Some Results on Fractional Edge coloring of Graphs*

Jihui Wang^{†1,2}, Guizhen Liu¹

- School of Mathematics and System Science, Shandong University, Jinan, Shandong 250100, P.R.China
- 2. School of Science, Jinan University, Jinan, Shandong 250022, P.R.China

Abstract

A fractional edge coloring of graph G is an assignment of a nonnegative weight ω_M to each matching M of G such that for each edge e we have $\sum_{M\ni e}\omega_M\geq 1$. The fractional edge coloring chromatic number of a graph G, denoted by $\chi_f'(G)$, is the minimum value of $\sum_M \omega_M$ (where the minimum is over all fractional edge colorings ω). It is known that for any simple graph G with maximum degree Δ , $\Delta \leq \chi_f'(G) \leq \Delta + 1$. And $\chi_f'(G) = \Delta + 1$ if and only if G is K_{2n+1} . In this paper, we give some sufficient conditions for a graph G to have $\chi_f'(G) = \Delta$. Furthermore we show that the results in this paper is the best possible.

1 Introduction

Our terminology and notation will be standard. The reader is referred to [1] for the undefined terms. The graphs in this paper are simple, that is, they have no loops or multiple edges. We use V(G), E(G), |V(G)|, $\Delta(G)$ and $\delta(G)$ to denote, respectively, the vertex set, edge set, order,

^{*}This work is supported by NSFC(10471078) and RSDP of China

The corresponding author: Jihui Wang, E-mail: ss_wangjh@ujn.edu.cn

maximum degree and minimum degree of a graph G. Let $N_G(v)$ denote the neighborhood of v and let $d_G(v) = |N_G(v)|$ be the degree of v in G. For a subset $S \subseteq V(G)$, we write ∂S to stand for those edges that have exactly one end in S. Let G_{Δ} denote the subgraph of G induced by the vertices of degree $\Delta(G)$. An edge k-coloring of a graph G is a mapping ϕ from E(G) to the set of colors $\{1, 2, \dots, k\}$ such that no two incident edges receive the same color. The edge coloring chromatic number $\chi'(G)$ of G is the smallest integer k such that G admits an edge k-coloring. A well-known theorem of Vizing [6] states that

$$\Delta(G) \le \chi'(G) \le \Delta(G) + 1.$$

G is said to be Class 1 if $\chi'(G) = \Delta(G)$ and Class 2 if $\chi'(G) = \Delta(G)+1$. The problem of deciding whether a given graph is Class 1 or Class 2 is known as the *classification problem* and Holyer [2] showed that this problem is NP-complete.

A graph G is overfull if $|E(G)| \ge \lfloor \frac{|V(G)|}{2} \rfloor \Delta(G) + 1$. We say that a subgraph H of G is an overfull subgraph if H is overfull and $\Delta(H) = \Delta(G)$ holds. A sufficient condition for a graph to be Class 2 is that G is overfull, or more generally, that G has an overfull subgraph H. This is easy to see, since the edges of H colored with the same color form a matching, and at most $\lfloor |V(G)|/2 \rfloor$ edges of H can receive the same color. There are many edge coloring problems on overfull subgraph still unsolved [3].

A fractional edge coloring of graph G is an assignment of a nonnegative weight ω_M to each matching M of G, such that for each edge e we have $\sum_{M\ni e}\omega_M\ge 1$. The fractional edge coloring chromatic number of a graph G, denoted by $\chi_f'(G)$, is the minimum value of $\sum_M\omega_M$ (where the minimum is over all fractional edge colorings ω). Three other equivalent definitions and some interesting results on $\chi_f'(G)$ can be found in [5]. In which, The main results are the following Theorems.

Theorem $A^{[5]}$ For any loopless multigraph G, there is

$$\chi_f'(G) = \max\{\Delta(G), \max_H \frac{2|E(H)|}{|V(H)|-1}\},$$

Where H is an induced subgraph of G with $|V(H)| \ge 3$ and |V(H)| odd.

Theorem $B^{[5]}$ Let G be a simple graph. Then $\Delta(G) \leq \chi'_f(G) \leq \chi'(G) \leq \Delta(G) + 1$.

From above Theorems we can see that $\chi'_f(G)$ may be $\Delta(G)$, or $\Delta(G)+1$, or between $\Delta(G)$ and $\Delta(G)+1$. Now it is reasonable to ask which graphs have $\chi'_f(G) = \Delta(G)$ and which have $\chi'_f(G) = \Delta(G)+1$? The following two results also can be found in [5].

Lemma 1.1^[5] Let G be an r-regular graph. Then $\chi'_f(G) = r$ if and only if G is a graph such that for any subset $X \subseteq V(G)$ with |X| odd and $|\partial X| \ge r$.

Lemma 1.2^[5] Let G be a connected graph. Then $\chi'_f(G) = \Delta(G) + 1$ if and only if G is complete graph $K_{2n+1}(n \ge 1)$.

In this paper we give some sufficient conditions for a graph G to have $\chi_f'(G) = \Delta(G)$. Our main results are Theorem 1 and Theorem 2.

Theorem 1 Let G be a graph with maximum degree $\Delta(G) = 3$. Then $\chi'_f(G) > \Delta(G)$ if and only if G contains an induced subgraph H which has exactly one vertex of degree 2 and the remaining vertices of H have degree 3 in H.

Theorem 2 Let G be a graph with maximum degree $\Delta(G)$. If $\Delta(G) > \frac{2}{3}(|V(G)| - 3)$ and $\delta(G_{\Delta}) \leq 1$, then $\chi'_f(G) = \Delta(G)$.

Theorem 2 suggests that if $\Delta(G)$ is sufficiently large compared with |V(G)|, then $\delta(G_{\Delta}) \leq 1$ is a sufficient condition for G to have $\chi_f'(G) = \Delta(G)$. Furthermore, we will show that the condition $\Delta(G) > \frac{2}{3}(|V(G)| - 3)$ is sharp in section 3.

2 Some Useful Lemmas

In this section, we state some basic results on overfull subgraphs, which will be used in the sequel.

Let the deficiency def(G) of a graph G be defined by

$$\operatorname{def}(G) = \sum_{v \in V(G)} (\Delta(G) - d_G(v)).$$

The following three Lemmas were proved in [4].

Lemma 2.1^[4] A graph G is overfull if and only if |V(G)| is odd and

$$def(G) \leq \Delta(G) - 2$$
.

Lemma2.2^[4] Let G be a graph. Then H is an overfull subgraph of G if and only if H is an induced subgraph of G satisfying

$$|E(H)| \geq \lfloor \frac{|V(H)|}{2} \rfloor \Delta(G) + 1.$$

Lemma2.3^[4] Let G be an overfull graph. Then each vertex of G is adjacent to at least two vertices of maximum degree.

Now we give a new lemma.

Lemma 2.4 Let G be a graph. Then G contains an induced overfull subgraph if and only if $\chi'_f(G) > \Delta(G)$.

Proof. Let H_0 be the induced overfull subgraph in G. By Lemma 2.1 and 2.2, $|V(H_0)|$ is odd and

$$|E(H_0)| \ge \lfloor \frac{|V(H_0)|}{2} \rfloor \Delta(G) + 1,$$

That is

$$\frac{2|E(H_0)|}{|V(H_0)|-1} > \Delta(G),$$

By Theorem A,

$$\chi_f'(G) = \max_H \frac{2|E(H)|}{|V(H)| - 1} \ge \frac{2|E(H_0)|}{|V(H_0)| - 1} > \Delta(G).$$

This proves the Necessity.

Conversely, since $\chi_f'(G) > \Delta(G)$, by Theorem A, there must be an induced subgraph H such that $|V(H)| (\geq 3)$ is odd and

$$\chi'_f(G) = \frac{2|E(H)|}{|V(H)|-1} > \Delta(G).$$

That is

$$2|E(H)| > (|V(H)| - 1)\Delta(G).$$

Since two sides of the above inequality are even, we have

$$2|E(H)| \geq (|V(H)|-1)\Delta(G)+2,$$

that is

$$|E(H)| \ge \frac{|V(H)|-1}{2}\Delta(G)+1.$$

Since |V(H)| is odd, it follows that

$$|E(H)| \ge \lfloor \frac{|V(H)|}{2} \rfloor \Delta(G) + 1.$$

By Lemma 2.2, H is overfull in G. The proof is completed.

3 Our Main Results

In this section we prove Theorem 1 and Theorem 2.

Theorem 1 Let G be a graph with maximum degree $\Delta(G) = 3$. Then $\chi'_f(G) > \Delta(G)$ if and only if G contains an induced subgraph H which has exactly one vertex of degree 2 and the remaining vertices of H have degree 3 in H.

Proof. Sufficiency. Since the induced subgraph H of G has exactly one vertex of degree 2 and other vertices are of maximum degree in H, by Lemma 2.1, H is the induced overfull subgraph of G, and by Lemma 2.4, $\chi'_f(G) > \Delta(G)$.

Necessity. Since $\chi_f'(G) > \Delta(G)$, by Lemma 2.4, G must contain an induced overfull subgraph H, and

$$2|E(H)| \geq (|V(H)|-1)\Delta(G) + 2.$$

On the other hand, we have known that

$$2|E(H)| \le |V(H)|\Delta(G) - 1,$$

and $\Delta(G) = 3$. So it follows that

$$2|E(H)| = |V(H)|\Delta(G) - 1.$$

Hence, H must have exactly one vertex degree 2 and the remaining vertices of H have degree 3. The proof of Theorem 1 is completed.

From Theorem 1, we obtain the following corollary which is an exercise of [5].

Corollary 1^[5] Let G be a simple 2-edge-connected 3-regular planar graph. Then $\chi'_f(G) = 3$.

Theorem 2 Let G be a graph with maximum degree $\Delta(G)$. If $\Delta(G) > \frac{2}{3}(|V(G)|-3)$ and $\delta(G_{\Delta}) \leq 1$. Then $\chi'_f(G) = \Delta(G)$.

Proof. Suppose that $\chi'_f(G) > \Delta(G)$. We shall obtain a contradiction.

Let vertex $x \in V(G_{\Delta})$ and $d_{G_{\Delta}}(x) \leq 1$. Since $\chi'_f(G) > \Delta(G)$, by Lemma 2.3 and 2.4, G must contain an induced overfull subgraph H and $x \notin V(H)$. Then at most one vertex in $N_G(x) \cap V(H)$ has maximum degree and for any other vertex $y \in N_G(x) \cap V(H)$, there must be $d_H(y) \leq \Delta(G) - 2$. Since subgraph H is overfull, by Lemma 2.1 and 2.2,

$$def(H) \le \Delta(H) - 2 = \Delta(G) - 2.$$

We consider two case.

Case 1. $\Delta(G)$ is even. Then there are at most $\frac{1}{2}(\Delta(G)-2)$ edges joining x to V(H). Since $d_G(x)=\Delta(G)$, there are at least $\frac{1}{2}\Delta(G)+1$ vertices of $V(G)\setminus V(H)$ which are adjacent to x. Hence

$$|V(G)| \ge 1 + |V(H)| + \frac{1}{2}\Delta(G) + 1$$

$$\ge 1 + \Delta(H) + 1 + \frac{1}{2}\Delta(G) + 1$$

$$= \Delta(G) + \frac{1}{2}\Delta(G) + 3$$

$$= \frac{3}{2}\Delta(G) + 3.$$

This contradicts that $\Delta(G) > \frac{2}{3}(|V(G)| - 3)$.

Case 2. $\Delta(G)$ is odd. Similarly, there are at most $\frac{1}{2}(\Delta(G)-1)$ edges joining x to V(H). Then there are at least $\frac{1}{2}(\Delta(G)+1)$ vertices of $V(G)\setminus V(H)$ which are adjacent to x. Hence

$$|V(G)| \ge 1 + |V(H)| + \frac{1}{2}(\Delta(G) + 1).$$

Since H is overfull, |V(H)| is odd and $|V(H)| \ge \Delta(H) + 2$. Therefore

$$|V(G)| \ge 1 + \Delta(H) + 2 + \frac{1}{2}(\Delta(G) + 1)$$

$$= \Delta(G) + \frac{1}{2}\Delta(G) + \frac{7}{2}$$

$$> \frac{3}{2}\Delta(G) + 3,$$

a contradiction too. Theorem 2 is proved.

Remark. Theorem 2 is the best possible in the following sense. The condition that $\Delta(G) > \frac{2}{3}(|V(G)| - 3)$ can not be replaced by $\Delta(G) = \frac{2}{3}(|V(G)| - 3)$. For example, Let H_1 be a graph obtained from K_9 by deleting 3 edges which constructs a triangle. Then H_1 has 3 vertices of degree 6 and 6 vertices of degree 8. Let $H_2 = K_6$ be a complete graph with 6 vertices and $V(H_1) \cap V(H_2) = \phi$. Construct graph G by joining a vertex G of G to each vertex of degree 6 in G. Thus G is an isolated vertex of G is a vertex with maximum degree in G. Thus G is an isolated vertex of G clearly G is an analysis of G is an isolated vertex of G is a vertex with maximum degree in G. Thus G is an isolated vertex of G is a vertex with maximum degree in G. Thus G is an isolated vertex of G is an isolated vertex o

References

- J.A.Bondy and U.S.R.Murty, Graph theory with applications, MacMillan, London (1976).
- [2] I.Holyer, The NP-completeness of edge-coloring, SIAM J.Comput. 10 (1981), 718-720.
- [3] T.R.Jenson and Bjarne Toft, Graph coloring problems, John Wiley and Sons, Inc. New York (1992).
- [4] T.Niessen, How to find overfull subgraphs in graphs with large maximum degree, Discrete Applied Mathematics.51 (1994), 117-125.
- [5] E.R.Scheinerman and D.H.Ullman, Fractional graph theory, John Wiley and Sons, Inc. New York (1997).
- [6] V.G.Vizing, On an estimate of the chromatic index of a p-graph, Diskret. Analiz. 3 (1968), 25-30.