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Abstract

We study the spectral radius of unicyclic graphs with n vertices
and edge independence number ¢. In this paper, we show that of
all unicyclic graphs with n vertices and edge independence number
¢, the maximal spectral radius is obtained uniquely at A,(g),
where A,(g) is a graph on n vertices obtained from the cycle C3
by attaching n — 2q + 1 pendant edges and g — 2 paths of length
2 at one vertex.
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1. Introduction

The graphs in this paper are simple. Let A(G) be a (0, 1)-adjacency matrix
of G. Since A(G) is symmetric, its eigenvalues are real. Without loss of
generality, we can write them as A1(G) = X2(G) > --- > A\ (G) and call
them the eigenvalues of G. The characteristic polynomial of G is just
det(AI — A(G)), and is denoted by P(G; ). The largest eigenvalue \; (G)
is called the spectral radius of G, denoted by p(G). If G is connected, then
A(G) is irreducible, and by the Perron-Frobenius theory of non-negative
matrices p(G) has multiplicity one and there exists a unique positive unit
eigenvector corresponding to p(G). We shall refer to such an eigenvector
as the Perron vector of G.
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The following problem concerning spectral radii was proposed by Brualdi
and Solheid [2]: Given a set ¢ of graphs, find an upper bound for maxi-
mal spectral radii of graphs in ¢ and characterize the graphs in which the
maximal spectral radii is attained. Recently, the problem has been studied
extensively. The reader is referred to [1, 4, 9, 13] and the references therein.

Two distinct edges in a graph G are independent if they are not adjacent
in G. A set of pairwise independent edges of G is called a matching in G,
while a matching of maximum cardinality is & maximum matching in G
denoted by M(G) or M. The cardinality |M| of a maximum matching
M of G is commonly known as its edge independence number denoted by
¢- A matching M(G) that satisfies 2¢ = n = |V(G)| is called a perfect
matching. Unicyclic graphs are connected graphs in which the number of
edges equals the number of vertices. Let U(n) and U*(2k) denote the set
of all unicyclic graphs on n vertices and the set of all unicyclic graphs with
perfect matchings on 2k vertices, respectively. The eigenvalues of graphs
in U(n) have been studied by several authors (see [3, 6-8, 11, 12]). Very
recently, Chang [4] gave two graphs which have the largest and the second
largest spectral radius, respectively, among the graphs in U+ (2k).

In this paper, we study the spectral radius of unicyclic graphs with n
vertices and edge independence number q. We show that of all unicyclic
graphs with n vertices and edge independence number ¢, the maximal spec-
tral radius is obtained uniquely at A,(q), where A,(q) is a graph on n
vertices obtained from the cycle C3 by attaching n — 2g + 1 pendant edges
and ¢ — 2 paths of length 2 at one vertex.

2. Preliminaries

Denote by C, and P, the cycle and the path, respectively, each on n
vertices. Let G — zy denote the graph that arises from G by deleting
the edge zy € E(G). Similarly, G + zy is a graph that arises from G by
adding an edge zy ¢ E(G), where z,y € V(G). Let M be a maximum
matching of a graph G. An edge e = uv which belongs to M is called
an M-saturated edge and both u and v are called M-saturated vertices.
A pendant vertex of G is a vertex of degree 1. A pendant edge is an
edge with which a pendant vertex is incident. We denote by U,(q) the
set of all unicyclic graphs with n vertices and edge independence number
g. A unicyclic graph is either a cycle or a cycle with trees attached. For
any U € Uy(q), denote by Ci = wujus---uru; the unique cycle in U and
denote U by Cx(T1,T2,--- ,Tk), where T; is a tree attached to vertex u;
(¢=1,2,---,k), T; contains u; as a vertex and |V(T;)| > 1. If there exists
a pendant vertex adjacent to some vertex, for example u,, of the cycle Cy,
we also denote U by Cx(P,UTy,T2,- - - ,Tk), where path P, and tree T} are
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attached to u;. Denote by A (g) the graph obtained from C3(P, P, Pz)
by attaching n —2q pendant edges and ¢ — 3 paths of length 2 at one vertex.
It is clear that A}(q) € Un(q).

In order to complete proof of our main result, we need following lemmas.
For v € V(G), N(v) denotes the set of all neighbors of vertex » in G.

Lemma 1 [9, 13]. Let G be a connected graph and p(G) be the spectral
radius of A(G). Letu,v be two vertices of G and d, be the degree of vertez v.
Suppose v1,v2,--- ,vs € NW)\N(u)(1 < s < dy) and z = (z1,%2," - ,Zn)
is the Perron vector of A(G), where z; corresponds to the vertez v;(1 <
i <n). Let G* be the graph obtained from G by deleting the edges vv; and
adding the edges uv;(1 < < 8). If Ty > x4, then p(G) < p(G™).

Lemma. 1 was first given in [13] and cited in [9]. The proof can also be
found in [9]. By Lemma 1, we obtain easily following Lemma 2-6 which may
be regard as immediate consequences of Lemma 1. Proofs of the lemmas
are similar, so we only give the proof of Lemma 2.

Lemma 2. Let G be a connected graph and let e = uv be a non-pendant
edge of G with N(u) N N(v) = 0. Let G* be the graph obtained from G by
deleting the edge uv, identifying u with v, and adding a pendant edge to
u(=v). Then p(G) < p(G*).

Proof. We use z,, and z,, to denote the components of the Perron vector
of G corresponding to » and v. Suppose that N(u) = {v,v1,--- ,v, } and
N(v) = {u,u1,--- ,us }. Since e = uv is a non-pendant edge of G, it follows
that s,t > 1. If z, > =y, let

G' =G —{vuy, - ,vur } + {uuy, - ,uuc }
If z, < zy, let

G" =G - {uv, - ,uvs } + {vv1, -+ ,vue }.
Obviously, G* = G’ = G". By Lemma 1, we have p(G) < p(G*). This
completes the proof.

Lemma 3. Let G,G’,G"” be three connected graphs pairwise disjoint.
Suppose that u, v are two vertices of G, u' is a vertez of G’ and u” is a
vertex of G". Let Gy be the graph obtained from G, G', G” by identifying,
respectively, u with v’ and v with u”. Let G2 be the graph obtained from G,
G', G" by identifying vertices u,u’,u”. Let G be the graph obtained from
G,G',G" by identifying vertices v,u',u”. Then either p(G;) < p(G2) or
p(G1) < p(Gs).

Lemma 4. Let G1, Gy be the graphs shown in Figs. 1, where Gy is a
connected graph, v > 2. Then p(G1) < p(G2).
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G1 G2
Figs. 1

Lemma 5. Let G, G2 be the graphs shown in Figs. 2, where Gp is a
connected graph, s > 2,t >0, or s =1,t > 1. Then p(G:) < p(G2).

8
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G2
Figs. 2

Lemma 6. Letk > 3, and let Cy_1(P,UTUP;, P, --- , Py,)) be a cycle
C = ujug - - ug_1uy of order k — 1 with one pendant edge u;v; attached to
vertez u; (i = 1,2,--+ ,k — 1) and with one tree T and a path of length 2
attached to uy. Then

P(Ck(P2UT,P2,°" 1P2’)) <p(Ck—1(P2UTUP3)P2)"' ,P2,))-

Lemma 7(10]. Let u be a verter of G, and let C(u) be the set of all
cycles containing u. The characteristic polynomial of G satisfies

P(GiN) =2P(G-uX)—- ) P(G-u-v;0)-2 > P(G\V(2);)).
vEN(u) ZeC(u)

Lemma 8(7, 8]. Let v be a vertez in a non-trivial connected graph G
and suppose that two paths of lengths k,m (k > m > 1) are attached to G
by their end vertices at v to form Grm. Then p(Gi,m) > p(Grt1,m—1)-

Lemma 8. Let ¢ > 3 and n > 8, Then p(An(g)) > p (A} (g)).

Proof. Applying Lemma 7 to the highest degree vertex of A,(q) and
Af(q), respectively, we have

P(An(g)i ) =2A""2(N2 — 1) 2\ —(n— g+ 2)N2 - 22 +n— 29+ 1},
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P(AF(9; A) = X2 — 17 A8 — (n— g+ 2 - 2)° +
(4n—5q+3)A* +2)03 — (dn—Tg+4)X2 +n—2g+1].

Since ¢ > 3 and n > 8, it follows that the star K 4 is an induced
subgraph of A} (q), and so p(A}(q)) = p(K1,4) = 2. Hence

P(Dn(g)i N) = P (83 (g); A) = A2 (02 1774 ](g —n + 3N (A - 2)-

(n-29)A(A-1)—(n-8)A? -2} <0
for all A > p(At(q)). This implies that

P (Dnl(g), p(AF(9))) < 0.

Thus
p(Dn(9) > 2 (AF(0) -

This completes the proof.

3. Main results

Theorem 1. Let U be a unicyclic graph with n vertices and edge inde-
pendence number q, n > 8. Then

p(U) < p(Bn(9))s

and the equality holds if and only if U = A,(q), where p(Dn(q)) is the
largest root of the equation

M_(n-g+2)A2-22+n-2¢+1=0.

Proof. Let U,(g) be the set of all unicyclic graphs with n vertices
and edge independence number ¢g. For any U € Uy,(g), assume that M
is a maximum matching in U. Then |M| = g and there are three cases
for a non-pendant edge e = uv in U: (1) e = uv is an M-saturated edge;
(2) e = uv has exactly one M-saturated vertex; (3) e = uv is not an M-
saturated edge but both « and v are M-saturated vertices. If there exists
a non-pendant edge e = uv of case (1) or case (2) in U, applying the
transformation described in Lemma 2, we can transform U into a graph
U* € U,(g) such that edge e is a pendant edge and p(U) < p(U*) unless
the cycle in U is C3 and e = uv belongs to the cycle. Accordingly, if U is
not the graph Up € U,(g) described in the following 4 cases, applying the
transformation described in Lemma 2 repeatedly, we can transform U into
a graph Up € Up(g) such that p(U) < p(Up).
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Case 1. U is a cycle Cy = ujuz - - - uxu; of order k with one pendant
edge u;v; and one tree T; attached to vertex u; (i = 1,2,--- ,k), where T;
contains u; as a vertex and |V(T;)| > 1. Each M-saturated edge in Uy is
pendant edge. Each vertex of Up, which is not M-saturated, is a pendant
vertex adjacent to some M-saturated vertex. The two vertices of each non-
pendant edge are M-saturated. We denote the Uy by Cx(P, U T, P U
Ty P2 UTk)'

Case 2. Up is a cycle C3 = ujusuzu; of order 3 with one tree T;
attached to vertex u; (i = 1,2, 3) and one pendant edge u,v; attached to
vertex u1, where T; contains u; as a vertex and |V(T;)| > 1. Edge uaus is
an M-saturated edge, while all other M-saturated edges in U are pendant
edges. Each vertex of Up, which is not M-saturated, is a pendant vertex
adjacent to some M-saturated vertex. The two vertices of each non-pendant
edge are M-saturated. We denote the Up by C3(P; U Ty, T, T3).

Case 3. U is a cycle C3 = ujugugu; of order 3 with one pendant edge
u;v; and one tree T; attached to vertex u; (¢ = 1,2), where T} contains u;
as a vertex and |V(T;)| > 1. uz is not an M-saturated vertex. All other
vertices of Up, which are not M-saturated, are pendant vertices adjacent
to some M-saturated vertices. Each M-saturated edges in U is a pendant
edge. The two vertices of each non-pendant edge except ujus and usug are
M-saturated. We denote the Up by C3(Pa UTh, P, UTs, P,).

Case 4. Up is a cycle C3 = wujuguzu; of order 3 with one tree 7}
attached to vertex u;(i = 1,2), where T, contains u; as a vertex and
\V(T3)| 2> 1. Edge ujuz is an M-saturated edge and u3 is not an M-
saturated vertex. All other M-saturated edges in Up are pendant edges.
All other vertices of Up, which are not M-saturated, are pendant vertices
adjacent to some M-saturated vertices. The two vertices of each non-
pendant edge except u;u3 and upuz are M-saturated. We denote the Uy
by C3(T13T2) Pl)'

For Case 1, if there exist two trees T;, Tj such that |V (T3)| > 2, |V(T})| >
2, let

N@)(\V(T) ={a1,++ 180}, Nw)[(V(T3) = {by,---,be },
then s > 1, ¢ > 1. Denote by U; the graph
Ce(P2UT, P, UTs, -+ \PoUTi) — {ujby,--- ,uibs } + {wiby,--- ,uibe },
and by Uj the graph A

Ce(PUT,PRUT,, -+ ,PUT:) — {wia1,--- , w0, } + {uja1,- -+ ,uja, }.
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Then U;, U; € Un(g), and by Lemma 3 we have either
p(Ck(Pz VT, P UT,,---, Pn Tk)) < p(Ug)

or

p(Ck(PZ UTI’P2 UT27 vt )P2 N Tk)) < p(UJ)
So if more than one T} in Cx(PUTy, P2UT, - - - , P,UT}) satisfies [V(T3)| 2
2, by Lemma 3 we can transform Cx(P UT, P U Ty, -+, P UT}) to the
graph Cx (P UT, Pz, --- , P;) in Un(g) such that

p(Ck(Pz UTh,PUTy,--- ,PaU Tk)) < p(Ck(Pz uT, P, --- ,Pz)).

Beginning with the vertex of T furthest from u, and applying Lemma 4
and Lemma 5 repeatedly, we can transform the graph Cx(PUT, Ps,- - - , P2)
into a graph Ci((n — 2¢+ 1)P2 U (¢ — k)Ps, P2,- -+ , P;) in Un(q), which is
formed by attaching n — 2¢ pendant edges and g — k paths of length 2 to
the vertex u; of Cx(P, Ps,---,P2). Applying Lemma 6 k — 3 times, we
can transform Cx((n — 2¢ + 1)P2 U (¢ — k)Ps, P, - , P2) into the graph
AF(g). By Lemma 3-6, we have

p(Ck(P2 UTa P2a M P2)) S P(A:(Q)),

and the equality holds if and only if Cx(P2UT, Py,--- , Ps,) = A} (q)-
For Case 2, if [V(T2)| = 2 or [V(T3)| 2 2, applying Lemma 3 as above
we can transform C3(P; UT, T3, T3) into C3(P; UT, Py, ;) in Up(g) such
that
p(C3(P.UTh, T3, T3)) < p(C3(PUT, P, 1))

Applying Lemma 4 and 5 repeatedly, we can transform C3(P, UT, P, P1)
into the graph A,(g). By Lemma 3-5, we have

p(C3(P2 U T, T2, T3)) < p(An(a)),

and the equality holds if and only if C3(P; U Ty, T2, T3) = An(9)-
For Case 3, applying Lemma 3 as above, we can transform C3(P; U
T, PUT, Pl) into a graph Ca(Pg uT,P,P)in u,,(q) such that

p(C3(P UTy, P, UT,, P)) < p(C3(P2UT, Py, P1)),

where T is a tree. Applying Lemma 4 and 5 repeatedly, we can transform
C3(P; UT, P, P,) into the graph A,(g). By Lemma 3-5, we have

p(C3(P2 UTy, P, U T3, 1)) < p(Ln(q))-

For Case 4, if |V(T1)| = 2 and |V (T2)| 2 2, applying Lemma 3, we can
transform C3(T1, T2, P,) into a graph C3(T, P1, P,) in Un(g) such that

p(C3(Tl;T2, Pl)) < p(C3(T1 Plypl))-
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Applying Lemma 2 to an edge with which u; is incident in T, we can
transform the graph C3(T, P1, P,) into a graph C3(P2UT", Py, P;) in Uy (g),
where 7" is a tree. By Lemma 2, we have

o(C3(T, P, 1)) < p(C3(P UT', Py, P,).

Applying Lemma 4 and 5 repeatedly, we can transform C3(P, UT’, P,, P;)
into a graph A,(g). By Lemma 3-5, we have

p(C3(Th, Tz, 1)) < p(An(9))-
Combining the above arguments and Lemma 9, we have
p(U) < p(Uo) < p(An(q))

and the equality holds if and only if U = A,(q). By the proof of Lemma
9, we have p(An(g)) is the largest root of the equation

- (n-q+2)2? -2z24+n—-2¢+1=0.
The proof is completed.

By Lemma 8, we can easily see that p(An(q)) > p(An(g + 1)) for
n 2> 2q + 2. From this fact and Theorem 1, we have the following corollary.

Corollary 1. Let U be a unicyclic graph on n vertices with edge inde-
pendence number not less than q, n > 8. Then

p(U) < p(&n(a)),

and the equality holds if and only if U = A,(q).

As a particular case of Corollary 1, we obtain the upper bound for the
spectral radii of unicyclic graphs on n vertices, which is the main result of
[12] and can also be found in [3, 11].

Corollary 2. Let U be a unicyclic graph on n vertices, and n > 8.

Then
p(U) < p(An(2)),
and the equality holds if and only if U = An(2).
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