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Abstract

A subset D of the vertex set V of a graph is called an open oddd
dominating set if each vertex in V is adjacent to an odd number of
vertices in D (adjacency is irreflexive). In this paper we solve the
existence and enumeration problems for odd open dominating sets
(and analogously defined even open dominating sets) in the m x n
grid graph and prove some structural results for those that do exist.
We use a combination of combinatorial and linear algebraic methods,
with particular reliance on the sequence of Fibonacci polynomials
over GF(2).

AMS subject classification index: primary 05C35.

1 Introduction

An even dominating set of a graph G is a non-empty subset, D, of the
vertices such that each vertex in G has an even number of neighbors in D,
where the “neighbor” relation is reflexive, i.e., & vertex is its own neighbor.
Likewise, an odd dominating set is a subsct, D, of the vertices such that
each vertex has an odd number of neighbors in D. Parity domination has
been studied in, for example [1, 2, 4, 5, 6] and several other papers. A
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fundamental result on the subject is Sutner’s theorem that every graph
contains an odd dominating set, see for example [7].

A closed dominating set (usually just called a dominating set) in a graph
G is a subset D of the vertex set V such that N[v]ND is non-empty for each
v € V, where N[v] is the closed neighborhood of ». An open dominating
set has a similar definition, except we use the open neighborhood, N(v),
instead. Open dominating sets are a well-studied variant of dominating
sets, see, for example, Chapter 6 of [7]. In this paper, we consider open
dominating sets with parity constraints, which we now define. Specifically
for a graph G = (V, E):

Odd Open Dominating Set is a set D such that |N(v) N D| is odd for
all v € V(G).

Even Open Dominating Set is a set D such that |N(v) N D] is even for
all v € V(G).

We remark that whereas an odd open (closed) dominating set is an open
(closed) dominating set, by our definitions an even open (closed) dominating
set is not necessarily an open (closed) dominating set, because a vertex
might have zero neighbors in the even open (closed) dominating set; that
is, zero is an even number.

As in [2, 3, 4, 5, 6], our attention will be focused on grid graphs. We
shall review some of the previous results and methodology on the subject
of open (and closed) even and odd dominating sets (and give new proofs in
some cases) and present new results on the problem and related matrices
and recurrences. We note that the special case in which we require that
[IN(w)N D| =1 for all v € V(G) is discussed in [3, 8].

2 Background

Let G = (V, E) be a simple, undirected graph with adjacency matrix A =
A(G) = [a;] with respect to the ordering {v;,vs,...,v,} of the vertex set V
(so a;; = 1if v;v; is an edge of G and a;; = 0 otherwise). We can represent
a subset S of V by its characteristic vector z(S) = [z, Z2,...,Zn|* Where
z; = 1 if and only if v; € S. Let J, denote the row n-vector with all entries
equal to 1. Let I,, denote the n x n identity matrix. Sutner’s theorem can
then be re-stated as:

Theorem 1 IfG is a graph with A = A(G) then the system (A+1,)x = J},
has a solution for x over the binary field.
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For notational simplicity, we shall sometimes omit the superscript indi-
cating transpose when it is obvious from the context that a vector transpose
is necessary.

Since A + I, is a symmetric matrix, its nullspace and rangespace are
orthogonal complements (using the standard inner product operation over
the binary field). So J, is in the rangespace of A + I, if and only if each
vector in the nullspace of A + I, has an even number of 1’s (and that gives
the standard proof of Sutner’s theorem, because a simple parity argument
shows this to be the case).

Clearly, S is an even closed dominating set for G if and only if z(S) is in
the nullspace of A(G) + I. So G has a non-empty even closed dominating
set if and only if A(G) + I, is not invertible over GF(2). In one sense,
this gives a characterization (with a polynomial time algorithm) of which
graphs have even closed dominating sets, but it would be nicer to have
another (even faster) method. While this has not been done in general, a
method exists for grid graphs [4). Let Gy, » denote the m x n grid graph,
i.e., Pp x Py.

Let f; be the i** Fibonacci polynomial defined over GF(2) by

f=zfac1+ faa n22, fo=0,fi=1

(so fa =z, f3 = 2241, fs = 28, fs = z*+z2+1). Goldwasser, Klostermeyer,
and Trapp proved the following connection.

Theorem 2 [{] The number of even closed dominating sets in G p is
2¢ where d is the degree of the greatest common divisor of fmy1(z) and
Jnt1(z + 1) where fo, f1,... is the sequence of Fibonacci polynomials over
GF(2).

Thus there is no non-empty even closed dominating set of G, » if and
only if fm4+1(z) and fr+1(z +1) are relatively prime (which happens if and
only if A(Gm,n) + I, is invertible). So an understanding of the Fibonacci
polynomials sheds some light on this problem; in [4, 6], Goldwasser and
Klostermeyer prove some of the relevant properties.

The story is somewhat different (and generally less complicated) for odd
open and even open dominating-sets. For one thing, there is no analogue
of Sutner’s theorem: the m x n grid graph does not have an odd open
dominating set for infinitely many pairs (m,n) (the parity argument used
to prove Sutner’s theorem requires closed neighborhoods). Cowen et al.
[3], have solved the existence problem for odd open dominating sets in grid
graphs. In this paper we give a complete solution for both the existence and
enumeration problems for odd open and even open dominating sets in grid
graphs, as well as present results on a related recurrence. Where our results
overlap with those in [3], we often present our own proofs for completeness
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and because of their greater reliance on the Fibonacci polynomials. We see
the main value of this work as the completeness of the solutions and the
interplay between linear algebra and combinatorics used in the proofs.

3 Results

Our main results are the following, whose proofs appear in subsequent
sections. When clear, we use 0 to denote the all-zeroes vector of some
prescribed length.

Theorem 3 The following are equivalent:

(i) m+1 and n+ 1 are relatively prime.

(it) The adjacency matriz A(Gm ) i3 invertible.

(iii) There does not exist a non-empty even open dominating set of Gmn.
(iv) There ezists a unique odd open dominating set of Gmn.

Cowen et al. (3] provided a complete characterization of which grid
graphs have odd open dominating sets. We extend their results in part (ii)
of the next theorem by also giving the number of these sets.

Theorem 4 Let m,n be positive integers and let d+ 1 bet the ged of m+1
andn+ 1. Then

(i) The number of even open dominating sets of Gy p is 2°.

(i3) The number of odd open dominating sets of Gmyn is 2% if there does
not ezist a positive integer ¢t such that %fi‘—l and 321}1 are both odd integers
(which is the case if m orn is even) and 0 if there does exist such a positive
tnteger t.

Note that Theorem 4 gives very fast algorithms for determining if the
m x n grid graph contains a non-empty even open or an odd open dominat-
ing set. The former simply requires a ged calculation, the latter requires
finding if a suitable ¢ exists, which can be done by checking if the binary
representations of m + 1 and n + 1 each end with the same number of 0’s
(which can of course be done in linear time).

We say that a binary m x n matrix D is an odd (even) open dominating
set matrix for Gm 5 if the positions of the 1’s in D correspond to an odd
(even) open dominating set in G n. Denote the rows in such a matrix by
T1,T2,...,7m. For example, the 2 x 4 matrix with r; = 1001 and r; = 1001
is an odd open dominating set matrix.

A basic observation is that once r; is fixed, the remaining rows of an even
open dominating set matrix can be computed by the following recurrence:

ri,j = ri—la'—l + 1','._1,,'4.1 + T,'._z,j (mod 2) (1)

232



where undefined entries are taken to be zero. In the case of an odd open
dominating set matrix, simply modify the equation as follows:

Tij =1+rio1j-1+ 1,541+ Ti—2,; (mod 2) (2)

Then ry,79,...,7m are the rows of an m x n even/odd dominating set
matrix if and only if r,n4) = 0 using Equation (1)/(2).

Corollary 5 If n is odd, there does not exist an odd open dominating set
in Gp . If n i3 even, then for each binary n-vector w, there exists a unique
n X n odd open dominating set matriz with first row w.

Theorem 6 Let n be an even integer. For each i € {1,2,...,n} there
exists an n X n odd open dominating set matriz with i** row all 0’s, but
there does not ezxist one with more than one row of 0’s.

The following Theorem reformulates many of the results from Cowen et
al. [3].

Theorem 7 Let n be an odd integer.

(i) For each binary n-vector w there exists a unique (2n+ 1) x n odd open
dominating set matriz with first row w.

(i) For each j € {1,2,...,2n + 1} such that there does not exist a positive
integer t such that -72"'—,1 and %‘i—l are both odd integers, there exists a (2n+
1) x n odd open dominating set matriz with j** row all 0’s, but there does
not exist one with more than one row of 0’s.

(iii) Let kyn be the n-vector with alternating 1’s and 0’s with first and last
entry 1. The (n+1)* row of every (2n+ 1) x n odd open dominating set
matriz is kn. If j € {1,2,...,n}, then the j** row is all 0’s if and only
if the (j + n + 1)° row is k,,, while the j** row is k, if and only if the
G+n+1) rowisall 0’s.

If w is any binary n-vector, then we can generate an infinite odd open
dominating set matrix with n columns and rows r;,7s,... by setting r; =
w and applying the recurrence in Equation (2). That is, the number of
columns is fixed and there are infinitely many rows. If n is even, then by
Corollary 5, no matter what vector we choose for ry, 7,41 will be 0. If n is
odd, then by Theorem 7, rpy; will be k, and 72,42 will be 0. Since each
row in the sequence ry, 12,73, ... is determined by the previous rows (with
To = 0), the sequence must be periodic.

We say that an n-vector z = (z,,Z3,...,,) is symmetrical if z; =
Tpt1—i fori=1,2,...,n.

Theorem 8 Let M be an infinite odd open dominating set matriz with n
columns and row vectors ry,rs, .... Then the row sequence has period n+ 1
if n is even and ry is symmetrical and has period 2n + 2 otherwise.
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P. I, 0 O 0 0
I, P, I, © 0 0
A | O T PR 000
0 0 0 I, P I,
L 0 0 0 0 In Pﬂ J

Figure 1: Matrix A

So, for example, by Theorem 7 and Theorem 8, there exists an infi-
nite odd open dominating set matrix with 13 columns and row sequence
71,72,... where r; = 0 if and only if ¢ = 0(mod 28) or ¢ = 11(mod 28)
(because 4 divides 12, but does not divide 14) and r; = 1010101010101 if
and only if ¢ = 14(mod 28) or i = 25(mod 28).

4 Construction of Odd and Even Open Dom-
inating Set Matrices

In this section, we review the basics. Number the vertices in the m x n
grid graph G, from 1 to k = mn from top left to bottom right increasing
across each row. Let A,, » to be the mn x mn binary matrix shown in block
form in Figure 1, where I is the n x n identity matrix and let P, = [p;;]
be the n x n matrix defined by b;; =1 if |i — j| =1 and b;; = 0 otherwise.
Note that P, is the adjacency matrix for the path on n vertices, with the
usual vertex ordering (i.e., from left to right).

Let £ (O) be the set of all ordered pairs (m, n) such that there exists a
non-empty even (odd) open dominating set in Gy, 5. Clearly, (m,n) € £(0)
if and only if (n,m) € £(O).

The following is analogous to the result for closed even dominating sets;
and follows because a set S is an even open dominating set if and only if
the characteristic vector of S is in the nullspace of Amn.

Proposition 9 (m,n) € € if and only if Amn is singular.

Proposition 10 Let Jny be the mn-vector with all entries equal to 1. The
following are equivalent:

(i) (m,n) € (0).

(1) Jimn is in the rangespace of Am n.

(iii) Every vector in the nullspace of Amn has an even number of 1’s.
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Proof: The equivalence of (i) and (ii) is obvious because Apnz = Jmp
if and only if = is the characteristic vector for an odd open dominating
set. The equivalence of (ii) and (iii) follows because the rangespace and
nullspace of the symmetric matrix A, » are orthogonal complements under
the standard inner product operation over GF(2). O

Corollary 11 If n is odd, then there does not erist an n x n even open
dominating set matriz.

Proof: If n is odd then I, is an odd open dominating set matrix with an
odd number of 1’s. O

Corollary 11 is just a part of Corollary 5, but we will need it for a proof
before we actually prove Corollary 5.

Proposition 12 (m,n) is either in €, O (or both).

Proof: 1f (m,n) ¢ £, then, by Proposition 9, A, is invertible. Hence
AmnZ = Jmn has a (unique) solution and, by Proposition 10, (m,n) € O.
]

Proposition 13 Let w be any binary n-vector. Define vector sequence
21(w), z2(w), ... by z(w) = fi(Pa)w,i = 1,2,... where fi, fo,... is the
sequence of Fibonacci polynomials over GF(2). If zm1(w) =0, them x n
matriz with i** row zi(w),i = 1,2,...,m is an even open dominating set
matriz.

Proof: To satisfy equation (1), with w = (ry,1,71,2,...,71,n), We need to
have

2(w) =0 z1(w) =w zi(w) = Ppzi—1(w) + zi_2(w) i >2 3)

It is easy to check by induction that the solution to the vector recurrence
relation (3) is z(w) = fi(Pa)w,i =0,1,2,.... So, if zn+1(w) = 0, we do
get an m x n even open dominating set matrix. O

Proposition 14 Let w be any binary n-vector. Define vector sequence
z1(w), z2(w), ... by zi(w) = f;(P,.)w,+E‘.;11 Ji(Pn)Jn,i=1,2,... where
f1, f2, ... is the sequence of Fibonacci polynomials over GF(2), J, is the all
1’s vector and P, is the usual adjacency matriz for the path on n vertices.
If Zmi1(w) =0, the m x n matriz with i** row z;(w),i =1,2,...,m is an
odd open dominaling set matriz.

Proof: To satisfy equation (2), with w = (r1,1,71,2,...,71,5), We need to
have
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zo(w) =0 z1(w) = w z;(w) = Pazi-1(w) + zi2(w)+Jn 122 (4)

We shall show by induction that the solution to the vector recurrence
relation (4) is as given. If i > 2 then

P,.Z,'-l(‘w) + a:.-_z(w) + Jn

-2 i-3
= Palfics(PaYw+ Y fi(Pa)Jul + fica(Pa)w + 3 £5(Pn)Jn + Jn
=1 Jj=1

i—1 i—-1

= [Pafic1(Paw + fica(Pa)w] + P ) fi=1(Pa)Ja + Y _ fi-2(Pa)Jn + Jn
=2 j=3

i-1
= fi(Pn)‘w + Z[Pnfj—l(Pn) + fj-z(Pn)]Jn + Jn
j=2

i-1

= fi(Pa)w+ )  fi(Pa)Jn = zi(w).
j=1

5 Preparatory Results and Fibonacci Poly-

nomials
The usefulness of the Fibonacci polynomials for finding dominating sets
in grid graphs is because of Propositions 13 and 14 and the following rela-

tionship between Fibonacci polynomials and the characteristic and minimal
polynomials of the matrix P,.

Proposition 15 For each positive inleger n, let X, and m, be the char-
acteristic and minimal polynomials for P,, respectively. Then X, =my, =
fat1 and fop1(Pn) =0..

Proof: Laplace expansion on the first row gives us
det[zl, + Pp,) = zdet[zln_y + Pn_1] + det[zln—2 + Pn-2),
so the sequence X', X2, . .. satisfies the Fibonacci recurrence relation. Since

Xi=z=faand X3 =22+ 1= f3, we get X, = fny for all positive
integers n.
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To show that X, = m,,, we generate the n X n even open dominating
set matrix with first row e¢; = (1,0,0,0,...,0). Clearly, we get the identity
matrix I,, with it* row e; (all 0’s except for a 1 in the it? position), which is
equal to f;(P,)e;, by Proposition 14. Thus f1(Pn)es, fa(Pn)er, ..., fn(Pn)er
is a linearly independent set of vectors. Since the degree of f; is i — 1,
the polynomials fy, fo,..., fa are a basis for the space of all polynomials
over GF(2) with degree at most n — 1. So if m,, has degree less than n,
then m,, = Z?=1 ¢ f; for some constants ¢;,ca,...,cn, not all equal to 0.
But then 0 = mqa(P,) = Y[, cifi(Pn), contradicting the independence
of fi(Pn)e1,..., fa(Pn)e1. Hence the degree of m, is equal to n and thus
mp = Xy. By the Cayley-Hamilton theorem, cf. [9], fa+1(Pa)=0. O

Proposition 16 If g is any polynomial over GF(2), then the dimension
of the nullspace of g(P,) is the degree of the ged of g and frny1.

Proof: This is a direct consequence of the Primary Decomposition Theorem,
cf. [9], and the fact that the minimal and characteristic polynomials of P,
are both equal to f,;1, as shown in Proposition 15. O

We remark that if we are looking for closed dominating sets then we
would be interested in the dimension of the nullspace of g(P, + I,,), and it
is equal to the degree of the ged of g(z+1) and fn+1(z), making subsequent
calculations much more difficult, see [4, 6].

We will need the following properties of Fibonacci polynomials, all
proved in [4].

Proposition 17 [{] Let fo, fi,f2... be the sequence of Fibonacci polyno-
mials over GF(2). Then

(i) If n 2 0, then fn.1 has degree n and is an odd function for n odd and
an even function with constant term 1 for n even.

() For each positive integer k, fox—1 = (fi—1 + fi)2.

(iii) For each positive integer k, for = z f2.

() Ifd+1 is the ged of m+ 1 and n+ 1, then faq is the ged of frmia
and fni1.

Propositions 9, 10, 12 give conditions for the existence of even/odd open
dominating set matrices in terms of the nullspace of Apn, an mn x mn
matrix. With the Fibonacci polynomials, we can now derive conditions in
terms of m x n matrices with nice algebraic properties.

Proposition 18 Let Amyn be the adjacency matriz for Gmpn (with the
usual vertez ordering) and let d + 1 equal the ged of m+ 1 and n + 1.
Then

(i) = € nullspace(Amn) if and only if = is the characteristic vector for an
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even open dominating set of Gmm.

(ii) w € nullspace(fm41(Pn)) if and only if w is the first row of an m x n

even open dominating set matriz.

(iii) y € nullspace(fa+1(Pm)) if and only if y is the first column of an mxn

even open dominating set matriz.

(iv) nullspace( fim+1(Pn)), nullspace(Am ), and nullspace(fa+1(Pm)) all have
dimension d.

(v) Gmn has 2¢ even open dominating sets and either 2¢ or 0 odd open

dominating sets.

Proof: We have discussed (i) earlier.

By Proposition 13, if we generate an even open dominating set ma-
trix with first row w, then the(m + 1)t row is fin+1(Ps)w. So the first
m rows form and m x n even open dominating set matrix if and only if
Jm+1(Pn)w = 0, proving (ii). The statement (iii) is the same as (ii) work-
ing with transposes.

The three nullspaces in (iv) must have the same dimension because
it is just counting the same thing in three ways. By Proposition 16, the
dimension of nullspace( fm+1(Pn)) is the degree of the gcd of frm+1 and fn41,
and this is equal to d by Proposition 17 part (iv). By (iv), Gm n obviously
has 2¢ even open dominating sets. If B is an odd open dominating set
matrix, then the set of all odd open dominating set matrices is clearly
equal to {B + E : E is an even open dominating set matrix}, so there are
either 2¢ or 0 of them. O

6 Proofs

We have actually already proved Theorem 3 piece by piece, but we present
a proof here to have it all in one place.

Proof of Theorem 3

(i) = (iii) If m+ 1 and n + 1 are relatively prime and d + 1 is the ged of
m+1 and n+1, then d = 0, so by Proposition 18(v), there is no even open
dominating set of G n. '

(iii) = (ii) By (iii), the nullspace of A, » contains only 0, so it is invertible.
(ii) = (iv) If (ii) holds, then the system Am nZ = Jmn has a unique solution.
(iv) = (i) If the system A, nZ = Jmn has a unique solution, then A, ,, is
invertible and the dimension of nullspace(Am,») is 0. If m +1 and n + 1
are not relatively prime, then their ged, d + 1, is such that d > 1. Thus by
Proposition 18, G, » has at least two even open dominating sets, which is
impossible. O
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If z = (z1,Z3,...,2y) is an n-vector, let z® be the n-vector with the
elements of z in reverse order.

Lemma 19 If A is an n x n even open dominating set matriz with rows
T1T2, . T, thenry=1FR | . fori=1,2,... n.

0 01 0 0 0 O
01 01 0 0O
101 01 00
01 01 010
0 01 0101
0 001 010
0 0 0 01 000

Figure 2. An Even Open Dominating Set Matrix

Proof: As shown in Figure 2, for n = 7, a first row with just one 1, in
the k** column, generates an n x n even open dominating set matrix with
a “rectangular” array of 1’s: the “corners” of the rectangle being the 1's
in positions (1, k), (k,1), (n + 1 — k,n), and (n, n+ 1 — k). If the rows of
the matrix are sy, s9,..., sn, it is clear that s; = sn_,,1 cfori=1,2,.

Since the first row of A is the sum of vectors with Just, one 1, we get A
by adding the matrices (over GF(2)) which each have the property that
si=sR ,_;fori=1,2,...,n, so A has that property as well. O

Note that a square even open dominating set matrix must be symmetric
about both diagonals.

We remark that since the n® row of an n x n even open dommatlng
set matrix with first row w is fn(P,)w (Proposition 13) and it is also w®
(Lemma 19), we have proved that f.(P,) must be equal to the matrix
obtained from I,, by reversing the order of the rows. We were unable to
find a linear algebra proof for this which does not rely on the “rectangular”
picture argument.

The next result is an immediate consequence of Lemma 19.

Corollary 20 If A is ann X n even open dominating set matriz with rows
T1,72,...,Tn and is Ty symmetric, then i =rp4i 1 fori=1,2,...,n.

To use the formula in Proposition 14 to find the i** row of an odd open
dominating set matrix with first row w, we need to find the sum of the first
i—1 rows of the even open dominating set matrix with first row J,,, the all
1’s vector.
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Lemma 21 If n is even then 3 .., fi(Pa)Jn = 0. If n is odd, then
i1 fi(Pa)Jn = ky, the n-vector with alternating 1’s and 0’s starting
and ending with 1.

Proof. Let ry,72,...,Tn be the rows of the even open dominating set matrix
with r; = J,,. Since r; = f;(Pn)Jn (by Proposition 13) and r; = rp41_; for
i=1,2,...,n (by Corollary 20), the result for even n follows immediately

and follows for odd n if we show Tap = k.. Since Taol = Togs, each
vertex in row number 1‘-5{—‘ has an even number of neighbors on these two
adjacent rows that lie in the odd open dominating set. That means row
%’ is itself a 1 x n even open dominating set matrix, i.e., either O or ky.
But by Proposition 14, Znt+1(Jn) = fat1(Pn)dn + ey fi(Pa)Jn = Tap
since fn+1(Pn) = 0 (Proposition 15) and r; = rpy1— for i = 1,2,...,n.
If raps = 0, then Tny 1{Jn) = 0 which implies there exists an n x n odd
open dominating set matrix for odd n, contradicting Corollary 11. Hence
r# =k, O

We next give a linear algebra proof of Lemma 21 which does not use
Lemma 19 (which we proved using the “rectangular pattern” argument).

Proof 2: Let r,72,...,7, be the rows of the even open dominating set
matrix with 7, = J,. First suppose n is even. By Proposition 17(ii),
(f-?+’f§-+l)2 = fa+1. So (f%(Pn)+f§-+1(Pn))2 = fn+1(Pn) =0, since fn+1
is the characteristic polynomial for P,. Hence C = f3(Pn)+ f3+1(Pn) isa
symmetric matrix whose square is 0. That means each if its rows has an even
number of 1’s, so CJp, = 0 and r3 = fg(Pn)Jn = fg+1(Pn)Jn = rgz41.
Since these two consecutive rows are equal, when we generate further rows
in both directions, we get the same thing, i.e., 7y = rp41—i fori=1,2,...,n.

If n is odd then, by the Fibonacci recurrence relation, f apt + fg;-_a =

zfag1. By Proposition 17(ji), (xfgi-l)z =Zfnt1. SO
(Fagt (Pa) + Jaga (Pa))" = Pufosa(Pa) = 0.

As in the case when n is even, f a1 (P)+f njs (P,) is a symmetric matrix
whose square is 0, so each if its rows has an even number of 1’s and r 2pl =

fni&(Pn)Jn = fai'_’(Pn)Jn = 7'2;_3-

The only way these two rows can be equal if is the row between them
is itself a 1 x n even open dominating set matrix, i.e., either 0 or k,. As
shown in the first proof of the Lemma, this means r = k.. Now

ragt = Puragt 7o = Parap 4 7ap Srap
and so on, showing r; =rp41—s fori=1,2,...,n. O

240



Proposition 22 Let n be an even integer.

(i) There ezists a unique (n — 1) X n odd open dominating set matriz. Iis
first and last rows are all 1’s. If we add a row of 0’s al the top and bottom
of this matriz, we get the unique (n+1)xn odd open dominating set matriz.
If we add a row of 0’s at either the top or bottom of this matriz, we get an
n X n odd open dominating set matriz.

(i¢) For each n-vector w, there erists an n X n odd open dominating set
matriz with first row w.

Proof: (i) If the first row is J,, by Proposition 14, the i** row is z;(J,) =
3 j=1 fi(Pn)Jn. By Lemma 21, z,(Jn) = 0 and

n—-1
Zn-1(Jn) = Y fi(Pa)In = fu(Pn)Jn.

j=1

Since f,(P,)Jn is the n® row of the even open dominating set matrix with
first row f1(Pp)Jn = Jn, by Corollary 20, fn(P,)Jn = Jn. Since z,(J,) =0
and z,,_1(Jn) = Jn, we in fact get an (n — 1) x n odd open dominating set
matrix with first and last rows equal to J,. It is easy to see that we still
have an odd open dominating set matrix if we add a row of zeroes to the
top and/or bottom of this matrix. Since ged(n,n+1)=gcd(n+2,n+1)=1,
by Theorem 3, these (n — 1) x n and (n + 1) x n 0odd open dominating set
matrices are unique.

(ii) Since ged(n+1,n+1)= n+1, by Proposition 18(v), there are 2" n xn
odd open dominating set matrices, so there must be one with first row w
for any n vector w. O

Proposition 23 Let n be an odd integer.

(i)There exists a unique 2n x n odd open dominating set matriz. Its first
and last rows are all 1’s. If we add a row of 0’s at the top and botiom of
this matriz, we get the unique (2n+2) x n odd open dominating set matriz.
If we add a row of 0’s at either the top or bottom of this matriz, we get a
(2n + 1) x n odd open dominating set matriz.

(ii) For each n-vector w, there exists an (2n+ 1) x n odd open dominating
set matriz with first row w. Its (n + 1) row is k,,.

Proof: (i) If the first row is J,, by Proposition 14, the i** row is z;(Jn) =
Y71 f3(Pa)Jn. So

Tant1(In) = D Si(Pa)Jn + frt1(Pa)dn + D fat145(Pn)Jn.
j=1 Jj=1

If we generate the rows z;(Jp), 22(Jn), . .. of an even open dominating set
matrix with first row Jn, by Corollary 20, fa(Pn)Jn = 2a(Jn) = 21(Jn) =
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Jn. Since z,41(Jn) = 0, we must have that zp12(Jn) = 2,(Jn) = 21(Jn) =
Jn. Then dearly, zpy145(Jn) = 2j(Jn) for 5 =1,2,...,n, 50 Zoq11(Jn) =
fa+1(Pn)Jn = 0. Furthermore, Zon(Jn) = x2n+1(-]n) + f2'n+l(Pn)Jn =
0+ 22n+1(Jn) = 2n(Jn) = Jn, so we do get a 2nxn odd open dominating set
matrix with first and last rows equal to J,. We obviously get a (2n+2) xn
odd open dominating set matrix if we add a row of 0’s to the top and
bottom. Since ged(2n + 1,n + 1)=ged(2n + 3,7 + 1)= 1, by Theorem 3,
these 2n x n and (2n+2) x n odd open dominating set matrices are unique.
(ii) Since ged(2n + 2,n + 1)= n + 1, by Proposition 18(v), there are 2"
(2n + 1) x n odd open dominating set matrices, so there must be one with
first row w for any n vector w. If the first row is w, by Proposition 14, the
(n+1)at row is zn+1(w) = fn+1(Pn)w+2?=1 fj(Pn)Jn' But fn+l(Pn) =0
and :;;1 fi(Pn)Jn = kn by Lemma 21. D

We now state two lemmas needed to prove Theorem 4. Recall that O
is the set of all ordered pairs (m,n) such that there exists an odd open
dominating set in Gy .

Lemma 24 (i) (m,2m),(m,2m + 1),(m,2m + 2) € O for each positive
integer m.

(ii) (m,m) € O if and only if m is even.

(i) If m > 2n + 2, then (m — 2n - 2,n) € O if and only if (m,n) € O.

Proof: Parts (i) and (ii) are just restatements of results proved in Corollary
11, Proposition 22, and Proposition 23. To prove (iii), suppose m > 2n+2
and A is an m x n odd open dominating set matrix. By Proposition 23, the
(2n 4 2)™¢ row of A is all 0’s. So if we delete the first 2n 4 2 rows of A we
have an (m — 2n — 2) x n odd open dominating set matrix. Conversely, if
B is an (m — n — 2) x n odd open dominating set matrix with last row w,
we next generate the (2n + 1) x n odd open dominating set matrix D with
first row w® where w°® is the binary complement of w. It is easy to see that
if we put B and D together with a row of 0’s in between, we get an m x n
odd open dominating set matrix. O

For any non-negative integer ¢, let
S, = {k2' — 1: k is an odd positive integer},

except that we exclude 0 from Sy. Note that Sy is the set of even positive
integers and the sets Sy, S;,... form a partition of the positive integers.
The proof of the following lemma is simple arithmetic and is omitted.

Lemma 25 (i) If m > 2n+ 2 then m and n are both in S, for some non-
negative integer t if and only if m — 2n — 2 and n are both in S,.

(i) If n < m < 2n then m and n are both in S; for some non-negative
integer t if and only if 2n — m and n are both in S,.

242



Proof of Theorem 4: Part (i) was already proved in Proposition 18.

First we find all m such that (m,1) (and (1,m)) are in O. Obviously
(1,1) ¢ O, but the odd open dominating set matrices 11,011, and 0110
show that (2,1),(3,1) and (4,1) are all in O. It follows from Lemma 24(iii)
with n =1 that (m, 1) € O if and only if m is not congruent to 1 (mod 4).
Since 1 € Sy and m € S if and only if m = 1(mod 5), the result holds for
n=1.

We now do simultaneous induction on m and »n. Assume m > 1,n > 1
and that our result is correct for all ordered pairs (m/, n) and (m, n’) where
m’ < m and n’ < n. Consider the ordered pair (m,n) and assume without
loss of generality that m > n.

If m > 2n + 2 then, by Lemma 24(iii), (m,n) € O if and only if (m —
2n —2,n) € O and by Lemma 25(i), m and = are both in S; for some non-
negative integer ¢ if and only if m — 2n —2 and n are both in S;. So by the
inductive hypothesis, (m,n) € O if and only if m and =n are not both in S,
for some positive integer ¢. Similarly, if n < m < 2n, then by the inductive
hypothesis, (m,n) € O if and only if m and n are not both in S, for some
positive integer ¢. This reduction works unless m € {n, 2n,2n + 1, 2n + 2}.
If m € {2n,2n+1,2n+ 2}, then by Lemma 24(i), (m,n) € O and it is easy
to verify that m and n are not both in S, for some positive integer ¢. If
m = n, the result is also correct because (m,m) € O if and only if m is
even (and if m is even, then m € Sp). O

The ideas behind Lemma 24 and Theorem 4 can be used constructively.
For example, to generate a 77 x 47 odd open dominating set matrix, we use
the following reduction:

(77,47) > (2 %47 = 77,47) = (17,47)

(47,17) > (47 — 2% 17 - 2,17) = (11,17)
(17,11) - (2% 11 = 17,11) = (5,11)

Since 11 = 2 * 5 + 1, the reduction stops. We know how to produce an
odd open dominating set of size 11 x 5: take the 10 x 5 one with first and
last row Js; and add a row of 0’s at the top. The transpose of this is a
5 x 11 matrix; let the sixth row be all 0’s, then iterate equation (2) (or
Proposition 14) until we get a 23 x 11 odd open dominating set matrix
(which will occur due to Proposition 23). Delete the first six rows and we
have a 17 x 11 odd open dominating set matrix. The transpose is 11 x 17.
Add rows using equation (2) until we get a 47 x 17 matrix (the twelfth row
is all 0’s, so rows 13 through 47 are that of a 35 x 17 odd open dominating
set matrix). The transpose is a 17 x 47 odd open dominating set matrix.
Add rows using equation (2) until we get a 95 x 47 odd open dominating
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set matrix (we will since 95 = 2 ¥ 47 + 1). Deleting the first 18 rows gives
the desired 77 x 47 matrix.

If we try the reduction on a pair not in O, we end up with an odd square,
which is the only obstruction to a successful construction. For example, 19
and 27 are both in S3:

(27,19) — (2 %19 — 27,19) = (11,19)

(19,11) = (2% 11 —19,11) = (3,11)
(11,3) — (11 — 2%3 — 2,3) = (3,3)

Now we show that if nisevennonxnandif nisoddno (2n+1) xn
odd open dominating set matrix can have more than one row of 0’s. The
following simple lemma provides the main idea.

Lemma 26 In an odd open dominating set matriz, there cannot be a row
and a column each of which is itself an even open dominating set matriz.

Proof: If there were, then the element in both that row and column would
not have an odd open neighborhood. O

So if a row is 0 or k,, then no column can be 0° or k. For convenience,
we restate parts of Proposition 22 and Proposition 23 in a lemma.

Lemma 27 If m > n then the (n + 1)* row of an m x n odd open domi-
nating set malriz i3 0 if n is even and ky, if n is odd.

Proof of Theorem 6. If n is even, by Theorem 4, for each 7 € {2,3,...,n}
there exists a ( — 1) x n odd open dominating set matrix. If we generate
more rows using equation (2), by Proposition 22(ii), we will get an n x n
odd open dominating set matrix with j** row all 0’s. If we start with the
first row all 0’s, we will also get an n x n odd open dominating set matrix.

Next we show there cannot be two rows of 0’s. Suppose the rows
are 11,Z3,...,Zn and that z; = z; = 0, where i + 1 < j. Taking rows
Zy,Z2,...,Zj—1 gives is a (j — 1) x n odd open dominating set matrix A
with a row of 0’s. But by applying Lemma 27 to At we see that the j*
column of A is an even open dominating set (0 if j — 1 is even and k%_, if
3 — 1 is odd), contradicting Lemma 26. O

By Proposition 18, the number of n x n odd open dominating set matri-
ces with j** row 0 is 2% where d + 1 = ged(j,n + 1) (and the same number
with j** column 0). So the number with no row or column equal to 0 is
2 —23°7_, 240) where d(j) = ged(j, n+1) — 1. It is not hard to show this

244



is positive if n > 2 (and close to 2™ if n is large).

Proof of Theorem 7. We have already proved part (i) (Proposition 23) and
the existence of the (2n + 1) x n matrix with j** row 0 for j satisfying the
given conditions follows from Theorem 4. We now show there cannot be
two rows of 0’s. Suppose the rows of such a matrix D are xy,z3,...,Zon41
and that z; = z; = 0, where i < j. If j < n +1, then the first j — 1 rows
form a (7 — 1) x n odd open dominating set matrix with a row of 0’s and we
get a contradiction just as in the proof of Theorem 6. The same argument
applies if i > n + 1. By Proposition 23, £p+1 = kn. If i <n+1 < 4, but
J—1 < n+1, then the (j — i — 1) x » matrix C formed by taking rows
Zit1,Zi42, - -+, Tj—1 is an odd open dominating set matrix with a row equal
to k,. By Lemma 27 applied to its transpose, the (j — 1)*¢ column of C is
either O or k;—;—1, contradicting Lemma 26.

The remaining possibility isi < n+1 < jand j—i >2n+1. In
fact, 7 —i # n + 1 because, by an obvious extension of Proposition 23,
Tj_n—1 = Titn+1 = kn. Let B be the (2n + 1) x n matrix obtained from D
by adding k,, to each of its rows (modulo 2). Each entry of D not in the first
or last row still has an odd open neighborhood (elements in the first and
last rows in the odd numbered columns have even open neighborhoods).
Let the rows of B be y1,¥2,...,%2n+1- Then yj_n_1 = yn+1 = Yitn+1 =0.
Now 0 <i—j3+2n+1 < n and the (i — j + 2n + 1) x n matrix formed by
taking rows ¥j_n,¥j—n+1,- - ¥i+n is an odd open dominating set matrix
with a row of 0’s. But by Lemma 27, its (i — j + 2n +2)"?¢ column is either
0 or ki_ji2n+1, contradicting Lemma 26.

We have already shown that the (n + 1)* row is k, and that if z; =0
and j € {1,2,...,n}, then Zj n41 = kn whileif j € {n+2,...,2n}, then
Zj—n—1 = k,. To show that if z; = k,, then z;,,,1 =0if j <n 41 while
Zjn-1 = 0if § > n+ 1, we just repeat the argument used above where
we add ky to each row (to convert 0 to ky, and vice versa while keeping the
odd open property). O

By Proposition 18 and Theorem 3, we can find the number of (2rn+1)xn
odd open dominating set matrices with 5¢* row 0 for odd n and then can
express the number that have no row of 0’s as a sum, as we did for n x n
odd open dominating set matrices when n is even. Again, this number is
positive when n > 3.

Proof of Theorem 8: If B is an infinite even open dominating set matrix

with rows z; = w, 29, 23, . .., then by Lemma 19 z, = w® where w® is the
reverse of w. Since zn41 = fn41(Pn)w = 0, we must have z,,2 = z,. Since
2042 = fant2(Pn)w = 0, the matrix with rows z,,2, 2n43,- .., 22n+1 is an

even open dominating set matrix. Hence by Lemma 19, 29541 = zf_,,z =w.
And since zop42 = 0, we must have 29,43 = w as well. It follows that
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Zijony2 =2 fori =1,2,.

Returning to the mﬁmte odd open dominating set matrix A with rows
I = w,Z2,23,..., We know zo,42 = 0 (Propositions 22 and 23). By
Proposition 14, zon+3 = fon+3(Pn)w + 22'”'1 Ji(Pa)Jn + font2(Pn )Jn =
2on+3 + Zont2 + fons2(Pn)Jn = w+040. émce Zon+2 = 0 and zon43 =
it follows that z;iont2 = z; for ¢ = 1,2,.... This means the period of
this matrix recurrence divides 2n + 2. If n is odd, then the pattern of
the rows of 0’s described in Theorem 7 implies that the period cannot
be less than 2n + 2. If n is even, then the pattern of the rows of 0’s
described in Theorem 6 implies that the period is either 2n 42 or n+1.For
even n, Tont2 = foni2(Pn)w + 23_1 Ji(Pa)Jn = 2n42 + 2,_1 Ji(Pn)Jn+
Fa+1(Pn)Jn = 2o + 0+ 0 = wk, so the period will be n + 1 if and only of
w is symmetric. O

7 Discussion

We have completely solved the existence and enumeration problems for
odd/even open dominating sets in grid graphs, using the Fibonacci poly-
nomials. Certainly these techniques could be applied to grid graphs with
“wrap-around” (a cylinder instead of a rectangle). It would be of interest
to find other graph classes for which one can determine the existence of
odd/even open dominating sets by means faster than testing the adjacency
matrices of the graphs for singularity.

We make one further comment. If G is a bipartite graph with vertex
bipartition Vo UV and if there exists a subset D; C V; (¢ = 1, 2) such that
[N(v) N D;| is odd for each v € V; (j € {1,2},j # ¢) then we say D; is a
bipartite odd open dominating set for V;. Clearly a bipartite graph G has
an odd open dominating set if and only if both V5 and V; have bipartite
odd open dominating sets. In terms of the row by row generation of an
odd open dominating set matrix on a chessboard, the entries in the white
squares of the second row are determined by the entries in the white squares
in the first row (and similarly for the black squares). This separation of
the search for an odd open dominating set in a bipartite graph into two
distinct problems does not work for odd closed dominating sets (the entries
in the white squares of the second row depend on the entries in both the
white and black squares in the first row). Let m and n be odd positive
integers, and let v;; be the vertex of Gy, » in the i** row and j** column.
Let Vo = {v;li + j iseven} and V; = {wij|i + 7 is odd}. Then oUW}
is the bipartition of the vertex set for the bipartite graph G n, and it is
not hard to check that Do = {v;;|¢ and j are odd and ¢ = j(mod 4)} is a
bipartite odd open dominating set for V;. If G, does not have an odd
open dominating set (so there exists a positive integer ¢ such that (m+1)/2¢
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and (n + 1)/2¢ are both odd integers) that means there must not exist a
bipartite odd open dominating set for V5. The set Dy actually has the
property that size of |Dp N N(v)| = 1 for each v € Vj, a topic which is
explored in [8].
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