we have established.
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Lemma 1. The green-yellow points occurring with A, B, C, D, and in the
(n — 3)? additional lines occur in triples ((n — 2) triples with each of A, B,
C, D, and (n — 3)? triples in the additional lines).

Now we consider the yellow-blue pairs. The total number of yellow-blue
points is 6 + 6(n — 3) = 6n — 12, and so the total number of blue-yellow
pairs is (6n — 13)(3n — 6) = 18n2% — 75n + 78.

There are 6 sets of n — 2 blue-yellow points in the 6 lines ABE to BCG.
Each of A, B, C, D, occurs with 3+ 3(n — 3) = 3(n — 2) blue-yellow points.
Note that each of E, F, G, mus still occur with 4(n — 3) blue points, and
the lines EF, FG, GE contain 3 yellow pairs. Each of E, F, G, contains
4(n — 3) blue points, and the lines EF, FG, GE, contain 3 yellow points.
The (n — 3)? foreign lines contain 6(n — 3) + 6(n — 3)(n — 4) = 6(n — 3)?
blue-yellow points. So the total number of blue-yellow pairs is at least

3(n—2)(n—-3)+4(n—-2)3+18(n—-3) + 3+ (n—3)%15
= 18n% — 75n + 78.

Again, this is the proper total and so we have established.

Lemma 2. The yellow and blue points occurring with A, B, C, D, occur in
triples and the yellow and blue points occurring in the (n — 3)? additional
lines occur in sextuples.

Now let us look at the A, B, C, D, lines and the foreign lines. The
yellow-green points occur in the sets of the same cardinality, and so there-
fore do the red-blue points. The yellow-blue points occur in the sets of the
same cardinality, and so also do the red-green points. So if we remove the
yellow points from the yellow-green sets, the red points can be moved over
to exactly fill the gaps produced and give sets of equal cardinality. We will
say that the red and yellow points have the same pattern in a set of lines,
if the difference of the number of red and yellow points in each line of the
set is a constant. Thus we have established the

Pattern Theorem. The distribution patterns of the red and yellow points
in A, B, C, D, lines is exactly the same. Similarly, the distribution pattern
of the red and yellow points in the foreign lines is exactly the same.

This does not mean that there are equal numbers of red and yellow
points. For example, if n = 7, there are 8 red points, 6 yellow points.
With A, we might have A123z2x, Azrzrzr (4 times) as the situation with
yellow points. Actually, this can not occur, but, if it did, then the red
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points would have to follow the same pattern, namely,

Aryzrzzz, Arsxzzzs, Arzrrzrz, Argrrrax, ArsTeTITRII.

3 Remarks on Small Planes

If n = 3, then there are no red points and the plane is completed with
A123, B156, C246, D345.

If n = 4, there are no non-Fano quads, since one would need to have
9 additional blue and green points, and the total number of points is only
21.

If n = 5 and there is a Fano quad, then there are 21 blue and green
points. This requires 3 red points (impossible, since they would occur with
A,...,G, and thus have frequency 7 each). Hence, if n = 5, there are 12
blue points, 6 green points, no red points. The four foreign lines contain
no green points, 12 yellow points, 12 blue points. Since there are no red
points, the four foreign lines can be written as 123, 156, 246, 345, by the
Pattern Theorem.

Also, we can assign the blue and green points to the 9 lines of the
non-Fano quad as b1bo; babs; bsbe; brbs; bobio; br1bi2; 91925 9394; gsgs; to
produce

ABE4b, b, EF639: 92
CDElbgb4 FG4lggg4
ACF 5b5 be G’E52g5gs
BDF2b7bg

ADG6bgbyo

BCG3b11b12

There is no loss of generality in writing 123b1bsbg. Then 156 requires
bzb']bu. This forces 246b5b3b12 and 345b4b8b10.

It is then easy to complete the remaining 18 lines. The A, B, C, D,
lines each contain 3 yellow points, 6 blue points, 6 green points; the E, F,
G, lines each contain 2 green points, 8 blue points. We obtain perforce

Albgb; Blbgbyo C2b2bye D3babg
A2bgbyy BSbsby Cdbrbg  Ddbgby,
A3bzby B6bsbs C6bibs  D5byby2

Eg; Fgs Ga
Egq Fge Gg

Now the g positions are the four unused 1-factors of g;,...,g¢. There
are G = g293, 9495, 9691; G3 = 9194, 926, 9395; G4 = 9295, 9193, 9ag6; Gs =
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9396, 9294, g19s5. Since these 1-factors are unique up to isomorphism, we
can assign G3 to A and obtain

Albgb12geg1, A2bsbi1g293, A3b3brgsags.

This forces G4 to occur with B as
Blbgbiogags, Bbbsbggigs, B6bybsgags.
It also forces G3 to occur with C as
C2byb10g194, C4brbogags, C6bybsgags.
Finally, G5 must occur with D as
D3bybegsgs, DA4bsbi1919s, D5bibi2gaga.
The remaining 6 blocks require blue points and are easily obtained as

Eg4bgbgbobyy  Fgsbabsbobia  Gg1bibabsby
Eg3bgbrbiobia  Fgebibsbiobin  Ggababsbsbs

This use of the Pattern Theorem constructs the 31-point geometry uniquely
(up to isomorphism).

4 The Plane with n =6

The Pattern Theorem gives a shorter proof of the impossibility of this plane
than was given in [7]. If there is a non-Fano quad, then there are 3 red
points which we may call P, Q, R. By the Pattern Theorem (no yellow
points in the E, F, G, lines), the red points must occur disjointly in the E,
F, G, lines. So the 3 red pairs must occur in the A, B, C, D, lines.

If PQR appears, it must appear with 3 yellow points, say A123PQR.
But then P, Q, and R occur separately with B, C, D. So P, Q, R, must each
occur with 6 and this is impossible (3 disjoint letters and only 2 symbols
6).

If PQ, PR, QR, occur separately, we may suppose PQ occurs with 12
and thus R occurs with 3. So PR and QR must occur with two of 45, 46,
56. Whichever choice is taken, a repeat with R occurs. So this distribution
is likewise impossible.

Thus a non-Fano quad can not occur in a 43-point geometry. But then
all quads are Fano and [1] guarantees that one must have a field plane. Since
there is no field with 6 elements, we see that the case n = 6 is impossible.
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5 Remarks on the Plane with n=7

In this case, there are 8 red points and they occur once each among the
16 foreign lines. There are 24 yellow points among the 16 foreign lines.
This is the last occasion in which the number of yellow points exceeds the
number of red points among the foreign lines. It follows that the yellow
points must fill one column in the additional lines leaving 8 yellow points
to have the same pattern as the 8 red points. So the 8 red points can only
occur with frequencies 0, 1, or 2 in the additional lines (corresponding to
yellow points of frequncies 1, 2, 3).

We first note that, if there is a triple of yellow points such as A123zzzzz,
then it must correspond to lines Ary, Arg, Ara, Ary, Argrersrs. But then
r5767778, Must occur in separate additional lines and each must correspond
to a number pair from 4, 5, 6. Since there are only 3 such number pairs,
this is impossible. So no yellow triple occurs in the A, B, C, D, lines.

Let us now investigate whether we can have a yellow pair, say A12.
Then we can write Ary, Ary, Arz, A3ryrs, Al2r¢rerg. The points rg, 77,
s, must each correspond to at least 2 yellow points. If 74345 occurs, then
r7 and 73 must both occur with D3, and this is impossible. So we need
1634 and 7735. The choice 7345 is impossible since rg, r7, rs, would then
have to occur with 6 in B6 and C6 (this forces a repeat). So we must have
18456 or rg46 (1356 behaves equivalently).

If r3456 occurs, then another 7 is required. Now r¢ and 77 are impossible
and r; and 3 occur with 13 and 23 respectively. If r3 occurs with rg456, we
have a contradiction, since r3 and rg both must occur with D3. Hence our
only possibility is 754567, (or, equivalently r5). This forces Blr, and C2ry4;
thus 75 must occur with 1 and 2 in the foreign lines. This is impossible
since 75 occurs only once.

We now have r346 as well as Dryrg3. This forces B5rg, which in turn
requires D5rg. Now B6 must occur with r¢ or r7; so 56 must appear in
the foreign lines. If we have r356, then we are forced to take 1r; and 24rs.
Then r; must appear with 2, 4, 5, 6; this requires C24r3r,, B6rgr;, D5re¢r1
(a contradiction). So we must have 7456. Then r4 occurs with B1 and C2;
hence s must appear with 1 and 2 in the foreign lines (impossible).

We have thus established that no triples nor pairs occur in the A, B, C,
D, lines. But if there are z triples and y pairs in the additional lines, these
correspond to z pairs and y singletons of the r; in the additional lines; thus
2x +y = 8. The total number of pairs is thus 3z +y = 12, whence we have
z = 4. Thus the red points occur in 4 pairs.

We have thus proved the

Conic Theorem. The 8 red points form a system of points of which no
three are collinear.
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The uniqueness of the plane of order 7 was first proved by Pierce [5]
and Hall [2], [3]. Recently, Kocay [4] has given a different proof using an
ingenious ”"Sum of Squares Theorem”. An argument can also be given,
analogous to those in Sections 4 and 5 for n = 6 and n = 7, by using the
Pattern Theorem.

Since the plane of order 7 is unique, it must be the field plane. But
Segre [6] proved that all sets of n + 1 points, no 3 collinear, in field planes
of odd order are conics. Hence, such a system in PG(2,7) is a conic, and
we have thus shown that a non-Fano quad in PG(2,7) determines a conic
made up of the 8 red points determined by the initial quad ABCD.

6 Concluding Remarks

A number of interesting questions can now be asked concerning the plane
of order 7. In particular, suppose that 4, B,C, D, P, P;, P3, P,, is a conic
through A, B, C, D (there are 5 such conics). What is the relationship
among the 5 red conics determined?

Also there are 70 possible quads determined by a specific conic A, B,
C, D, P, P, P3, P;. How many foreign conics are determined by the 70
possible quads from A, B, C, D, Py, P, P3, P,.

Another interesting question is whether 2 distinct quads can determine
the same foreign conic. And, if so, how many quads can determine a fixed
foreign conic?

If one applies this pattern approach with n = 8, it should be possible
to rule out the possibility of a non-Fano quad. Then, from [1], the 73-
point geometry would have to be a field plane, and this would provide a
non-computer proof of its uniqueness.
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