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Abstract

Let g be an odd prime power and p be an odd prime with ged(p, q) =
1. Let the order of ¢ modulo p be f and ged (ﬁi,q) = 1. Here
explicit expressions for all the primitive idempotents in the ring
Ropn = GF(q)[z)/ (z?"" - 1), for any positive integer n, are obtained
in terms of cyclotomic numbers, provided p does not divide 9%, if
7 > 2. Some lower bounds on the minimum distances of irreducible
cyclic codes of length 2p™ over GF(q) are also obtained.
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1. Introduction.

Let GF(q) be a field of prime power order ¢, ¢ odd. Let m > 1 be
an integer with ged(g,m) = 1. Let R, = GF(q)[z]/(z™ — 1). A cyclic
code of length m over GF(q) is an ideal in the ring R,,. The ideal C is
generated by a generating polynomial g{z) that is the unique monic divisor
of (z™—1). The ideal C is also generated by a unique polynomial e(z) which
is an idempotent in R, i.e., (e(z))? = e(z) (for reference, see Chapter 4
of [5] or Chapter 8 of [6]). Every ideal in R,, can be expressed uniquely
as a sum of minimal ideals also known as irreducible cyclic codes. The
generator idempotents of irreducible cyclic codes are called the primitive
idempotents. Thus it is of interest to determine the primitive idempotents.

Construction of binary idempotents from the cyclotomic cosets is easy.
In general, however, as stated by V. Pless [7, §3, p.95], “we do not have
much information about the codes generated. Only in special situations do
we know the dimension”. We consider non-binary cyclic codes only, i.e.,
we take g to be always odd.
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For non-binary cyclic codes, Berman [4, p.22] gave explicit expression
(without proof) for all the primitive idempotents in Rpn, where p, q are
odd primes and g a primitive root modulo p®; Pruthi and Arora [8] verified
it. Let the order of ¢ modulo p be f and gcd(L,q) = 1. In a previous
paper [9], the authors gave an algorithm to determme all the primitive
idempotents in the ring Ry» = GF(q)[z]/ (x” —1), for any positive integer
n, with the condition that p does not divide 9p— if n > 2; thus generalizing
a result of Berman [4].

In this paper, we give an algorithm to determine all the primitive idem-
potents in the ring Ropn = GF(q)[z])/(z?*" — 1), (see Theorem 3). This is
an extension of a result of Arora and Pruthi 1], where they obtained prim-
itive idempotents in the ring Rapn, under the strong assumption that ¢ is
a primitive root mod 2p”™, i.e., for f = p — 1 only. Our method of comput-
ing primitive idempotents in the ring Rapn is similar to that of computing
primitive idempotents in the ring Ry, used in [9].

Earlier, Bakshi and Raka [2] have derived all the primitive idempotents
in the ring Rpng, where p,q, £ are distinct odd primes, ¢ a primitive root
modulo p™ and also modulo ¢, with gcd(ﬂg-:l, ﬂzg) = 1. In [3], Bakshi and
Raka obtained all the primitive idempotents in Rem, m > 3, wheng=3o0r5
(mod 8).

2. Cyclotomic Cosets modulo 2p™.

For any integer m > 1 such that ged(m, ¢) = 1, the set {0,1,2,.--,m —
1} is divided into disjoint cyclotomic cosets C, = {s, sq, s¢?,- -, sq™* "'},
where m; is the smallest positive integer such that s¢g™* = s(mod m). In
this section, we determine g-cyclotomic cosets modulo 2p™.

Throughout this paper, we assume that p is an odd prime, n is a positive
integer, ¢ is an odd prime power with gcd(p,g) = 1. Let the order of ¢q
modulo p be f = %‘ for some positive integer e and let ¢/ = 1 + 2pA.
Further suppose that p does not divide A, if n > 2. Let O,,(q) denotes the
order of ¢ modulo m. The following two lemmas can be easily obtained as
in [9].

Lemma 1: Ogpn(g) = fp"~! = Opn(q) for all n > 1.

Lemma 2 : Let g be a primitive root mod 2p such that gcd(9— ,p) =
1, then g is a primitive root mod 2p", and hence a primitive root modulo
p™ also, for all integers n > 1.

Remark 1: On replacing g by g + 2p (if necessary), we can always
ensure that gcd(%,p) = 1, so there always exist a primitive root g
mod 2p™ for alln > 1.

Theorem 1 : For each integer n >

1, there are 2(en + 1) distinct
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g-cyclotomic cosets mod 2p™ given by

Co {0},

CP" {pn}, o . -

Copsge = {2'p7gF, 2'pig%q, 207 g%, - -, 2ipighe/P" 77 1},
for0<i<1,0<j<n-1and0< k <e—1, where g is a primitive root
mod 2p™.

Proof is similar to that of Theorem 1 of [9].

3. Cyclotomic numbers and Periods.

The results of this section are explicitly stated and proved in [9]. For
the sake of completeness, we give some definitions and results we need. The
reduced residue system modulo p given by {1,g, g%, - -, g?~2} is divided into
e disjoint classes C;, for 1 =0,1,2,---,e — 1, where

éi = {ges+i 8= 0$ 1’ 27 . ')f - 1} = {gi’ giQt giq2, nT ')giq,-l}‘

If n = 1, the class C; is same as C,:, defined earlier.
For fixediand j, 0<i,5 <e—1, the cyclotomic number A,J is defined
to be the number of solutions of the equation

zi+1= Zj, where 2; € é{, z; € éj.
For 0 < k < e — 1, the period 7y, is defined as
Zﬂg ¢ = Zﬂf‘*" > (1)
t=0 J'edk

where 3 is a primitive p** root of unity in some extension field of GF(qg).
Let A denote the e x e matrix given by

Acw—-f An—f Ane—-f - Age-1-f
Ao An Ay cor Aye-1)
Ao An Azz Az(e_l) , if f is even
A-10  A(e-11 A(e-—l)2 e A(e—l)(e-—l)
and is given by
[ Aoo Ao Aoz <o+ Ao(e-1) T
Ag-no  Ag-m  Ag-nz o Aggoi)e-)
Aigro—f Agn—f Agr-f - Ag)e-n-—/ |, if fisodd
A(;-H)O A(,-H)x A(;+1)2 ot A(;+I)(c—l)
A A(e-—l)O ‘ A(e—l)l Ae-12 - A(e—l)(c—l) i
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Let X = (zo,z1,Z2,- -, Te—~1)T, where ‘T stands for the transpose of a
matrix, be an eigen vector of .A. We say that X has cyclic property if for
each k, 0 < k < e —1, o%(X), the kth cyclic shift of X, is also an eigen
vector of A.

The following theorem, proved in [9], is a crucial step towards the main
result.

Theorem 2 : Let ged(e,q) = 1.

(i)  The period ; is an eigenvalue of the matrix A with P; = (1, 41,
Ti+2, - Ti—1)7 as a corrosponding eigen vector with first entry
n;, foreachi, 0<i<e-1.
(Thus the eigen vector P;, for each i, has the cyclic property.)

(i¢) The matrix P = (Py P; P --- P.—;) having the eigen vector P; as its
(2 + 1)th column is nonsingular, so that 79, 7, 72, -+, Me—; are all
the eigenvalues of A, counted with multiplicity.

(#3) If X = (po, p1,p2," -+, Pe—1)T is another eigen vector of A with cyclic
property, then X = aP; for some j, 0 < j < e—1 and for some
scalar a € GF(q).

e—1

In addition, if Zp,- = —1, then X = P; for some j.

i=0
Lemma 3 : Let ged(e,2p) =1, p=1+ef.
(i) For £=0o0r 1, a is an e** power residue mod 2¢p*, where k is any
positive integer, if and only if
o/ =1 (mod 2%p*).
(ii) If a is an e* power residue mod 2p, then a + 2up, for any , is an

eth

power residue mod 2p*, for all k > 1.

(ili) Theset S= < a+2up: u runs over complete residue system
mod pF-!
consists of all the fp*~! incongruent e* power residues mod 2p* for
all k>2.
Proof is similar to that of Lemma 10 of [9].

Lemma 4: The cyclotomic number Ag; is even or odd according as
2¢ C’j or not. In particular, exactly one of the numbers Ag;, say Ag, is
odd.

This is Lemma 4 of [10, Part I).

Lemma 5 : Let 2 € C, for some ¢, 0 < ¢t < e — 1. Then, for every
s, 0<s<n-1,2=g'q* (mod p™~?), for some u,, 0 < uy < fp*~2~1-1.

Proof : 2 € C, implies 29~ is an e** power residue mod p, which by
Lemma 3(i), gives (297¢)f =1 (mod p). Then for every s, 0 < s <n -1,

a runs over e*? power residues mod 2p }
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we have
n—~g—

(297" """ =1 (mod p™~*).

This, by Lemma 3(i) again, gives that 2g~* is an e** power residue mod
p"%. Asl,q, ¢%,---,¢/P"""'~! are all the e** power residues mod p"~*,
we get the required result.

Lemma 6 : Let £ be either 0 or 1. Let S,-(e), 0 < ¢ € e ~—1, denote the
sum ' ) R
S0 = 20t 4 2ieta e L et
where v is a primitive (2p%)th, k > 1, root of unity. Then for a suitable

choice of v, we have

7 if k=1 and £=1
SO ={ —p_, if k=1 and £=0
0 if k>2.
Proof : If k =1 and ¢ = 1, then choosing v such that v2 = 3, we have

U o
SV =N =5 e =y
u=0 u=0

Let now k = 1 and £ = 0. We know, by Lemma 5, that 2 = g’q*~-! (mod p),
for some up—1, 0 < up—; < f—1 which is equivalent to 2 = gtq*~-! + p (mod
2p). Since 4P = —1, we have

/-1 -1 -1
iU L Up—1 £ u t+iupjtu i u
m o= 2:72941 =§:7(9q +p)g°q =§:79 q¥n-1 AP9

u=0 u=0 u=0
f-1
t4+i v 0
= "Z’Yg T = "‘S:Qt
v=0

which implies Si(o) = —7i—¢-
Let now k > 2. As the set {1,q, q2,~-,qf”k_l“‘} consists of all the et®
power residues mod 2p*, using Lemma 3(iii) and working as in Lemma 11
of [9], we get that S; =0 for each i, 0<i<e—1and k> 2.
4. Primitive idempotents of the irreducible codes of length

2p™.

If a denotes a primitive {2p™)th root of unity in some extension field
of GF(g), then the polynomial M)}(z) = H (x — a') is the minimal

i€C,

polynomial of o® over GF(q) and the ideal M, generated by ”ﬁz:;,{z—l) is a
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minimal ideal in Rg,». The primitive idempotent of the ideal M, will be
denoted by 85(z). It is known that
n_J 1 if jeC
bale’) = { 0 if jgC. (@)

Clearly, the irreducible ( or minimal) cycllc codes Mp and M,,n have their
generator polynomlals ash(z) =1+z+z2+23+..-+ 227" -1 and j(z) =
1-z+42%2-2° + —g?P"-1 r&spectxvely and their primitive idempotents
are fp(z) = h(:c) and fpa(z) = T si=j(z) respectively. It is clear that
both the rmmmal codes Mo and .M,,- have minimum distance equal to
2p™ and dimension equal to 1.

For a fixed s, define the polynomial

Qs(z) = Z z.

jeC,,n—.—x

All the polynomials in this paper are considered mod (z?*" — 1).
An algorithm to compute non-trivial primitive idempotents in
the ring Rapn.

e Step I:Find a primitive root g mod 2p such that gcd(ﬂ-:—:—lm) =
1.

o Step II : Evaluate all the e? cyclotomic numbers A;j, 0 <1i,5 <
e—1.

e Step III : Find all the eigenvalues of matrix A.

e Step IV : Fix an eigen value pp of A. Corresponding to po, find
an eigen vector Po = (po, p1,p2, ", Pe—1), Whose first entry is po
and other entries p;, 1 < i < e—1, are the remaining eigenvalues of
e—1

A with Zp,- = -1, and P, having cyclic property. (Such a P
=0

exists uniquely by Theorem 2).

o Step V: Choose ¢, 0 <t <e—1, for which A, is odd ( such a ¢
is unique by Lemma 4).

e Step VI : Compute the following polynomials over GF(qg),
for 0<j<n-1,

2" -1
(=®" -1){f z T 4Pt (@) +Pe-t+1925(29)+ - -+pe—t-195(z9°

$=20,% ?dd
pnifi

-1

Oys(e) = o
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2p" -1

1 n : e—1
Ogps(2) = Wﬁ(z" =D{s z 2* +pe-t415(2) +Pe-t42Q5(z%)+ - - +pe-1Q5(2? )},
4=0,i odd

p“‘jll'
2p"—1
Byo-1ps(2) = oy @ -1 : (&) pe105(29)+- - ~+pe-t-23(a%” )}
,,_:,,,(:c)—m(x -1){f Z ' 4pe-t—125(2)+pe—1825(2% )+ - -+pe—1—281; )
\:g,:jo;d
pn-1 .
@ +1) {f Y 7 +p0(2) + (%) + o + pe1 (=)},

=0
pn—3|i

1
2pi+l

B2y (x) =

p"—l .
1 n ; -
O29pi (Z) = W(ﬂ:" +1) {f E z* + p195(z) + p29R;(27) + - - - + po25(z? Hh
=0
i
p" -1
) ()= " 41 ‘ Q; Q.(z9 Q29"
2ge-1p3 (Z) = W(x +1) {f Z z*+pe—1825(z)+p00 (29)+ - Hpe—2Q5(z )}
P'::g'l"

Theorem 3 : Let p be an odd prime and g be an odd prime power,
with ged(p, q) = 1. Let the order of ¢ modulo p be f and ¢/ = 1+ 2pA.
Further suppose that p does not divide A if n > 2. Let ged(e,q) = 1,
where p = 1 +e¢f. Then we can choose a, a primitive (2p™)th root of unity,
suitably, so that step V of the above Algorithm gives all the 2en non-trivial
primitive idempotents in the ring Rapn.

Proof : For 0 < j <n -1, j fixed, we have, by Theorem 6 of [6, Ch.
8], generalized to non-binary case, that

2p" -1 fpniTloa

; y 1 . o
Opi(z) = Z es”j)x‘, where eg”’) =5 Z a~th = 2_1" Z a—iPe,
i=0 P heC, p =

As the value of eg”j) remain the same for all ¢ in a cyclotomic coset, we
have

R 1 e-1n-1 .
@ =+ ST, T S e
=0 r=0 3=0 1€C e r e
Now
A i
@ _ 1 NP S U B B
€9 Zp” g «a 2pj+1 ’ ep" 2pn hgﬂa 2pj+1 )
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Ifs>n-j

€atgrps

Ry P -
o _1°7 T ot { o il £=
2p" he0 =

If0<s<n-j-1, then

(pJ) 1 A e v h
_ 2°g"
2!91’,,. - Ep—'; Z ’Y g9 1] (3)
h=0

where v = a??isa primitive (2p™~*~7)th root of unity.

Now 2's"¢" = '72‘9"’“’ if and only if ¢* = ¢" (mod p™~*~7) if and only
it h = i (mod fp™*~3~1), 8 Opu-s-s(g) = fp+—3-1
Thus from (2), we get

pﬂ—j—l pn—j—a—l!_l

) 1 2¢grgh
ey = o D 7 . (4)
9P 21)“ pu 8—j =

Ifk=n-s-352>2 ie., if0<s<n-—j—2, then the sum on the right
hand side of (3), which is Sg), is zero by Lemma 6. If s=n—-j -1, by
(8), we have

() = 1 & 27" — _1_g (O _ w:rr'nr- if ¢€=0
Hgrpr-sms = g LT T = S0 = i if =1

We choose a and hence § suitably to have 7, = p,.. Therefore 8,;(x) is
given by

Ffie 55 258 5o

r=0 s=n-j i€Crps r=0 g=n—j i€Cyrpys

w,{zp, Y #-Sa ¥ z}

r=0 ‘Ecgnrpn—j—l r=0 i€C, gren—i—1

Further, since by Lemma 5, 2g"p* = g'*"p®q%(mod p*), we have 2¢"p® =
g Tpq* + p"(mod 2p™). Therefore

n )
Z zt = zP E z'.

i€Crps 1€C ttrps
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Hence 6p;(x) is given by

e~1 n-—1

@ )+ @Y Y Y )

r=0 s=n—j $€Cyrps

e—1
+ ;P%ﬁ(x’"—l)Zpr-c >

r=0 1€C r n—j-1

which can further be written as

1 f 2p™ -1 -

5(3”“ -1 p,_,_l E z* +p1+1 [Pe—t3(2) + Pe—t4+1925(29) ++ - - +Pe—t -1 (=" )}
=0

pn=J|i
3 odd

Working in a similar way, one can obtain that
pn -1
-1
Bgp3 (2) = -(z” +D {57 ,+1 Z =+ J“[t!’oﬂa(==)+mﬂ,(:r:9)+ +pe—195(z%° )]}
i=0

pnIls

Further since for any 7 and ¢,

Ogegrps (z) = 921,,,- (=9 * )

for each k, 0 < k < e — 1, Theorem 3 is proved.

The result of Arora and Pruthi [1] follows as a corollary of Theorem 3.
Corollary : Let p be an odd prime, ¢ an odd prime power such that ¢
is a primitive root mod 2p™, n > 1 an integer. Then there are 2(n + 1)
primitive idempotents in Rgpn, given by

O(z) = Z{l4+z+z®+---+2¥" 1},

Opn(z) = —{l—:r:+:z: — =1
2p" -1

bp(a) = gl -Di-1 Y - Y
=0, ¢ odd ieC’,,.."j-l
P""’li
-1

bopi(@) = (" +D{p-1 Y - Y 7}
p':.igli 1€C n-j-1

for0<j<n-1.
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6. Some Lower bounds on the minimum distance of irreducible
cyclic codes.
Lemma 7:

o (i) For fixed jandk, 0<j<n-1,0<k<e-1, the mini-
mum distance of the minimal code Mgk, is at least 2p7 and
the minimum distance of the minimal code Mgy is at least

4p7.

o (ii) For fixed £ and j, all the minimal codes Maegrp;, for 0 < k <
e — 1, have the same minimum distance.

e (iii) The minimal cyclic code Mggkps of length 2p™ has twice the
minimum distance to that of a minimal code Mgx,; of length

"
1 e-1
Proof (i) : Consider the code C; = @ @ Matguys, generated by
£=0 k=0
2pn - n-j-— n—-j - n—gr_ 5
1 e—zl . = (@ 7T ) (142" T 2t g -0)
[T []M@s 2 (z)
£2=0k=0

ne—g—

Let C} be a code of length 2p™~7 generated by g;(z) = 2% ' — 1 with
minimum distance 2. Then by Lemma 12 of [9], the code C; is a repetition
code of C; repeated p’ times and its minimum distance is 2p’. As M gkpi 1S
a subcode of C;, it has minimum distance at least 2p’.
e—1
Similarly Mage,s is a sub code of the code D; = @szkpj, which is
k=0
generated by

27" - n—y— n—j n—3 n-— n
_TT Tl @ T )1 e g DT (" 1),
[[M@s*p))(z)
k=0

Let D; be a cyclic code of length p™~7 generated by g;(z) = z?" 7" —1and
of minimum distance 2. Then by Lemma 12 of [9], the code D} of length
p" generated by g/(z) = gj(z)(1 + 2" + 2% 7 4 ... 421"} 5 5
repetition code of D} repeated p’ times and its minimum distance is 2p7.
Applying the same lemma again, the code D; of length 2p™ generated by
97 (z)(1 + zP") is a repetition code of Dy repeated twice and its minimum
distance is 2(2p7) = 4p°.
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Therefore minimum distance of Mgk, is at least 4p7.

(ii): As the code Myeyx,; is transformed to Maegrs1ps by the coordi-
nate permutation ¢ — ig~!, all the minimal codes Maegrpi, for 0 < k <
e — 1, are equivalent and hence have the same minimum distance.

(iii);: We have

%" —1 - (@ - 1)
BTl (P
MEE) & T gy

In the ring Rp», the minimal polynomial M (9"?’)(3:) is same as the minimal
polynomial M(2*7)(z) in ring Rpn. Therefore by Lemma 12 of [9], the
minimal code Mggk,; of length 2p™ has twice the minimum distance to
that of the corresponding minimal code M.,; of length p™.
Example :

Let p = 13, ¢ = 5. Since 5% = 1(mod 13), but gcd(sdl—;l,m) = 1, we have
e =3, f = 4. Here g = 7 is a primitive root mod 26. The 5-cyclotomic
cosets mod 26 are

Co = {0}, Cis = {13},

¢ = {1,521,28}, C, = {2,10,16,24},
Cr = {1,9,17,19}), Car = {8,12,14,18},
Cn = {3,11,15,23}, Com = {4,6,20,22}.

The characteristic equation of matrix
-4 -2 -3
A= 2 1 1
1 1 2

B+ +z+1=0;

is given by

so that eigenvalues of A are 2,3,4. Also (2,3,4)T is an eigen vector cor-
responding to the eigenvalue 2. Therefore by Theorem 2, we can take
170 = 2, m1 = 3, 12 = 4. Since the cyclotomic number Ay, is odd, therefore
t = 2. Thus the six 5-ary nontrivial primitive idempotents mod 26 are given
by
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6i(z) = (2 -1){-z"+3(@x +2° +22 +2%) + 4(z" +2° + z'7 + 219)
+ 2(13 +zn +215 +z23)}’

6r(z) = (2 -1){-z® +4(z +2° +2" +2%®) + 2(z" + 2° + 2'7 + z'9)
+ 3(23 +x11 +x15 +223)},

bn(z) = @E2-1){-z"+2(z+2°+2*" +2%)+3(z" +2° + 217 + z9)
+4(:C3 +zll +zl$ +123)},

62(z) = (@+1){-1+2(z+2°+22 +2%) +3(z" +2° + z'7 + z19)
+4(° + 21 4218 4 2P},

622(z) = (@P+1){-1+3(z+2°+2* +2®)+4(z" +2° +z'7 +z9)
+ 2(1.3 +zll + zls +.'1:23)},

br2(z) = (@ +1){~1+4(z+z°+2 +2%) +2(z" +2° + z'" + 219)
+ 3(23 +zll + 215 +223)}

Each of the codes My, M7, Mz, M3, Ma7, Mg, of length 26, has
dimension 4 and minimum distance 16.
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