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Abstract

A fractional edge coloring of graph G is an assignment of
a nonnegative weight wys to each matching M of G such that
for each edge e we have ), o wsm > 1. The fractional edge
coloring chromatic number of a graph G, denoted by xy(G), is
the minimum value of 3~ ,, war(where the minimum is over all
fractional edge colorings w). It is known that for any simple
graph G with maximum degree A, A < x7(G) < A+1. And
X7(G) = A+1if and only if G is Kan41. In this paper, we give
some sufficient conditions for a graph G to have x5 (G) = A.
Furthermore we show that the results in this paper is the best
possible.

1 Introduction

Our terminology and notation will be standard. The reader is referred
to [1] for the undefined terms. The graphs in this paper are simple, that
is, they have no loops or multiple edges. We use V(G), E(G), |V(G)|,
A(G) and 4(G) to denote, respectively, the vertex set, edge set, order,
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maximum degree and minimum degree of a graph G. Let Ng(v) denote
the neighborhood of v and let dg(v) = [Ng(v)| be the degree of v in G. For
a subset S C V(G), we write 8S to stand for those edges that have exactly
one end in S. Let G4 denote the subgraph of G induced by the vertices of
degree A(G). An edge k-coloring of a graph G is a mapping ¢ from E(G)
to the set of colors {1,2,--- , k} such that no two incident edges receive the
same color. The edge coloring chromatic number x'(G) of G is the smallest
integer k such that G admits an edge k-coloring. A well-known theorem of
Vizing [6] states that

A(G) £X(G) < A(G) +1.

G is said to be Class 1 if x'(G) = A(G) and Class 2if x'(G) = A(G)+1. The
problem of deciding whether a given graph is Class 1 or Class 2 is known
as the classification problem and Holyer [2] showed that this problem is
N P—complete.

A graph G is overfull if |E(G)| > |XEU|A(G) + 1. We say that a
subgraph H of G is an overfull subgraph if H is overfull and A(H) = A(G)
holds. A sufficient condition for a graph to be Class 2 is that G is overfull,
or more generally, that G has an overfull subgraph H. This is easy to see,
since the edges of H colored with the same color form a matching, and at
most ||V (G)|/2] edges of H can receive the same color. There are many
edge coloring problems on overfull subgraph still unsolved (3].

A fractional edge coloring of graph G is an assignment of a nonneg-
ative weight wy to each matching M of G, such that for each edge e we
have 3~ /5. wm 2 1. The fractional edge coloring chromatic number of a
graph G, denoted by x/(G), is the minimum value of ) ,, war(where the
minimum is over all fractional edge colorings w). Three other equivalent
definitions and some interesting results on x;(G) can be found in 5]. In
which, The main results are the following Theorems.

Theorem A% For any loopless multigraph G, there is

_2|E(H)| POy,
7 VH) -

Where H is an induced subgraph of G with |V (H)| > 3 and |V(H)| odd.

x7(G) = max{A(G),m
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Theorem B!S! Let G be a simple graph. Then A(G) < x4(G) < X'(G) <
A(G) + 1.

From above Theorems we can see that x;(G) may be A(G), or A(G)+
1, or between A(G) and A(G)+1. Now it is reasonable to ask which graphs
have x(G) = A(G) and which have x}(G) = A(G) +1? The following
two results also can be found in [5].
Lemma 1.19! Let G be an r-regular graph. Then x4(G) = r if and only if
G i3 a graph such that for any subset X C V(G) with | X| odd and |6X| > r.

Lemma 1.205 Let G be a connected graph. Then X7 (G) = A(G) +1 4f
and only if G is complete graph Kopt+1(n 2> 1).

In this paper we give some sufficient conditions for a graph G to have
Xt(G) = A(G). Our main results are Theorem 1 and Theorem 2.
Theorem 1 Let G be a graph with marimum degree A(G) = 3. Then
X5(G) > A(G) if and only if G contains an induced subgraph H which has
ezactly one vertez of degree 2 and the remaining vertices of H have degree
3in H.

Theorem 2 Let G be a graph with mazimum degree A(G). If A(G) >
2(IlV(G)| - 3) and 6(Ga) < 1, then x3(G) = A(G).

Theorem 2 suggests that if A(G) is sufficiently large compared with
|[V(G)|, then 6(Ga) < 1 is a sufficient condition for G to have xf(G) =
A(G). Furthermore, we will show that the condition A(G) > 2(|V(G)|-3)
is sharp in section 3.

2 Some Useful Lemmas

In this section, we state some basic results on overfull subgraphs, which
will be used in the sequel.
Let the deficiency def(G) of a graph G be defined by

©f(G) = Y (A(G) - do(v)).

veV(G)
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The following three Lemmas were proved in [4].
Lemma2.14] 4 graph G is overfull if and only if |V(G)| is odd and

def(G) < A(G) - 2.

Lemma2.24] Let G be a graph. Then H is an overfull subgraph of G if
_and only if H is an induced subgraph of G satisfying

) 2 1 ja) +1.

Lemma2.34 Let G be an overfull graph. Then each vertez of G is adja-
cent to at least two vertices of mazimum degree.

Now we give a new lemma.
Lemma 2.4 Let G be a graph. Then G contains an induced overfull sub-
graph if and only if x;(G) > A(G).
Proof. Let Hy be the induced overfull subgraph in G. By Lemma 2.1 and
2.2, |V(Hp)| is odd and

o) = LE a6y +1,

That is
|V (Ho)| -1 '
By Theorem A,
2|E(H)| 2|E(Ho)|

X;(G) = max > A(G).

[V(H)| -1~ [V(Ho)| -1
This proves the Necessity.

Conversely, since x3(G) > A(G), by Theorem A, there must be an
induced subgraph H such that |V(H)|(= 3) is odd and
2|E(H)|

x5(G) = V=1 A(G).

That is
2|E(H)| > (IV(H)l - DA(G).

Since two sides of the above inequality are even, we have

21E(H)| = (IV(H)| - 1)A(G) + 2,
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that is
|E(H)| 2

Since |V (H)| is odd, it follows that

V(H) -1
A0 +1.

|E(H)| 2 L@JA(G) +1.

By Lemma 2.2, H is overfull in G. The proof is completed.

3 Owur Main Results

In this section we prove Theorem 1 and Theorem 2.
Theorem 1 Let G be a graph with mezimum degree A(G) = 3. Then
X7(G) > A(G) if and only if G contains an induced subgraph H which has
ezactly one vertex of degree 2 and the remaining vertices of H have degree
Sin H.
Proof. Sufficiency. Since the induced subgraph H of G has exactly one
vertex of degree 2 and other vertices are of maximum degree in H, by
Lemma 2.1, H is the induced overfull subgraph of G, and by Lemma 2.4,
x5 (G) > A(G).

Necessity. Since x%(G) > A(G), by Lemma 2.4, G must contain an
induced overfull subgraph H, and

2|E(H)| =z (IV(H)| - )A(G) + 2.
On the other hand, we have known that
2|E(H)| < [V(H)|A(G) - 1,
and A(G) = 3. So it follows that
2|E(H)| = [V(H)|A(G) - 1.

Hence, H must have exactly one vertex degree 2 and the remaining vertices
of H have degree 3. The proof of Theorem 1 is completed.

From Theorem 1, we obtain the following corollary which is an exercise
of [5]. :
Corollarylls] Let G be a simple 2-edge-connected 3-regular planar graph.
Then x}(G) = 3.
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Theorem 2 Let G be a graph with mazimum degree A(G). If A(G) >
2(IlV(G)| - 3) and §(Ga) < 1. Then x;(G) = A(G).

Proof. Suppose that x(G) > A(G). We shall obtain a contradiction.
Let vertex z € V(Ga) and dg, (z) < 1. Since x{(G) > A(G), by Lemma
2.3 and 2.4, G must contain an induced overfull subgraph H and = ¢ V(H).
Then at most one vertex in Ng(z) [V (H) has maximum degree and for
any other vertex y € Ng(z)(V(H), there must be dy(y) < A(G) - 2.
Since subgraph H is overfull, by Lemma 2.1 and 2.2,

def(H) < A(H) -2 = A(G) - 2.

We consider two case.

Case 1. A(G) is even. Then there are at most $(A(G) — 2) edges
joining z to V(H). Since dg(z) = A(G), there are at least $A(G) + 1
vertices of V(G) \ V(H) which are adjacent to z. Hence

ve) > 1+|V(H)|+%A(G)+l
> 1+A(H)+1+%A(G)+l
= A6)+3A6)+3
3
= 5A(G)+3.

This contradicts that A(G) > 2(|V(G)| - 3).

Case 2. A(G) is odd. Similarly, there are at most 3(A(G) — 1) edges
joining z to V(H). Then there are at least $(A(G) + 1) vertices of V(G) \
V(H) which are adjacent to z. Hence

1
VG| 2 1+IV(H)| + 5(AG) +1).
Since H is overfull, |V (H)| is odd and |V (H)| > A(H) + 2. Therefore
1
V(G) =2 1+A(H)+2+ E(A(G) +1)

1 7

= AG)+30(0) +5

> 2a0)+3

a contradiction too. Theorem 2 is proved.
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Remark. Theorem 2 is the best possible in the following sense. The
condition that A(G) > 2(|V(G)| — 3) can not be replaced by A(G) =
%—(lV(G)| — 3). For example, Let H, be a graph obtained from Ky by
deleting 3 edges which constructs a triangle. Then H; has 3 vertices of
degree 6 and 6 vertices of degree 8. Let Ha = K be a complete graph with
6 vertices and V(H;) [ V(H2) = ¢. Construct graph G by joining a vertex
z of Hs to each vertex of degree 6 in H;. Then A(G) = A(H;) = 8 and
z is a vertex with maximum degree in G. Thus z is an isolated vertex of
Ga. Clearly 6(Ga) < 1 and A(G) = 3(|[V(G)| - 3). It is easy to see that
|E(Hy)| 2 [W]A(G) + 1, that is, H; is overfull in G. By lemma 2.4,
x7(G) > A(G). The result in Theorem 2 is not true. So we have known
that the condition that A(G) > $(|V(G)] - 3) is sharp.
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