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Abstract

Let G be a connected multigraph with an even number of edges
and suppose that the degree of each vertex of G is even. Let u(uv, G)
denote the multiplicity of edge (u,v) in G. It is well known that we
can obtain a halving of G into two halves G, and G2, i.e. that G can
be decomposed into multigraphs G1 and G2, where for each vertex
v, deg(v, G1) = deg(v, G2) = 1deg(v,G). It is also easy to see that
if the edges with odd multiplicity in G induce no components with
an odd number of edges then we can obtain such a halving of G
into two halves G1 and G2 that is well-spread, i.e. for each edge
(u,v) of G, |p(uv,G1) — p(uv,G2)| < 1. We show that if G is a
A-regular multigraph with an even number of vertices and with A
being even, then even if the edges with odd multiplicity in G induce
components with an odd number of edges, we can still obtain a well-
spread halving of G provided that we allow the addition/removal of
a Hamilton cycle to/from G. We give an application of this result
to obtaining sports schedules such that multiple encounters between
teams are well-spread throughout the season.
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1 Introduction

Let G be a multigraph with vertex set V(G) and edge set E(G). We denote
the degree of vertex v € V(G) by deg(v,G) and the maximum degree of
G by A(G). The multiplicity of an edge (u,v) € E(G) is defined to be
the number of edges joining u and v and is denoted by u(uv,G) and the
maximum edge-multiplicity of G is denoted by u(G) respectively. G is said
to be simple if 4(G) = 1. The simple graph underlying G is defined to be
the simple graph obtained from G by replacing all multiple edges in G by
single edges and is denoted by simp(G).

We denote by Goqq the multigraph induced by the edges of odd multi-
plicity in G. We will say that multigraph G is an even degree multigraph if
deg(v, G) is even for all v € V(G). It is well known that every even degree
multigraph G that is connected has an Euler tour. We refer the reader to
([2,4]) for all terminology and notation that is not defined in this paper.

Let G be an even degree multigraph. A decomposition of G into multi-
graphs G; and G, is said to be a halving of G into two halves G; and
Ga, if for each vertex v, deg(v,G1) = deg(v,G2) = 3deg(v,G). It is an
easy exercise to show that an even degree multigraph has a halving if and
only if every component of G has an even number of edges. One need
only place alternate edges in an Euler tour of each component of G into
halves G; and G respectively. Many results are known about halvings of
multigraphs. See for instance [1] where it was shown that a multigraph
can be decomposed into any given number of spanning subgraphs, each
with almost the same degree sequence and almost the same number of
edges. However, none of these results pay any attention to how the multi-
ple edges of the multigraph split among the spanning subgraphs in the
decomposition. A halving of an even degree multigraph G into halves
G, and G is said to be well-spread if in addition to the condition that
deg(v, G1) = deg(v, G2) = 3deg(v,G) for all v € V(G), we also have that
for each edge (u,v) € E(G), |u(uwv,G1) — p(uv,Gz2)| < 1. The following
theorem gives a simple necessary and sufficient condition for the existence
of a well-spread halving of an even degree multigraph.

Theorem 1 Let G be an even degree multigraph and let Goqq be the multi-
graph induced in G by the edges of odd multiplicity in G. There exists a
well-spread halving of G if and only if simp(Goqa) has no components with
an odd number of edges.

Proof. In a well-spread halving of G into halves G, and G, for each edge
(u,v) € E(G), at least [ﬂ%’—clj edges between u and v must be included
in each of G; and G,. The graph obtained from G by removing exactly
2|_E£“;—’G2_| edges between u and v for each edge (u,v) € E(G) is precisely
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the simple graph simp(Goq4). Now since G is an even degree multigraph,
so is simp(God4), and we have that there exists a well-spread halving if and
only if simp(Goaq) has no components with an odd number of edges. |

If G is an even degree multigraph and if simp(Gyq4) has some compo-
nent with an odd number of edges then by Theorem 1, there does not exist
a well-spread halving of G. However, it was shown in [5] that if G is a
A-regular multigraph on n vertices with » and A being even and u(G) = 2
then generally there exists a well-spread halving of G if we allow the ad-
dition/removal of a Hamilton cycle to/from G. We denote by K the
complete multigraph on n vertices with r parallel edges between each pair
of vertices.

Theorem 2 (Plantholt and Tipnis [5]) Let G be a A-regular multigraph
on n vertices with n and A being even and with mazimum multiplicity
u(G) =2.

(i) If A > n+2, then G contains a Hamilton cycle H such that G —
E(H) = Hy|J) Ha, where Hy and H; are edge-disjoint (5 —1)- regular
simple graphs.

(i) If A < n — 4, then the complement of G relative to K? contains o
Hamilton cycle H such that G|\J E(H) = Hy|J Ha, where H, and H,
are edge-disjoint (£ + 1)- regular simple graphs.

‘We note that since u(G) = 2 the decomposition of G — E(H) (respectively
G E(H)) in (i) (respectively (ii)) of Theorem 2 gives a well-spread halving
of G — E(H) (respectively G|J E(H)) into halves H; and Hz. In this
paper we extend Theorem 2 to a similar theorem for regular, even degree
multigraphs G with maximum multiplicity x(G) < p, where p is any even
integer.

Theorem 3 Let G be a A-regular multigraph of even order n and maxi-
mum multiplicity u(G) < p with p and A being even.

(3) If A > p(3 +1), then G contains a Hamilton cycle H such that there
ezists a well-spread halving of G — E(H).

() If A < p(3 — 2), then the complement of G relative to ¥ contains

a Hamilton cycle H such that there exists a well-spread halving of
GUE(H).

Our motivation behind studying well-spread halvings of multigraphs is il-

lustrated by the following example. Suppose that we have 8 teams that
are to play a total of 22 games each during the season and suppose that
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any pair of teams play each other at most 4 times during the season. The
number of games to be played between each pair of teams is given by the
matrix M(G) in Figure 1. We would like to schedule these games such that
multiple encounters between teams are ‘well-spread’ during the season. The
situation is modeled by a 22-regular multigraph G on 8 vertices with inci-
dence matrix M(G). Notice that simp(Goaq) has two components with an
odd number of edges and hence by Theorem 1 there does not exist a well-
spread halving of G. However, we can apply Theorem 3 to find a Hamilton
cycle H such that G — E(H) has a well-spread halving into halves G, and
G,. This divides the games into three parts: those corresponding to edges
in Gy, in H, and in G3. The incidence matrices M(G1), M(G2) and M(H)
of G1, G2 and H respectively are given in Figure 1. Notice that each of
G1 and G is 10-regular and the edges of odd multiplicity in G; and G, do
not induce any components with an odd number of edges. Hence Theorem
1 implies that G; has a well-spread halving into halves P, and P, and G,
has a well-spread halving into halves Q; and @Q;. Thus, we can achieve a
scheduling of the games into five parts with multiple games between teams
well-spread during the season. The five parts are those corresponding to
edges in Py, P, H, @, and Q. Note that in general, the halves G; and G»
given by Theorem 3 in turn may not have a well-spread halving and that
even when Theorem 3 can be applied to G; and G, iterated application
of Theorem 3 will result in the addition and deletion of several Hamilton
cycles.

The National Hockey League (NHL) schedule for the 2003-2004 season
is an example of a schedule for which a variety of multiplicities occur in the
multigraph corresponding to the schedule. The set of edge multiplicities
in the multigraph for this NHL schedule is {1,2,4,6}. In the context of
scheduling games between teams, we note that since n is even in Theorem
3, a Hamilton cycle in G consists of two perfect matchings. Part (i) of
Theorem 3 thus divides the schedule into two well-spread halves and games
scheduled in two other time periods. Part (ii) of Theorem 3 can be viewed
as dividing the schedule into two well-spread halves with the Hamilton cycle
being added corresponding to two ‘bye’ time periods. The 1993 National
Football League schedule was an example of a situation where each team
had two ‘bye’ weeks over an 18-week schedule.

2 Proof of Theorem 3

We will need the following Theorem 4 and Lemma 1 in order to prove Theo-
rem 3. Theorem 4 is a result by Chvétal [3] that gives a sufficient condition
for the existence of a Hamilton cycle in a simple graph G and Lemma 1
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Figure 1: A well-spread sports schedule.

guarantees a spanning tree T' in a connected, even degree multigraph G
such that the degrees of the vertices in T are small relative to the degrees
of the vertices in G. Although Lemma 1 appeared in [5], we include its
proof here for the sake of completeness.

Theorem 4 (Chvétal [8]) Let G be a graph on n vertices with degree
sequence d) < dp < ... <dn. Ifr < % implies thatd. > 1 ordp—r 2n-7,
then G contains a hamilton cycle.

Lemma 1 (Plantholt and Tipnis [5]) Every connected, even degree multi-
graph G contains a spanning tree T such that 1 < deg(v,T) < 1+-21-deg(*u, G)
for each v € V(G).

Proof. Since G is an even degree multigraph and is connected, G contains
an Euler tour. We consider the edges in an Euler tour in G for inclusion in
T in the order that they are encountered in the Euler tour and we include
an edge e in T if and only if e is incident with a vertex that is previously
unvisited in the Euler tour. The result now follows because in any Euler
tour in G, each vertex v € V(G) is revisited at least (1deg(v, G) — 1) times
after the first time that the Euler tour visits vertex v.

‘We are now ready to prove Theorem 3 in the Introduction.
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Proof. We prove only part (i) of the theorem and point out that part
(ii) follows from part (i) by considering the complement of G with respect
to K,(," ). Let G be a A-regular multigraph of even order n and maxi-
mum multiplicity 4(G) < p with p and A being even, and suppose that
A > p(% +1). We will show that G contains a Hamilton cycle H such that
there exists a well-spread halving of G — E(H) into halves denoted by G,
and Ga. For each edge (u,v) € E(G), we begin by including I_MZQ);QJ
parallel edges between vertices u and v in each of G; and G3. Denote by S
the spanning multigraph of G that remains after removing these two sets
of [5&”'22)_—11] parallel edges from G for each edge (u,v) € E(G). Clearly,
1(S) < 2 and we have that

0 if p(ww,G)=0
p(uv,S) =< 1 if p(uv,G) is odd
2 if p(uv,G) is even and non-zero.

Note that simp(S) = simp(G) and that since G is an even degree multigraph
and in constructing S from G we removed an even number of edges incident
on each vertex v € V(G), we have that S is an even degree multigraph. To
complete the proof we now show that S contains a Hamilton cycle H such
that there exists a well-spread halving of S — E(H) into (simple) halves H;
and Hg.

Note that simp(Goqq) = Sodd, and Soaa is an even degree multigraph
because G is an even degree multigraph. Hence, by Lemma 1 there exists a
spanning forest F in Syqq such that there is a maximal spanning tree in F for
each non-trivial component of Soaq, and 1 < deg(v, F) < 1+ 3deg(v, Spaa)
for each v € V(Soa4). We claim that S — E(F) contains a Hamilton cycle.

Claim: S — E(F) contains a Hamilton cycle.

Proof of Claim: We will prove that S* = simp(S — E(F)) contains a
Hamilton cycle. Note that since A(G) > p(3+1), we have that deg(v, simp(G)) :
2 +1 for each v € V(G) and that we have strict inequality in this relation-
ship if vertex v has at least one edge of multiplicity less than p incident

on it in G. Hence, deg(v,simp(S)) > % + 1 for each v € V(G) and we
have strict inequality in this relationship if vertex v has at least one edge

of multiplicity less than p incident on it in G. Hence for each v € V(F) we
have that deg(v,simp(S)) > 2 +2.

Let d; < dy <... < d, be the degree sequence of S* and suppose for
contradiction that S* does not contain a Hamilton cycle. Then by Theorem
4 there exists a positive integer r < % such that d, < r. Let V, C V(F)
denote the set of these r vertices that have degree at most r in S*. For
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each v € V,. we have that

deg(v, S*)

deg(v, simp(S)) — deg(v, F)
deg(v,simp(S)) - (1 + 5 deg(v, Soad))

v

v

deg(v,simp(S)) — (1 + %deg(v, simp(:5))

v

1n n
'2-( 2 + 2) 1= i
Hence we have that § <d, <r < 3. Let r = % —k where k is some integer
satisfying 1 < k < % and let [V(F)| = p. Let s = 3 .y () deg(v, simp(S5))
and s* = zuev(a) deg(v, 5*). If v € V(F) then deg(v, simp(S)) = deg(v, S*).
Thus, ¥, ey, deg(0,Simp(S)) — Ty deg(v, 5*) = 2E(F)| < 2(p - 1).
For each v € V(F), deg(v,simp(S)) — deg(v,S*) > 1 and for each v € V,
deg(v,simp(S)) — deg(v,S*) > (3 +2) — r = k + 2. Hence we have that
s—s*2p+rk+1)=p+ (3 -k)(k+1),ie s—s*> f(k), where f(k) is
the quadratic function given by f(k) =p+ (3 -k} (k+1)for 1<k < %
To summarize, we have that 2(p — 1) > s — s* > f(lc), forl<k< %
Note that f(k) achieves its maximum value at k =  — 1. We address the
possible values of k in the following three cases and in each case obtain a
contradiction to the assumption that S* does not contain a Hamilton cycle.

I:L:-

(i) 2 <k < Z—1: f(k) is an increasing function on the interval [1, 2
and hence for each k satisfying 2 < k < § - - we have that f (k) >
fQ)=p+(n-2)>2(p-1),a contta.dlctlon

(i) k=1: In this case, 2(p—1) 2 s—38* > f(1)=p+(n—2) > 2(p—1)
and hence we must have p = n and s — s* = f(1) = 2(n — 1). Thus,
since for each vertex v, deg(v,simp(S)) > 2 and deg(v,5*) < % +1,
it is easy to verify that this implies that in S* we must have precisely

3 —1) vertices of degree (3 —1) each and precisely (3 +1) vertices of
degree at least (% 1) each. So, i < % implies that d,_; > (n—1) and
Theorem 4 implies that S* contains a Hamilton cycle, a contradiction.

(iii) k£ = %: In this case, f(k) = p+ 3(% +1). Now, for each n > 8, it
is true that 2G3+1)>Mn-2) and hence for each n > 8, f(k) >
p+(n—-2) > 2(p 1), a contradiction. Since k is an integer, this
implies that we must have n =4 orn =8 Ifn=4thenk =1
which in turn is impossible by case (ii) above, and so we must have
that n = 8 and k = 2. Now, for v € V(G), if deg(v,S*) = 2 then
deg(v,simp(S)) > 6, and hence it follows that S* has exactly two
vertices u and v such that deg(u, S*) = deg(v, S*) = 2, and that F is
the unique tree on 8 vertices that has exactly two vertices of degree
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4 each, and exactly 6 vertices of degree one each. Thus it is clear
that S* has six vertices, each of whose degree is at least 5, and two
vertices u and v of degree two each, with u and v having no common
neighbors. Given this form for S* it is easy to check that $* must
have a Hamilton cycle, a contradiction.

This ends the proof of the claim.

Let H be a Hamilton cycle in S — E(F) and denote by X the spanning
subgraph of S consisting of the singleton edges of S— E(H). X is connected
because any edge of H that joins two vertices that are in the same connected
component of Goqq has multiplicity two in S. In addition, X is an even
degree simple graph and has an even number of edges because G is an even
degree multigraph, [E(G)| is even and X is obtained from G by deleting
edges incident at each vertex in pairs. A well-spread halving of S — E(H)
into (simple) halves H; and H> is now easily obtained by including one
edge from each pair of two parallel edges in S — E(H) in each of H; and H;
and by including alternate edges in an Euler tour of X in each of H, and
H,. To summarize, we have constructed a well-spread halving of G — E(H)
into halves G, and G3, where H is a Hamilton cycle in S — E(F), and
for i = 1,2, G; consists of the edges in H; together with the [-(ﬂ%ﬂj
parallel edges of G included in G; for each pair of vertices u,v € V(G) at
the beginning of the proof. W

3 Conclusions

Part (i) of Theorem 3 in this paper gives a decomposition of a regular
multigraph G of even order and degree that is high relative to the order
and maximum multiplicity of G into a Hamilton cycle and two halves with
the multiple edges of G being well-spread between the two halves. If G
is a regular multigraph of even order and degree that is low relative to
the order and maximum multiplicity of G, part (ii) of Theorem 3 gives a
decomposition of G|J E(H), where H is a particular Hamilton cycle that
is not in G, into two halves with the multiple edges of G being well-spread
between the two halves. We point out two problems that require further
work. First, the case when G is a A-regular multigraph of even order n
and maximum multiplicity u4(G) < p with p(3 —2) < A < p(§ +1) is not
addressed by Theorem 3. We expect that the use of a theorem that gives a
sufficient condition that is weaker than that of Theorem 4 for the existence
of a Hamilton cycle might be able to address this gap between parts (i) and
(ii) of Theorem 3. Secondly, if p is odd we can surely obtain a decomposition
as in part (i) of Theorem 3 if we assume that A > (p + 1)(3 + 1) and
similarly a decomposition as in part (ii) of Theorem 3 if we assume that
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A < (p+1)(% +1). However, this is too restrictive and we conjecture that
Theorem 3 is also true if p is odd.
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