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Abstract

The average distance (D) of a strong digraph D is the average
of the distances between all ordered pairs of distinct vertices of D.
Plesnik (3] proved that if D is a strong tournament of order n, then
u(D) < 28 4+ L In this paper we show that, asymptotically, the
same inequality holds for strong bipartite tournaments. We also give
an improved upper bound on the average distance of a k-connected
bipartite tournament.

Let D = (V, A) be a strong digraph of order n. The average distance
of D, u(D), is the average of the distances between all ordered pairs of
distinct vertices of D, i.e.,

1
U(D)=m > dp(yv),

(u,v)EV XV

where dp(u,v) denotes the distance from u to v in D. The total distance of
D is defined as d(D) = 3_,, ,yev xv @D (%, v). The diameter of D, diam(D),
is the maximum of the distances between all ordered pairs of vertices of D.
In this paper, we are concerned with the average distance of strong bipar-
tite tournaments. The following bound on the average distance is due to
Plesnik.

Theorem 1 (3] Let T be a strong tournament of order n > 3. Then

3 n+4 1
- < & —_ -
2_p(T)_ 6 +n
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Moreover, u(T) = 3 if and only if T has diameter 2, and u(T) = e
if and only if T is the unique strong tournament of diameter n — 1.

Taking the degree of a vertex, after whose removal the tournament re-
mains strong, into account, Moon (2] obtained a slight improvement of
Theorem 1. In [1], the present authors showed that for k-connected tour-
naments, Plesnik’s upper bound can be improved significantly.

Theorem 2 (1] Let k > 1. If T is a k-connected tournament of order n,
then 19 k

n
and this bound is, apart from an additive constant, best possible.

In this paper, we are concerned with the average distance of bipartite
tournaments, i.e., orientations of complete bipartite graphs. We show that
Theorems 1 and 2 essentially hold also for bipartite tournaments.

Let T be a digraph. The out-distance d*(v) and the in-distance d~ (v)
of a vertex v of T is defined as d*(v) = 3, cy(r)d(v,w) and d™(v) =
EweV(T) d(w,v), respectively. The distance of v, d(v), is the sum d*(v) +
d~(v). If ¢ is an integer, then we define D; = D;(T) to be the number of
ordered pairs of vertices (z,y) with dr(z,y) = 4. If v is a vertex of D and
A C V(D), then d(v, A) is defined as min,ca d(v,a). The converse D of
a digraph D is the digraph obtained from D by reversing the directions of
all arcs. Clearly, d(D) = d(D) if D is strong.

Two bipartite tournaments will be of importance in our considera-
tions. For n > 4 we define T, to be the bipartite tournament with ver-
tex set {v1,v2,...,v,} and arc set E(T,) = {vwvij1|]l < i < n-1}U
{vivj| 1<j<i-3<n-3,i—jodd}. It is easy to verify that T}, is the
unique strong bipartite tournament of order n and diameter n — 1. For
k > 1, the bipartite tournament T,’f is the bipartite tournament of order
n + k obtained from T, by adding k copies of v,, i.e., by adding k new
vertices with the same in-neighbourhood and out-neighbourhood as v,,.

We adopt the following notation. Let v be a vertex of out-eccentricity
e. Fori > 0let Vi(v) = {w € V(T | d(v,w) = i}, Vo;(v) = {w €
V(T) | d(w,v) = i} and, for any integer i, n;(v) = |V;(v)|. If v is understood
then we simply write V; and n;. Also let v = ag,a,,as,...,a. be a shortest
path from v to V.

Our first result is a lower bound on the average distance of a strong
bipartite tournament.

Proposition 1 Let T be a strong bipartite tournament. Then
wT) 2 2.
Equality holds if and only if diam(T) = 3.
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Proof. Let u,v be two vertices of T. If u and v are in the same
partition set then d(u,v) > 2 and d(v,u) > 2. If u and v are not in the
same partition set and, say, uv € E(T'), then d(u,v) = 1 and d(v,u) > 3.
In either case we have

d(u,v) +d(v,u) > 4.

Summation over all u,v and division by n(n — 1) now yields u(T') > 2.

Now u(T) = 2 if and only if d(u,v) + d(v,u) = 4 for all u,v € V(T), which
holds if and only if diam(7T) < 3. Since every bipartite tournament has
diameter at least 3, we have u(T') = 2 if and only if diam(T) = 3. ]

We remark that by a result by Soltés [4], who characterizes the complete
bipartite graphs that admit a strong orientation of diameter 3, bipartite
tournaments of order n and diameter 3 exist for all n > 4. Hence the bound
in Proposition 1 is sharp for all n > 4.

A sharp upper bound on u is significantly harder to prove. The basic
idea - remove a vertex v and estimate d(v) and d(T—v) - is simple. However,
the fact that the bipartite tournaments of order n that maximize d(v) and
d(T) change shape at n = 10 and n = 13, respectively, makes some technical
detail necessary. We first state preparatory Lemmas.

Lemma 1 Let v,z be vertices of a bipartite tournament T with dr(v,z) >
4. If in T — x every vertez is reachable from v, then T — z is strong. In
particular, if diam(T') > 4 and d{v,z) = diam(T"), then T — z is strong.

Proof. It suffices to show that for every vertex w of T — x there exists
a (w,v)-path. Let w € V;. If i > 3, i odd, then the arc wv is present in
T —z. If i > 6, i even, then w, a3, v is a (w,v)-path. If i € {1,2}, then let
P be a shortest path in T from w to V3. Since the internal vertices of P
are all in V; U V,, P is also a path in T’ — z, and thus appending v to P
yields a (w, v)-path. Finally, if ¢ = 4 then w has an out-neighbour w’ € V;.
Since there exists a (w', v) path, the existence of a (w, v)-path follows. This
proves the first part.

The second statement follows from the first statement and the fact that
in T — z every vertex is reachable from v if d(v, z) = diam(T). O

Lemma 2 Let T be a strong bipartite tournament and v € V(T). Let
Vi =V;(v) fori=1,2,3. Then V3 # 0 and

> (dr(w,w) +dr(w,v) < [%(nl s +32 -4 (1)
weV1uUVy

If ng = 1, then equality in (1) implies that (i) Vo UV} U Vo U V3 induce a
T 4nat+2 OF (i) ny +ng is even and VUV, UVy UV; induce a T,{l_,_m_,_l.
In both cases v corresponds to v,.
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Proof. Let w € V; UV,. Since v is not adjacent from any vertex in
V1UV2, we have V3 # 0. A shortest path from w to V3 contains only vertices
in V1 U Vs, except for the terminal vertex. Moreover, d(w,v) = d(w, V3) +1.
Let W; be the set of vertices w € ViUV3 with d(w, V3) = i and let m; = [W;).
Since T is bipartite, we have W; C V; if i is even, and W; C V; if i is odd
and thus d(v, w) + d(w,v) = 2j + 2 if w € Wy;_, U Wy;. Hence

Z (d(v, w) + d(w, v)) = Z ( Z ) (d(v, w) + d(w,v))

weWVuV; i21 weWyz;_ UWyy

2(2.7' + 2)(m2;-1 + ma;). ()
j21

Clearly, m; > 0 for ¢ > 0. Also, if there is a vertex in V; U V, at distance i
to Vs, then there exists a vertex at distance ¢ — 1. Hence, m; > 1 implies
mi—1 > 1 for i > 1. Subject to this condition and }_,, m; = ny + ng, the
term in (2) is maximized if and only if m; =1fori=1,2,...,n; +n2 — 2
and either (i) m; = 1 for i = ny +ny — 1,1y +n2 or (ii) ny + ny is even and
m; = 2 for i = n; +ny — 1 and m; = 0 for ¢ = n; +ny, while the remaining
m; equal 0. Hence, with n; + ny =: N,

{ T3 (2 + 2), N even,

> (d(v,w) + d(w,v)) < YWD 925 +2) + (N +3) N odd,

weV1UV,
= [-2-(11.1 +ny +3)2 -4,

as desired.

Assume (1) holds with equality and n3 = 1. Then m; = 1 for i =
1,2,...,m +n2 —2, my =0 for i > ny + ny and either (i) m; = 1 for
i=mn; +ny —1,n; +ny or (ii) ny + ny is even and My, 4n,—1 = 2 and
Mn,+n, = 0. Hence in the tournament induced by Vo UV; U Vo U V3, we
have n;(v) =1 for i = —1,-2,,..., —(n; + n2) and either (i) n;(v) = 1 for
i = —(ny +ng), —(n1 +n2) or (ii) n; +ny is even and 1y, 4p,-1(v) = 2 and
Tiny4nga(v) =0. Hence T =Ty 4npq2 0r ny+ngisevenand T=T1 , ...

m]

For a vertex v € V(T) define the out-eccentricity and in-eccentricity

of v by et (v) = maxyev(r)dr(v,w) and e~ (v) = mex,ev(r)dr(w,v),
respectively.

Lemma 3 Let T be a strong bipartite tournament of order n and v € V(T)
withs <et(v)<T7or5<e (v) <T7. Then

8n —24 if6<n<12,
d('U) < { '.'21""'2 _n_l_%_l ifn>13.
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Proof. We only consider the case 5 < e*(v) < 7. The other case
is proved analogously. We first consider the distances between v and the
vertices in |J;53 Vi. Let e = e*(v). Clearly,

d*t(v) = Zm 3)
i=1

To bound the in-distance of v, note that the same considerations as in the
proof of Lemma 1 yield for w € V,,

1 ifi>3,1o0dd,

2 ifi>6,1even, 4
2 ifi=4and N*(w)NV; #0, (4)
4 ifi=4and Nt (w)NnV;=0.

d(w,v) <

Since Vs # 0, the set N*(w) is not empty for some w € V,. In conjunction
with Lemma 2 we obtain

d(v) Z + Z ) (d(v, w) + d(u),v))

weViuVy  weV3UVU...uV,

IA

1
L5 (m +ny 4 3)% — 4] + 4ng + 8(nyg — 1) + 6 + 6n5 + 8ng + 8n7.

Let n; + ny be fixed. Then ng+n4+ns5+ng+n7y =n—ny; —ng — 1,
ng,n4,ns > 1, and ng,n7 > 0. Subject to these conditions the right hand
side above is maximized if ng = n7 = 0, n3 = ng = 1 and thus ny =
n — ny — np — 3. Substituting these values yields, after simplification,

1 31
d(v) < I.‘2'(n1 +1n2)? — 5(ny + 1) + 8n — =l
Now 2 < n; + ns < n —4 since e > 5. A simple maximization of the right

hand side shows that
8n—-24 if6<n<12
d(v) < { [in?-n+ %] ifn>13,
as desired. D

Lemma 4 Let T be a strong bipartite tournement of order n > 4 and let
v € V(T). Then

8n—-20 if4<n<10,
d(v) < { [in? +n] ifn>11.

Equality holds for some vertez v of T if and only if
())4<n<10and T=TF 5 or
(#)n>10and T =T, or T =T, or

(i) n>10,n even and T=T)_, or T =T _,.
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Proof. Suppose there exists a counter example T of minimum order.
We can assume that T and v are chosen such that d(v) is maximum among
all strong bipartite tournaments T of order n and all vertices v of T. It
is easy to check that the Lemma holds for n = 4,5. Let e := e*(v). By
Lemma 3, we have e <4 or e > 8.

CasE 1l: e< 4.
Since T is strong and bipartite, V3 is non-empty. By (4) and Lemma 2, we

have
Z + Z + Z )(d(v,w)+d(w,v))

weViUVa weVa weVy

d(v)

1
< I_§(n1 +na + 3)2 — 4] + 4ng + 8n,.

Denote the last term by f(n1,n2,n3,n4). We have 14+n; +no+n3+ngs =n
and nj,ng,ng = 1. Clearly, if f is maximized subject to these conditions
then ng = 1, since otherwise decreasing n3 and increasing n4 by the same
amount yields a larger value for f. Hence we can assume that nz = 1
and n; + n2 = n — 2 — ny. By elementary calculus, f is maximized iff
ng =n-—4and n <10 or n4 = 0 and n > 10. Substituting this yields,
after simplification,

8n—20 ifn<10,
d(v)s{[%n2+n'| ifn>11,

as desired.
We note that equality above implies ng =1 and thus, by Lemma 2, that
n<10 a.ndT=T5"—5 orn>10and T =T,.

CASE 2: e > 8.
‘We show that
o _ ne=1 or
n4—n5—...—ne_1—la.nd{ne=2 and e is even. (5)

Suppose not. Then e < n — 2. Let ¢ be maximal with n; > 2. Then there
exists a vertex z € V; satisfying the hypothesis of Lemma 1. Hence T' — z
is strong. Since T is a minimal counter example, we have

L2 in—1=ri2_1
If ¢ > 5 then we have dr(v,z) + dr(z,v) =i+ 1 if i is odd and dr(v,z) +

dr(z,v) =i+ 2 if i is even. Hence dr(v,z) + dr(z,v) = 2[(i + 1)/2] for
all <. Let T” be the bipartite tournament obtained from T be removing all
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arcs incident with z and adding an arc from g, to x and arcs from z to all
vertices in the same partition set as a., except a.. Clearly, T is strong and

dr (v) dr—z(v) + dr (v, z) + dr/ (z,v)
dr—z(v) + 2[(e +2)/2]
dr-z(v) +2[(i +1)/2]

dr(v).

Note that 2[(e + 2)/2] > 2[(i + 1)/2], unless i = e and e is even. Note
also that n, > 1 implies n, = 2, since otherwise repeated application of the
above procedure strictly increases d(v). Hence (5) follows, except possibly
for ny.

It remains to show that ny = 1. Suppose ny > 2. Then there exists a
vertex z € V3 — {a4}. By Lemma 1 and n5 = 1, T — z is strong. Let T”
be the bipartite tournament obtained from T by removing all arcs incident
with z and adding an arc from a. to = and arcs from z to all vertices in
the same partition set as a.. By (4) we have

dr(v) = dr—,(v) + dr(v,z) + dr(z,v) < dr_-(v) + 8,

vV IV Iv

e+2 ifeiseven,
e+3 ifeisodd.

By e > 8, we have dr(v) > dr(v), a contradiction. Hence n4 = 1. This
completes the proof of (5).

dr (v) = dpr_g (V) +dp (v, ) +dpe (2, 0) = dr-z(v)+{

Assume that n; = 1for4 < i < eand that eisodd. (Ifeisevenand n; =1
for i = 4,5,...,e — 1 and n, € {1,2} the calculations are identical to the
ones below.) Then e = n —n; — n2 — n3 + 2. Since T is bipartite, we have
d(v,w) + d(w,v) = 2i + 4 for all w € Vai10 U Vo443, 2> 1.

(e—3)/2

Z + Z + Z Z )(d(v,w) +d(w,v))

weEVIUV, weVs i=1 wEV3i12UVai43
(e=3)/2
> dw,w) +dw,v)) +4ns+ Y, 2(2i+4)

weWuVvy i=1

Z d(v,w) + d(w, 'u)) +4n3 + %(e + 7)(e — 3).
weVLuV,

d(v)

Hence, by e = n — ny — n2 — n3 + 2 and Lemma 2,

1 1
d(v) < |_§ (n1+n2+3)2—4| +4n3+§ (n—ny —ny—n3+9)(n—n1—ny—nz—1).
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Since n3 > 1 and the last expression is decreasing in n3, we obtain, after
some simplification,

1
2
Now 2 < n; + n2 < n — 4. Elementary calculus shows that the right hand
side of the upper bound on d(v) is maximized if and only if n; + np = 2.
Substituting this yields

d(v) < [(n1+n2)% — (R +n2)n + =n? + 3n — %j.

(o) < 50+,

as desired.

Now assume that the bound holds with equality. Then n; = ny = 1. In
conjunction with ng = 1 and (5), it follows that either T' = T;,, or n is even
and T=T}_,. u}

Lemma 5 Let T be a strong bipartite tournament of order n > 4 and
diameter at most 4. Then

d(T) < 4n® — 16n + 24.
Equality holds if and only if T = T3~°.
Proof. Since T is bipartite, the diameter of T is at least 3.
CasE 1: diam(T) = 3.

Let u,w € V(T). If u and w are in the same partition set, then d(u,w) =
d(w, u) = 2. If v and w are in distinct partition sets, then either d(u,w) = 1
and d(w,u) = 3, or d(u,w) = 3 and d(w,u) = 1. In either case we have
d(u, w) + d(w, u) = 4 and thus

d(T) = 4(’2") = 2n(n — 1) < 4n? — 16n + 24.
Equality holds if and only if n = 4, which implies T = T}, since T} is the
only strong bipartite tournament of order 4.
CasE 2: diam(T") = 4.

Let A and B be the partition sets of 7" and let a and b be their respective
cardinalities. Since two vertices u and w are in distinct partition sets if and
only if d(u,w) =1 and d(w, u) = 3 (or vice versa), we have

Dy = D3 = ab and Dy + Dy = n(n — 1) — 2ab.

Therefore,

4
d(T) = Y iD; = lab+2Do+3ab+4(n(n—1)—2ab—Dy) = 4n®—4n—4ab—2Ds.

i=1
(6)
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Let v be a vertex of out-eccentricity 4. Without loss of generality we can
assume that v € A. We prove that

Dy>n-2+a. Q)

Let V; = V;(v) for i > 0. Then A = VoUVaUV; and B = V;UV3. Fori > 2
each vertex z € V; has a vertex y € Vi—2 with d(y,z) = 2. Also d(z,y) =2
for all z € V; and all y € V;_3 for i > 2. Finally, there is a vertex z € V2
which is adjacent to some vertex in V3, hence d(z,v) = 2 for this z € V>.
Since all these pairs of vertices are distinct, we have

Dz > ng +n3 +nq + minz + nong + 1 =n +n1(ng — 1) + n2na.

Now 7n2,n4 > 1 and ny + n4 = a — 1. Subject to these conditions, nony is
minimized if {ns, 74} = {1,a—2}. Hence nany > a—2. Since n1(n3—1) 2 0,
(7) follows.

In conjunction with (6) we obtain

d(T) < 4n(n — 1) — 4ab—2(n — 2+ a) = 4n® —6n + 4 —2a(2b +1). (8)

Now @ > 3, b> 2 and a + b = n. Subject to these conditions, a(2b + 1) is
minimized if a = n — 2 and b = 2. Hence 2a(2b+ 1) > 10n — 20 and thus

d(T) < 4n® — 16n + 24, 9)

as desired.

Now let T be a bipartite tournament of diameter at most 4 with d(T') =
4n2 — 16n + 24. Then (8) holds with equality, hence b =2, a =n — 2 and
{ng,n4} = {1,n —4}. Now b = 2 implies n; = n3 = 1. If n; = 1 and
na=n—4then T=T¢ 5 Ifny=n—4and ny =1, then let V4 = {w}.
It is easy to check that n;(w) = ne(w) = n3(w) = 1 and ny(w) =n -4,
and thus T' = Tg‘_s. ]

Theorem 3 Let T be a strong bipartite tournament of order n > 4.
(i) If 4 <n <12 then

4n? — 16n + 24

wT) < =1

with equality if and only if T = T;"'s.
(i) If n > 13, then

n, 1 n-8 e
tt 5t @meat if n is even,

TY<{ o = fn
ao<{ 14T E L
FEquality holds if and only if T = T,.
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Proof. We prove the equivalent upper bounds on d(T"), obtained from
the right hand sides above by multiplying by n(n — 1).
The proof is by induction on n. Clearly, Ty is the only strong bipartite
tournament of order 4, hence the statement holds for n = 4.

Case 1: n <10.

If diam(T) < 4, then the statement follows from Lemma 5, so we can
assume that diam(T") > 5. By Lemma 1, T contains a vertex z whose
removal leaves T' — z strong. By our induction hypothesis and Lemma 4

d(T) < d(T — z) + dr(z) < d(TP~®) + 8n — 20 = d(T?).

Equality implies that dr(v) = 8n—20 and T~z = T35, hence T = T 5.
CasE 2: n € {11,12,13}.

If diam(T') < 4, then the statement follows from Lemma 5.
CAsE 2A: 5 < diam(T) < 7.
Let v,z € V(T) with d(v,z) = diam(T). By Lemma 1, T — z is strong.
Hence
d(T) < d(T - z) + dr(z).

Applying the induction hypothesis to T — z and Lemma 3 to dr(z) yields
d(T) < 264464 < 332 = d(T¥) for n = 11, d(T) < 332+ 72 < 408 = d(T7)
for n = 12 and d(T') < 408 + 84 < 492 = d(T}3) for n = 13.

CasE 28B: 8 < diam(T") <n - 1.

Let diam(T) = n — k. Then a shortest path between two diametral
vertices induces a strong subtournament T' isomorphic to T,_x;;. Let
21,2, ..., uk—1 be the vertices of T not in 7. We show that, if diam(T) > 5,
then, possibly after renumbering of uy,us,...,ux_1,

T-w,T—{wm,uz},...,T — {uy,...,ux_1} arestrong.  (10)

Suppose not. Clearly, T — {uy,...,ux—1} = T is strong. Renumber
ug,...,Uk—1 such that T — {ul,...,uk_l}, T - {ul,...,'u.k_g}, R
{u1,...,u;} are strong, but there is no u; € {uy,...,u;} such that T —
({u1,...,u;} — {u;}) is strong. Then each u; € {u,... ,u;} is either adja-
cent to all vertices in a partition set of T — {uy,...,u;} or adjacent from
all vertices in a partition set of T — {u,...,u;}. Since T is strong, there
exist vertices u;, u; € {uy,...,u;} such that u; is adjacent to all vertices in
a partition set of T — {u,,...,u;} and u} is adjacent from all vertices in a
partition set of T — {u,,...,u;}. Choosing u; and «} at minimum distance
in T yields that also u{u; € E(T). Hence, in T, there is a path of length
at most 5, containing u/u;, between any two vertices of T — {uy, ..., uj}, a
contradiction to diam(T") > 5. This proves (10).
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Let T(0) := T and T(¢) = T — {u1,u2,...,u;} fori =1,2,...,k - 1.
Then

d(T) < d(T(k — 1)) + dpk—2)(ur—1) + dr(k-3) (ug—2) + ...+ dr(u1).

Since diam(T) > 8, each T'(i) hes at least 10 vertices. By Lemma 4, we
have drg)(uit1) < [3(n — 4)? + (n — i)]. Hence, since T'(k — 1) = Tn_k+1,

k=2 k-2
d(T) < d(Tn-k+1)+ z dry(tis1) < d(Tn-k+1) + Z [%(n —i)?2 4+ (n-19)].
i=0 i=0

It is easy to prove by induction on k that the last term equals d(T,).
Hence d(T) < d(T,). Now d(T,) < d(T2~%) for n = 11,12. For n = 13,
equality above implies by Lemma 4 that either T = Ty3 (if diam(T) = 12)
or dp()(u1) = [5(13)2 + 13] and thus, by Lemma 4, either T = Tj3 or
T = T},. Since d(T},) < d(Ti3), equality holds only for T}3.

CASE 3: n > 14.

If diam(T) < 4 then d(T) < 4n? — 16n + 24 < d(T,), so we can assume
that T has diameter at least 5. By Lemma 1, there exists a vertex z of T
such that T — z is strong. Applying our induction hypothesis and Lemma
4 yields

d(T) < d(T — ) + dr(z) < d(Tar) + [3n? —n] = d(To),

as desired.
Equality implies that dr(z) = [4n® — n] and thus, by Lemma 4, that
T=T,orT=T!_,. Since d(T}_,) < d(Ty), equality implies T =T,. O

We conclude this paper with the observation that Theorem 2 holds in a
slightly weaker form also for bipartite k-connected tournaments. The proof
is omitted since it is almost identical to the proof of Theorem 2 in [1].

Theorem 4 (1) Let k > 1. If T is a k-connected bipartite tournament of

order n, then

n 25 k
y.(T)<6—k'+'E+;,

and this bound is, apart from an additive constant, best possible. O
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