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Abstract In this paper, we obtain a general enumerating functional equa-
tion about rooted pan-fan maps on nonorientable surfaces. Basen on this
equation, an explicit expression of rooted pan-fan maps on the Klein bot-
tle is given. Meanwhile, some simple explicit expressions with up to two
parameters: the valency of root face and the size for rooted one-vertexed
maps on surfaces (Klein bottle, Tours, N3) are provided.
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1 Introduction

A map is rooted if a vertex and an edge together with a direction along
the edge and a face on one side of the edge are all distinguished. An edge
belonging to only one face is called double (or singular by some authors), all
others are called single. Two rooted maps on a surface ¥ are considered the
same if there is a self-homeomorphism of £ which induces an isomorphism
between them preserving the rooting. The surfaces considered here are
compact 2-manifolds. Surfaces with p handles, i.e., O, (q crosscaps, i.e.,
N,) are called orientable (nonorientable) of genus p (g). Concerning other
definitions or denotations of a map on a surface, reader can refer to the
literature [6] or [7]. An one-vertezed map is a map with only one vertex.
Apparently, the dual maps of all one-vertexed maps on the surface of genus
g are the g-essential maps which was mentioned in lit.[5]. A rooted pan-fan
map (including loop and mult-edge) on a surface is one such that it is a
plane tree by deleting the root-vertex with its incident edges.

We continue to use the notations of lit.[6]. For any rooted pan-fan map
M (the number of vertices v(M) > 3), v (M) = (r,Jr,T?r,---,T* 1)
(k is the valency of the root-vertex) and Kr denote the edge incident with
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r. Suppose KJ'r = Kz (i = 0,...k — 1) is the first edge which connect
vy t0 vy # vy, v, = (6z, T bz, T30z, -+, T*1~16x) (ky is the valency of vy,
6 = o). Similarly, since (M) > 3, the first edge KJ76z (j = 1,..k1 — 1)
which connects v; to v2 # v; # v, must exist. So the plane tree M’ =
M — {v.(M)} can be rooted as follows: #(M') = J'éz.

The enumeration of rooted planar maps was first noticed by W.T. Tutte!%]
in 1963. Since then, much work has been done by W.T.Tutte himself,
Arqueés, Brown, Mullin, Harary, E.A.Bender, Y.P.Liu et al. in a series of
papers. They investigated nearly all sets of rooted planar maps for enumer-
ating them. Especially, in the early 80’s, the appearance of enumerating
equations for planar maps simplified the processes and the results of enu-
merating planar maps greatly. However, any kind of exact enumerations
of rooted maps on nonplanar surface is quite difficult. Arqués, Brownl®l,
Walsh{!!l, Lehman, Bender!? et al. and Gaol¥l et al. did some influential
work in this field. Among them, Bender et al. and Gao studied several
classes of rooted maps on general surfaces and got asymptotic evaluations
of nonplanar maps mainly by an asymptotic method. Now many people
apply himself to research maps on nonplanar surfaces such as Ren Han(®
(4-regular maps etc.) and Rongxia Hao et al.. In literature [12], the au-
thors studied a new kind of rooted maps: pan-fan maps (derived from
circuit boundary maps which was brought forward on the basis of Halin
maps and pan-halin maps), and gave explicit expressions of planar pan-fan
maps with different parameters. In literature [13], the authors investigated
nonplanar surface and got explicit expressions for two kinds of maps on the
projective plane: rooted one-vertexed maps and pan-fan maps.

In this article, the authors study rooted pan-fan maps further. First of
all, a general equation about rooted pan-fan maps on nonorientable surfaces
is given. As an example, the number of pan-fan maps with the size n on the
Klein bottle is derived. For obtaining this number, by a series of operations,
some simpler (than lit[13]) explicit expressions of one-vertexed maps with
more parameters (the valency of root face m and the size n) than lit[1]
which enumerated by numbers of vertices and faces (i.e. the size) on Klein
bottle are obtained. Finally, the explicit enumerative expressions of one-
vertexed maps on the Tours and N3 with more parameters are also given.

For convenience, we introduce an operation as follows. For two maps
M; and M, with their respective roots r; = 7(M;),i = 1,2, the map M =
M, U M, provided M; N Mz = v such that v = v, = vy, is defined to have
that its root, root-vertex and root-edge are as the same as those of M;
while the root face is the composition of f-(M;),7 = 1,2. This operation is
called 1-addition and write

M = Mi+M,
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Further, for any two sets of rooted maps M; and My, the set of maps
Mi O Mg = {M+Ma[VM; € M;,i=1,2}

is said to be 1-production of M; and Mj as shown in [6]. Especially we
write

MOM =M
MO = MO oM

Let H,(Sp) and F¢(L,) be the sets of all rooted pan-fan maps and
one-vertexed maps on Ng(Op) respectively. Suppose their enumerating
functions are respectively:

ho(z,y) = D HE a™y", sp(z,y)= Y, SEa™y™

m,n>1 m,n>0
fomy)= Y Fia™", blzy)= Y L& a™y"
mmn21 m,n>0

where p > 0,9 > 1, m(M),n(M) are the valency of the root face and the
size respectively.

Let Hi(S}) and Fi(LE) (p > 0,9 > 1) be the sets of all rooted pan-fan
maps and one-vertexed maps with 7 (¢ > 1) distinguished non-rooted faces
on Ny(O,) respectively. Their enumerating functions are respectively:

Denote z = (21,22, -, 2i), k = (k1,k2,-- -, ki). Then

Ky(zy,2)= Y HL . 2™k sieyz)= Y Sh, ™y

m,n,k>1 mmn,k>1
i _ q E i =
filmy,z)= Y, Fi_ ™2 l@yz)= ) LF 2"y,
m,n,k>1 mn,k>1

where HY, (S}, ) and FY, _, (L%, . ) count, respectively, rooted pan-
fan maps and one-vertexed maps in H§(S;) and Fj(L:) with the valency
of root-face m, the size n and the va.lency of j-th distinguished non-rooted
face k; (kj 2 1,j = 1,---,i). What’s more, h} = fi =0, <0,s, =l =
0,p <0.

Theorem 1019 The enumerating function of planted trees 7; has the

following form:
(2n 2)'
n=t= zn,n_l (1.1)

For the enumerating function lo(z,y), the following equation is well-
known.
A-—z+z%y)lp =1~z +zyl] (1.2)
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where I = lo(1,9).
Parametric expressions can be extracted as follows:
n=ym+ 1% =n+1,2=PB(n+1)

1 B(@h) 1 (1.3)

1-Bn' 8z~ (1-pn)*

Theorem 2(12 The enumerating function sg satisfies the functional equa-
tion as follows:

o=

(1-z+z%y)so =zyshy + (L —z)talo + (1 — z) (1.4)

where sj = so(1,y).
From (1.4), the following parametric equations can be found.

[ n=y+ 1% =n+1+ (n+1)2((11__n“)1— 1) 5= B(n+ 1)
{ o o [l-(+1)8(1—V1-48%) _ An(l — vI-4n)
2(1 - B)(1 - fn)? 2(1 - B) (L =n)(1 - Bn)
\ +1 _ﬁn.
(L.5)
Let

Alp,q,\) = n-zm—p (4926 ( nom-1 ) (1.6)

131 —_—m—p—-
e qli! n—m-—p—1i

By employing Lagrangian inversion with two parameter for (1.5), the
number of rooted pan-fan maps on the sphere is: sgyo =1

o _ (2n-2) oy, q0 ___2(2n—4)! _ )
Son = 1) mo1) (when m=2n); Sy, , = ——(n ~D)i(n-2) (when m=2n-1);
m=1
o _m@n—m-1) L (2k)AQ = £,0,1) = Ak —m +2,0,1)]
mn = = o N

Kl(k + 1)

— In!
(n—m)in! e

n-2 n—-m-—2
S (2k)!A(k —m +2,0,1) _ 3 (2k)A(k + 2,0,1)

Kk + 1)! ki(k + 1)!

k>0 k20

2 m— 2k - 1)(2k)(2n — m — 1)!

+ ;_o K+ Din—m+k+1)(n— k- 2)!

where the initial values are listed in the following table:

1.7)
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SC [n=0]1]2]3]4] 56

m=0] 1 |0]0]0]0] 00
1 0 | 1|27 |28]119]526

2 0 | 1|27 |28]119] *

3 0 |0|2[6[23]9 | *

4 0 |0 |1[4[16]68] *

5 0 |0|O0|2]10] 45 *

6 0 |00 25|27 *

7 0 |oJ|o|O[4]17] *

8 0 |[0]|O0Jo|5]11] *

9 0 |0|0|0]0]|10] *

10 0 0|00 |0]|14] *

i1 0 Jo0JOoJ|O|O]| 0] *

12 *

Theorem 3!!3]  The enumerating function f; satisfies the following equa-

tion: B0zl
-z + %)y =2y [ol1 - ) 250 1 gy 18)

where f} = f1(1,9)-
Parametric expressions is as follows:

' n=yn+1)>3f1 = (—fn—% z=B(n+1);
f = Bn? + B%n :
P -m2a -2 T A-n)(1 - B (1.9)

oh _ 7*(1 + Bn) Bn(2 + Bn)
[ 8z~ (1-n)2(1-Bn)*(1+n)  (1-mA =B (l+n)

Also, by employing Lagrangian inversion with two parameter for (1.9),
the following two results, which are simpler than [13], are obtained.
Theorem 4 The enumerating functions fi(z,y) has the following explicit

expression:
1 m n
(z,y) = Y Fna.z™",
m,n21

where F}; = 1; Fj, =3;

n—m-—1
2n—-m-—1 mim-1)/2n-m -1
Fr.=m > ( L )+L2—)( - ) (1.10)
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Corollary 1 The number of one-vertexed maps on the projective plane
with the size n is:
(2n)!
2(n!)2

In this article, some main results are listed as follows:
Let

92n-1 _ (1.11)

_J 1, qis odd number;
Y= o, q is even number.

Theorem A the enumerating function hy(z,y)(g > 1) about the rooted
pan-fan maps on nonorientable surface satisfies the following general equa-
tion:

Olehy-1) a(xsa;;)]

q

(1-z+22y)he(2,9) = zyhg+(1-2)t1 fo+ (1-a)’y[ =52 o

hl le
+(1 - m)xayp (2!, Y, 23) + Ye+1—7-— (.'B Y, ZL’)] (112)

where hy = hq(1, y).
Theorem B enumerating function of fa(z,y) has the following expres-

sion:
2z, y) = Y, F3.z™y",

mmn2>1

where F§, = 0; FZ, = 4; FZ5 = 20;

. n—m+2
2 m!(z+1) 2n—m— + m! 2n-m-—1
Frn= z (m - 3)! n+i—1 Z 6m—4)N\ n+i-3

20
n—m-2 n—-m-1
mhi(m,n m(m — 1) Ai—1(m,n
L3 A T i = D) L13)
i20 i>0 )

where 0 X )
. (i | n—m n—m—
Aifm,n) = (1 + 3)! [(n+z’+2 + nti+l

Theorem C The enumerating function of f3(x,y) has the following ex-

pression:
f3(x1 y) = Z Fa

mn>1

where F§3 = 41; F}, = 287,

m(m

F} . =12mA(5,6,1)+— A(4 5, ,\1)+ A(3 4, 20)+ 1 A(2,4, )3)
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m! 62m! 85m)!
+——_4!(m — 3)!A(1, 3, )+ Tm— 1)1 4)!A(O, 3,1) + m/\(_l,z’ 1)
41m!
+——_6!(m — 6)!A(_3’ 1,1)
(1.14)
where

A1(E) = 75i + 36m + 414;
A2(3) = 4132 + 40m? + 225mi + 1005m + 226i + 185;
A3(z) = 41i + 1156m — 25;

Aa(3) = 51i + 52m + 48.

2 General functional equation

For H,(g > 1), it can be separated into four categories: Hg,, Hoyy Hop
and Hg,,, such that

o M € H,,e-(M) is a single edge.
o M € Hyy,e-(M) is a double edge and M — e(M) is not a map.

o M € Hgy,er(M) is a double edge and M — e.(M) is still nonori-
entable.

o M € Mgy, e-(M)is adouble edge and M —e (M) becomes orientable.

Lemma 1 Let Hy,, = {M —e,(M) | M € Hy}, then Hy,, = H,.
Proof It is easy to see that H,,, © Hq. On the other hand, for any M €
Hq, a map M’ € Hy; can be obtained by adding an edge R’ connecting the
root vertex v.(M) and any vertex on the root face boundary, such that M =
M'—R/, here, R' = e,(M’). By all appearances, there are m(M)+1 ways to
get M’. This means that M € Hy,,,, thus, Hg,;, 2 Hy. Then the lemma is
true. o
Lemma 2 For Hyy,, Hq,y =71 O F,.
Proof It can easily get this result by the definitions of Hy,, and ;. O
For a nonorientable map M € Hg,,, from the Euler characteristic of
M, we have v(M) — e(M) + ¢(M) =2 — g (¢ > 1). It is easy to see after
deleting a double edge of M (v(M) is invariable)the genus of the nonori-
entable surface will be reduced two at most. Therefore, Hg,,, can be further
divided into two parts: Mg, = {M € Hgy, | M — (M) € Hy—1} and
anlg ={MeHgy, |M-e(M)e 'H;-z}
Lemma 3 Let H‘""m = {M —e.(M)|M € Hgy,, }, then Hany, = Hg-1.
Proof Using the same method as Lemma 1, it is easy to check that, for
any M € g1, M € Hqu, can be obtained by adding a new double edge
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er(M') ((m(M)+ 1) ways) in the root face of M. Since M = M —e,(M'),
then Hgyyy ,, 2 Hg—1. This prove the lemma.

Lemmad4 Let qu( ={M-e(M)|M € qu }, then qum = Hé—2-
Proof For any map M € H}_o, since (M) —e(M) + (M) =2—-(q—2),
we can get M’ € Hg,,, by addmg a new double edge R’ (2k; (M) ways) from
the tail of the root edge of M to each of vertices on the boundary of the dis-
tinguished non-rooted face as the root-edge of M’ so that the distinguished
non-rooted face and the root face can be turn into a new face whose valency
is m(M)+ky (M)+2. Andv(M')—e(M')+¢(M’') =2—q. Since M = M’ -
R', M’ € Mgy, it is evident that M € Hyy, . and Hy , 2 H}_s. There-
fore, ’qu( y = 'H,l,_g o

Concerning gy, it includes two circumstances: Hgy,, = {M € Hyy | ¢
is odd number} and Hyy,,, = {M € Hqy | g is even number}

Lemma 5 Let Hyy = {M —e-(M)|M € Hgy, }, then Ha,,, = Sgz1-
Proof According to the Euler formula and the defination of 'qu , for any
map M € Hyg,,, , the number of vertices and faces of M’ = "'=M- er(M ) is
equal to M. Since v(M)—e(M)+d>(M) =2—gand v(M')- s(M')+¢(M’) =
2 — 2p, we can get p = 1—— easily. Conversely, referring to Lemma 3 and
using the same calculational method of the above metioned, H,,, w oS a1
holds, just taking notice that the new added edge must get across a cross
cap. So This lemma follows. m]
Lemma 6 Let Hyy , = {M —er(M)|M € gy, }, then Hgy , = Sé_l.
Proof The Lemma follows from Lemmas 4 and 5.

Let hg,hqyyhqy and kg, be, respectively, the enumerating function
of Hgy, Haus Ha and Heyy; hgy,, and hgy,, be the enumerating function
of Hgy,, and Hg,y, (t=1,2) respectively, then as a direct consequence of
Lemmas 1-6, the following formulas hold.

h 1 =Y z ($+$ +- +£L’m+l)y = zy [ht th]
MeH,,

where h; = q(la y)° And,

hgn = Z g™(Myn(M) = t1fq;

MeHq,
O(zh,-
b = 5 oy = 2,2
MEHq_l
Bh_,
ha, =y Y 2kttt = 22 q (z,y,%);
MeH,_, 8z
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O(rsg-1)
- +2,n _ 2 .
hav, =y D (m+1)a™y" =% o

Mesg_.!.l
3s}
-1
hqlVQ =y Z klxm+kl+2yn = zSy ail (2,9, 7).
Mes)

Since hq = hg; + hqy + hqyy + hgy, then the Theorem A is proved by
simplification.
" For the set ’H,}_z, it includes the following two cases when a map
M € H,_, and e.(M) is a single edge. If e.(M) is a double edge, the
classifications are the same as that of H,.

® M € H}_,,e-(M) is single and the distinguished non-rooted face is
adjacent to the root edge.

o Me¢ 'H;_z,er(M ) is single and the distinguished non-rooted face is
not adjacent to the root edge.

Therefore, like the above discussion, we can get an equation satisfied by
the enumerating function h},_z. In a general way, let Z = (21, -, 2, 2i+1),

&= (b1, s ki kiv1), 2= (21,1 2j-1, 2j41,° ", 2i) and
k= (kl,"°7kj-—1,kj+la"')ki):

R R S D

m,n'_
MG'H"','H m,n,ic_Zl
W@y = Y S0 O0R00 - S g gmynsk
MeH™! mn,k>1

the following theorem can be obtained. _ ‘
Theorem 5 The enumerating function hg(z) = hi(z,y,2)(g > 1), satis-
fies the following equation:

(1=a-+a%)h} (@) = ayhl +(1-D)1fi(@)+ (1-2) Y 22y o (uhi™ (W)

i=1
(1 - 2)ayl(wh}y (&) +ry(asics ()]
ahi+l . as';"'l
3 q—2 z-1
+1- 222 R @ 0) F g a)] ()

i : 1 'hi-l Y, Z) — hi-1 ) a.
where i’ = hi(1), 8., o(uhi~!(u)) = zshg (2 yzzj)—;c l(z9,2)
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As for the circumstance of orientable surface, S, can be studied similar
to H,. Especially, it is simpler. Here, we no longer discuss it in detail.

3 Pan-fan maps on the given surface
3.1 Projective plane.

Theorem 6/!3 The enumerating function h;(z,y) satisfies the following
equation:

i}
(1-z+2%)h =zyh} + (1 —z)t1 fi + (1 - x)zzy% (3.1)
where hi = hq(1,y).
Proof According to Eq.(1.12), let ¢ = 1, this theorem holds. o

(i — 25 + 2n)!(i + 3)
m—7-DG-j+n+2)!

(2n =2)1 2)' { n1+ne =j;
G: (x) = d 2
53(%) ,>;>1 (= Dyl mama 97 mp+2m =i, D)

Let 0i,j (n) =

By employing Lagrangian inversion (see [13]), we obtain that

= Z H'];y“

n>1t
where
HY =000(n)+ ) Gij(D)+ D [Gij(Doi2,i-1(n) + (i +1)0:,;(n)SY;]
j=n i€n-1
i<2j i€2j5

(3.3)
The number of rooted pan-fan maps on the projective plane with the
valency of root face m and the size n is:

Ot =Hpn=Cont+ ) (1Y ( )Cm_:-, nmi  (34)
1<ol+f<<'m

where

Cl.n = Gl,n(l) + Hyl;-l’ n2l;
Cm,n = Gm.n(l) - Gm—l,n(l)

+(m - 1) _2 n-1 (m 2) _3 n—-1» m 2 2,71. Z 1.
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H. Im=1[2 3] 4[5 6] 7 [8]9]0[11]12
n=1 | 0 |1]0|0|0|]0|0O]JoOo|o|O]|oO
2 1 1[3[4|0|0]0fJ0f0[O0]O
3 9 |9 |13|14|15]6|0|0]0[0]O0
4 66 | 66|76 |74 | 66| 48 |21 |16|0| 0 | O

3.2 Klein bottle.
Theorem 7 The enumerating function ha(z,y) satisfies the following
equation:
O(zh
(1 -z +2%)hy = zyh + (1 - 2)t1 fo + (1 - 2)ay- (gxl)

Os}
+(1 - x)xaya_z(:(mv y,:z) (3'5)

where h3 = hy(1,y)

Proof For Eq.(1.12), let ¢ = 2, it is easy to see this formula is valid. O
As for sj, according to the discussion of section 2 and noticing the

differences in nonorientable and orientable, the following theorem can be

obtained.

Theorem 8 The function s}(z,y, z1) satisfies the following equation:

(1-z+z%y)s) = zysy +(1—z)t i3 +(1 —T)2Y210u=(z, =) (uS0(u, y)) (3.6)
where )" = s§(1,y, 21), Gue(ey o) (uso(2, ¥)) = z150(21, i/) - :so(z, v)
_—

In order to get the explicit expression of k2, now we must study f, and
4(z,y,21). Observing the difference, which is mainly in the set of HY,
between rooted pan-fan maps and one-vertexed maps, similar to Theorem
7 and Theorem 8, we can get the following two equations.

Theorem 9 The enumerating function f; satisfies the following equation:

(Ef 1)

1
(1-z+2z%)fo = zyfs +(1—z)z?y———=+(1 m):z:syg—:-(m, v,z) (3.7)

where f3 = f2(1,y)
Theorem 10 The function I} satisfies the following equation:

(1= z+ 22l =zyld + (1 - 2)ayz10umie oy (Wlo(wy))  (38)

zilo(z1,y) — zlo(z, y)
21—

where 8, (2, z)(ulo(u,y)) =
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For Eq.(3.8) we can derive the parametric expressions of 3 (y,21) and
l}(z,y, 21) are respectively:

n=yn+1? 2 =(n+1),i} = ( ¢n(n +1)

1-n)(1-¢n)’
n
I = +1 , il = ;
P+ b = Tt - ma - 2
o _ Bn
821 (1—n?)(1-¢n)%(1 - Bn)*
Using Lagrangian inversion with three parameters, the following result
can be gained.
Theorem 11 The number of one-vertexed maps on the sphere with the
valency of root face m, the size n and the valency of distinguished non-
rooted face k; is:

(3.9)

m(2n —m —k; — 1)!
mnk = (o) (n—m— kg + 1)1

Where Ltl),l,l = 1, L(l),2,2 = l,Lg’z'l =2

For Eq.(3.7), let z = £ be the characteristic solution of the equation
(3.7) and 7 = £ -1, according to (1.9) and (3.9), then the following formula
can be obtained.

LO

( 22(1 + 1) (2
n=y(n+1)2% f5 = = ((:_773,()54-"),1 =B(n+1);
fp oz 2P0+ 2)(1+ 6~ 26n) | 26°n*(3n(1 — ) + 2601 — )],
! 2T - s -y I-me-pgny
8fs _ _ 2n°(n+2)(1+ Bn) 27°B(n + 2)(2 + Bn)
9z~ (1-n3(1-Bn)1+n)  (1-n)1-An)*(1+n)
4 67B%3+6n) 4% (4 + Bn)
y (1 =031 =1 +n)  (1-n2(1-An)s(1+n)

(3.10)
Now, by using Lagrangian inversion, the theorem B can be proved.
Corollary 2 The number of rooted one-vertexed maps on the Klein bottle
with the size n — 1 is:

=3 (20 - 2)I3n + i+ 1)(i + 3)!
Z illn+i+2)(n—17-3)!

Proof Let A and B be two subsets of F;. The set A includes all that
maps which the size is n — 1. The set B includes all that maps which the
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valency of root face is 1 and the size is n. For any M € A, we can get a
map M’ € B by adding a single edge on M. It is easy to see there exists
an one-one mapping between the two sets. So let m = 1 for (1.13), it is

easy to check this corollary holds. O
Fi,|m=1[ 2 3 4 5 6 7 1819
n=2 0 0 0 4 0 0 0 |0
3 4 4 6 8 |20 0 0 |0
4 42 42 | 48 [ 52 1 60 | 60 | O (O
5 304 | 304306296 |280]240 (140 |0
6 1870 * * * * * * *

Next, solving the Eq.(3.5), let A(z,y) = 1 — = + 2%y and = = 6 be the
characteristic solution of the equation (3.5), then the following formula can
be obtained.

A6,y) =1-0+6%y=0;
* 2 a(zhl)
Oyhs = (0 — 1)t1f2 |z=0 +(6 — 1)6 Y8z |z=6 (3.11)
ds}
— 193,250 .
(6 - D% 52(6,3,0)

From Eq.(3.6) and A(6,y) = 0, let A®) denote the kth partial with
respect to z of A(z,y) at 8 and likewise for other functions, we have

Oyz,C) (1 - z)ty 13|V
1 — 0
30(0$ Y, 21) - A(l) A(l)

oc
(2180(21,y) — zso(z,y)) and CV) = B lz=6-

where C(z,y,21) = 21
Then it can be check that

Os} 0
AN Z2(0,9,0) = ¢ (2*(1 - 2)50)”
+ Y kiGmag[m— (m+ 100"y (3.12)
m,n,k1>1
where
(2m —2)! 2)' { n1+ne =mn;
m n = m d
h n>§:>1 (n1 —1)iny! anaky my +2n; =

In formula (3.11), substituting —(B,y, ) by formula (3.12) and intro-
ducing a parameter = 6 — 1, from Eq (3.5) and Eq.(3.6), by employing
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Lagrangian inversion, we obtain:
Theorem 12 The number of rooted pan-fan maps on the Klein bottle is
as follows:

np . | G ,
4,520
1 . . .
+- Y Gijkka[CG +1,5,k1,n) = Cliy dy k1, )]
i,j,k121

+ ) 0i2,-1(n)Gi(2) (3.13)
ij>1

where H}; = (3.4), 5%, = (1.7), C(3) = (i + 3)(i + 2)(i + 1)

(F+1)(E—2j+k1+2n+1)!
m—j-DEi-j+n+k +2)!

' C(I)J) kl:n) =

32 (i — 2 + ky + 20)\Dy(3, 5, n, ky)
&b Ni-2+k +2n-0) '

+

(i—2+ki+2m—2A+1)(i-2j+k+n+1)
i-2j+kh+on—1+1 :

< Dl(iui’ khn) =

L nd3 (i — j+n+4)(i—2j +2n+ 1)IDy(i,5,1,n)
B(i+1,j,n) = :; G—2j+n+20li-2j+2n—L+1)

(G+2)(E—25+2n+41)!
(r=7=2)(E—-j+n+3)

| +

(o]
Let H2, (z) = Y HZ ,z™. According to Eq.(3.5), Eq.(3.6) and for-
m=1
mula (3.13), it is easy to see:
o H2(z) = da%;

o H%(z) = 4z + 422 + 623 + 8z + 202° + 3125,

— — —

|

t. 4
§ R

X
4}
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Fig 1.
(31 rooted pan-fan maps with the valency of root face 6 and the size 3)

4 One-vertexed maps on the Torus and N3

After a similar procedure used in the proof of Theorem 5, the following
theorems can be derived.
Theorem 13 The enumerating function f3 satisfies the following equa-
tion:

6(a:f2 a(xll)]+2(1

(1-z+2%y) fs = sy f3+(1-z)’y[—5— 2)ey 20 o, i (z,y,2)

(4.1)
where f3 = f3(1,y)
Theorem 14 The functions f} satisfy the following equation:
2 3("7[0)
(1—-z+2%)f] = zyfl +(1 - 2)2y216u=(zy 2 (wf1 (2, ) + (1 —2)z%y
(4.2)

Where bumey oy (ufi(u, ) = ZL1ELA - ZN(E)

According to formula (1.9) and (3.9), it can be checked Eq.(4.2) satis-
fied the following parametric expressions:
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4

n=y(n+1)% 21 =¢((n+1),z =B(n+1);

7¢(n + 1)[(n + 1)1 = ¢n)(1 + ¢ — 2¢n) + (1 —n)?
(1 =n*1 - ¢n)’
20%¢(n+1)
{ 1-¢n)@1- 77)4’
Bn[(4¢ — 4¢n+n —¢n?)(1 = Bn) + (3 — 7Bn + 4B8)(1 — ¢n)]
(n+1)(1 —n)*(1 - Bn)3(1 - ¢n)3

+ﬁn2[C(3C 541 + 28)(1 — Bn) + 36°(1 — ¢n)?]
X (n+1)1—7)2(1 - Bn)* (1 - ¢(n)* @9

As for l;, it can be studied by the same method. It is easy to check
that the enumerating function !; satisfies the following equation.
Theorem 15 The enumerating function [, satisfies:

=

fl=

(1- 2+ 22 =2yl + (1 - )y (2,3, (4.4)

where I} =11(1,y)
We can also get the parametric expressions as follows:

' n=yn+1>4 = L“L?,x B(n+1);
(1-m)

I = pn’® Binl-Bn+1)] .

R G R Ty Ty ) Rl s Gy Gy

ol _ 7°(1 + Bn) 7°B(2 + Bn) (45)

0  (1-m)S(1=pBn)B(+n)  (Q-m*Q-08n*1l+n)

o B3+ ) 7°6%(4 + f)

{ (L=nB3Q =81 +n @A-021-p8ns(1+n)

Using Lagrangian inversion, the following theorem can be gained.
Theorem 16 The number of one-vertexed maps on the Torus with the
size n — 1 is:

n-3 .
(2n — 2)1(i + 3)!
Z 6il(n+i+1)(n—7-3)!

Due to (3.10), (4.3) and (4.5), it is easy to see that Eq.(4.1) satisfies
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the following parametric expressions.

f n(n + 1){(127% + 75¢° + 411,2)

n=yn+1)>f3 = A= nF =B(n+1);
! Brt(1209% + 75+ 41)(1 + B —206n) = B°n*(8n% + 697 + 51)
3T (T—n)8(1 = Bn)® (1~ mE(1 - Bn)*
B'n*(52n+62) | BPn°(85n — 856 + 4148 — 418n)
X (1-n)°(1 - Bn)® (1-m*(1 - pn)”

Therefore, by employing Lagrangian inversion, it can be checked that
the theorem C is correct. What's more, the following corollary comes into
existence.

Corollary 8 The number of one-vertexed maps on N3 with the size n —1
is:
(n + 1)}(82n2 — 294n + 110) "z‘f (i + 6)!(2n — 2)1\i(n)
6!(n — 4)! < 6lil(n + i+ 4)!(n — i —4)!

where A;(n) = 128n? — 22i2 + 58ni + 179n — 205i — 468.

F3 Im=1] 2 [ 3] 4] 5] 6 7

n=3| 0 0 |0 ] 0] 0] 4 | 0
4 41 | 41 | 51 | 62 | 85 | 123 | 287
5 | 690 | 690 | 753 | 814 | 905 | 1002 | 1148 | 1
6 71 50 * * * * * *

Remark: From the above table, it is easy to see that the sum of any row is
the same as the result of lit[1] which gave the number of rooted maps with
1 vertices and f = n — 2 faces on a non-orientable surface of type 3/2.

From Theorem A, we can discuss the rooted pan-fan maps on N3 basen
on one-vertexed maps. Since its equation has known, it is just a problem
of calculation. So here we do not dissertate it in detail.
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