GRACEFUL LABELING OF A FAMILY OF QUASISTARS WITH PATHS IN ARITHMETIC PROGRESSION

Alka V. Kanetkar
Department of Mathematics
Mithibai College
Vile Parle (W), Mumbai - 400056
(email: alkak@vsnl.com)
and
S. S. Sane

Department of Mathematics University of Mumbai Vidyanagari, Santacruz (East)

Mumbai - 400098. (email: sane@math.mu.ac.in)

The problem of graceful labeling of a particular class of trees called quasistars is considered. Such a quasistar is a tree Q with k distinct paths with lengths 1, d+1, 2d+1, ..., (k-1)d+1 joined at a unique vertex θ . The k paths of Q intersect only in the vertex θ .

Thus, Q has $1 + [1 + (d+1) + (2d+1) + ... + (k-1)d+1)] = 1 + k + \frac{k(k-1)d}{2}$ vertices. The k paths of Q have lengths in arithmetic progression with common difference d. It is shown that Q has a graceful labeling for all $k \le 6$ and all values of d.

AMS Subject Classification: Primary 05C78, Secondary 05C15.

Introduction:

Labeling of a graph is an assignment of a unique label to each of the vertices of a graph. Let G be a graph with n vertices. Let $V(G) = \{v_1, v_2,, v_n\}$ be the vertex set of G and E(G) the edge set of G. A bijective mapping $f:V(G)\to$ $\{1, 2,, n\}$ is said to be a (vertex) labeling of graph G. A labeling $f: V(G) \rightarrow$ $\{0, 1, 2, \dots, n-1\}$ is called graceful and G is called a gracefully labeled graph if the induced edge labels $\{|f(v_i) - f(v_j)| : (v_i, v_j) \in E(G)\}$ are all distinct and take all values in the set $\{1, 2, \dots, n-1\}$. The term graceful labeling was first introduced by S.W.Golomb. A tree T is a simple connected graph (without loops or multiple edges) which has no cycles. The Graceful Tree Conjecture (Kotzig-Rosa) states that every tree is graceful. This conjecture is widely believed to be true and some classes of trees are shown to have a graceful labeling. Rosa[3] proved that all paths and caterpillars are graceful. A k-quasistar T is a tree with k paths (of various lengths) rooted at a unique common vertex and there are no other vertices in T. Such a quasistar is called a balanced quasistar if the lengths of any two paths differ by at most one. A recent result of R.Badrinath and P.Panigrahi [2] proves that a balanced quasistar has a graceful labeling. We give a graceful labeling for a k-path quasi-star in which the lengths of the k paths increase in arithmetic progression by a fixed difference $d \in N$.

Fix positive integers k and d. By a k-paths quasistar we mean a tree $T_{k,d} = T$ with the following properties:

- T has k paths P_i meeting in a common vertex θ.
 ∩^k_{i=1} V(P_i) = {θ}.
- 2. Length of path P_i of T denoted by $\ell(P_i)$ is $\ell(P_i) = 1 + (i-1)d$ where $i = 1, 2, \dots, k$. $d \in \mathbb{N}$, d fixed.

The aim of this paper is to prove:

Theorem: Let $T_{k,d}$ denote a quasistar with k paths commonly attached to a vertex θ such that the paths have lengths 1 + (i-1)d where i = 1, 2, ..., k and $k \leq 6$. Then $T_{k,d}$ has a graceful labeling.

Proof: We give a graceful labeling for the cases where $k \le 6$. The number of vertices of tree $T_{k,d}$ is given by n = 1 + 1 + (1 + d) + (1 + 2d) + +(1 + (k-1)d. Let $N = n - 1 = k + \frac{(k-1)kd}{2}$.

We obtain a layout of the tree by rooting at the vertex θ and paths flow vertically from the root θ with paths arranged in increasing size from left to right with increment d. The labeling of tree T can be described by constructing a matrix so that the k paths are written as k columns of the matrix. We construct matrix $L_{(k-1)d \times k} = L$ such that it contains distinct values from the set $\{1, 2, 3,, n\}$. The values in the matrix L will be the labels given to the vertices of the tree $T_{k,d}$. The common vertex θ is assigned the value N. The first row of the matrix will have the value N and the subsequent rows will have the remaining values.

The matrix L can be described in the following manner.

L = $\begin{bmatrix} L_r \end{bmatrix}$ where $r=1,2,3,\ldots,k$ and L_r is the submatrix of L having the first r-1 columns blank. Thus L_1 consists of the k vertices at distance 1 from the root θ (i.e. neighbours of θ) and L_2 consists of the vertices on the paths P_2,\ldots,P_k (in that order) that are distance $\leq d+1$ from the root θ . (The path P_1 has no such vertices and so on. For example in table 1.1 we have three columns that respectively correspond to three paths length 1, 1+d and 2+d.

Further R refers to the row of θ .

The Labeling: We consider the case k = 3.

Tree $T_{k,d}$ is a quasistar with 3 paths of length 1, 1+d and 1+2d.

N=3+3d. The case d=1 requires separate consideration.

$$L = \left(egin{array}{ccc} 6 & 6 & 6 \ 0 & 1 & 2 \ & 3 & 5 \ & & 4 \end{array}
ight)$$

For the case d=1 the edge differences are as follows:

$$D = \begin{pmatrix} 6 & 5 & 4 \\ & 2 & 3 \\ & & 1 \end{pmatrix}$$

Thus for d=1 tree $T_{3,1}$ has a graceful labeling. Now let $d \ge 2$.

Table 1.1 gives a labeling for the tree $T_{3,d}$ which will be shown to be graceful.

R	3d+3	3d + 3	3d+3	
R_0	0	1	2	
R_{2j-1}		3d-3j+3	3d-3j+5	$j = 1, 2, 3, \cdots, \lceil \frac{d}{2} \rceil$
R_{2j}		3 <i>j</i>	3j+1	$j = 1 2, 3, \cdots, \lfloor \frac{d}{2} \rfloor$
R_{2j-1}			3d-3j+5	$j = \lfloor \frac{d+3}{2} \rfloor, \cdots, d$
R_{2j}			3j + 1	$j = \lceil \frac{d+1}{2} \rceil, \cdots d$

Table 1.1

$$L_{2d \times 3} = \begin{pmatrix} L_1 \\ L_2 \\ L_2 \end{pmatrix}$$

$$L_1 = \begin{pmatrix} 3d+3 & 3d+3 & 3d+3 \\ 0 & 1 & 2 \end{pmatrix}_{2\times 3}$$

$$\mathbf{L}_{2} = \left(\begin{array}{ccc} \diamondsuit & 3d - 3j + 3 & 3d - 3j + 5 \\ \diamondsuit & \\ \diamondsuit & 3j & \\ \diamondsuit & \end{array} \right. \left. \begin{array}{ccc} j = 1, 2, 3, \cdots, \left\lceil \frac{d}{2} \right\rceil \\ j = 1, 2, 3, \cdots, \left\lfloor \frac{d}{2} \right\rfloor \\ \end{pmatrix}_{d \times 3}$$

$$L_{3} = \begin{pmatrix} \diamondsuit & \diamondsuit & 3d - 3j + 5 \\ \diamondsuit & \diamondsuit & \\ \diamondsuit & \diamondsuit & 3j + 1 \end{pmatrix} \begin{matrix} j = \lfloor \frac{d+3}{2} \rfloor, \dots, d \\ j = \lceil \frac{d+1}{2} \rceil, \dots, d \end{matrix} \right)_{d \times 3}$$

In the matrix L_1 the first row corresponds to the label given to the common vertex θ and the second row has distinct values. The values in odd rows of the matrix L_2 are of the form 3d-3j+p where p=3,5 and $j=1,2,3,\cdots, \lceil \frac{d}{2} \rceil$. The values are obviously distinct. In L_2 the entries in the even rows are of the form 3j+q where q=0,1 and $j=1,2,3,\cdots, \lfloor \frac{d}{2} \rfloor$.

We now prove that the values in columns are distinct.

If 3d-3j+p=3j+q then the congruence $3d-6j+p-q\equiv 0 \mod(3)$ is not true for d>2.

Also values in L_1 and L_2 are distinct as $3+3d\neq 3d-3j+3$ for any $j=1,2,3,\cdots,\lceil \frac{d}{2}\rceil$.

Further the values in odd rows of L_2 are of the form 3d-3j+p where p=3,5 and $j=1,2,3,\cdots, \lceil \frac{d}{2} \rceil$ and the values in the odd rows of L_3 are 3d-3j'+3 for any $j'=\lfloor \frac{d+3}{2} \rfloor,\cdots,d$.

 $3d - 3j + p \neq 3d - 3j' + 3$ for any j, j'.

Similarly the values in the even rows of L_2 and L_3 are 3j+1 where $j=1,2,3,\cdots,\lfloor\frac{d}{2}\rfloor$ and 3j'+1 where $j'=\lceil\frac{d+1}{2}\rceil,\cdots,d$ respectively and clearly $3j+1\neq 3j'+1$ for any j,j'.

Thus the values in L_1 , L_2 and L_3 are distinct.

Each value in the matrix L is associated with a vertex in tree $T_{k,d}$.

We now show that the differences obtained from the labeling given above is graceful.

We construct matrix $D_{(k-1)d \times k} = D$ which gives edge differences for the labeling of the tree described above. The common vertex θ is assigned the value N. $|R-R_0|=|3+3d\ 2+3d\ 1+3d\ |R_1-R_0|=|3d-1\ 3d\ |$

From L_2 we calculate the absolute difference:

$$|R_{2j} - R_{2j-1}| = |3d - 6j + 3 3d - 6j + 4|$$

 $|R_{2j+1} - R_{2j}| = |3d - 6j 3d - 6j + 1|$

From L_3 we calculate the absolute difference:

$$|R_{2j} - R_{2j-1}| = |3d - 6j + 4|$$

 $|R_{2j+1} - R_{2j}| = |3d - 6j + 1|$

The matrix D can be described in the following manner. D= $[D_r]$ where r=1,2, 3 and D_r has first r-1 entries blank.

For the case k=3 the matrix $D = [D_r]$ where r=1,2,3. Specifically D is:

$$\begin{pmatrix}
D_1 & R - R_0 & 3d + 3 & 3d + 2 & 3d + 1 \\
R_1 - R_0 & & & & & & & & & & & \\
\hline
D_2 & R_{2j} - R_{2j-1} & & & & & & & & & & & \\
R_{2j+1} - R_{2j} & & & & & & & & & & & \\
\hline
D_3 & R_{2j} - R_{2j-1} & & & & & & & & & & \\
R_{2j+1} - R_{2j} & & & & & & & & & & \\
\hline
D_3 & R_{2j} - R_{2j-1} & & & & & & & & & & \\
R_{2j+1} - R_{2j} & & & & & & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & & & & & \\
R_{2j+1} - R_{2j} & & & & & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & & & & \\
R_{2j+1} - R_{2j} & & & & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & \\
\hline
D_3 & R_{2j-1} - R_{2j-1} & & & & \\
\hline
D_$$

We now show that the values in D_1 , D_2 and D_3 are distinct. The values in D_1 are 3d+3, 3d+2, 3d+1, 3d, 3d-1 which are obviously distinct. The values in D_2 are 3d-6j+p where p=3, 4 and $j=1,2,\cdots,\lfloor\frac{d}{2}\rfloor$ and 3d-6j+p' where p'=0, 1 and $j=1,2,\cdots,\lfloor\frac{d-1}{2}\rfloor$. The values in D_3 are 3d-6j'+4 where $j'=\lceil\frac{d+1}{2}\rceil,\cdots,d$ and 3d-6j'+1 where $j'=\lceil\frac{d}{2}\rceil,\cdots,d-1$. $3d-6j+p\neq 3d-6j'+4$ for any j, j'. Also $3d-6j+p\neq 3d-6j'+1$ for any j, j'. The values $3d-6j+p'\neq 3d-6j+1$ for any j, j'. Comparing the values in D_1 , D_2 and D_3 the values are distinct as j takes different values in each D_r where r=1,2,3. Therefore matrix D has distinct values. In conclusion, the tree $T_{3,d}$ has a graceful labeling, for every $d\in \mathbb{N}$. Case 2: k=4.

Tree $T_{4,d}$ is a quasistar with 4 paths of length 1, 1+d, 1+2d and 1+3d. Also, N=4+6d.

Table 2.1 gives a labeling (which will be shown to be graceful). R_{2j} and R_{2j-1} are respectively the even rows and odd rows of the label matrix L.

Table 2.1

R	6d + 4	6d + 4	6d+4	6d + 4	
R_0	0	1	2	3	
R_{2j-1}		6d-3j+2	6d-3j+4	6d-3j+6	$j = 1, 2, 3, \cdots, \left\lceil \frac{d}{2} \right\rceil$
R_{2j}		3j + 1	3j + 2	3j+3	$j = 1, 2, 3, \cdots, \lfloor \frac{d}{2} \rfloor$
R_{2j-1}			6d-3j+4	6d-3j+6	$j=\lfloor \frac{d+3}{2}\rfloor,\cdots,d$
R_{2j}			3j+2	3j + 3	$j = \lceil \frac{d+1}{2} \rceil, \cdots, d-1$
R_{2d}			6d + 2	3d + 3	
R_{2j-1}				6d-3j+4	$j=d+1,d+2,\cdots,\left\lfloor\frac{3d+1}{2}\right\rfloor$
R_{2j}				3j - 1	$j = d+1, d+2, \cdots, \lceil \frac{3d-1}{2} \rceil$

$$L_{2d \times 3} = \begin{pmatrix} L_1 \\ L_2 \\ L_3 \\ L_4 \end{pmatrix}$$

$$L_1 = \begin{pmatrix} 4 + 6d & 4 + 6d & 4 + 6d \\ 0 & 1 & 2 & 3 \end{pmatrix}_{2 \times 4}$$

$$\begin{split} \mathbf{L}_2 &= \left(\begin{array}{ccccc} \diamondsuit & 6d - 3j + 2 & 6d - 3j + 4 & 6d - 3j + 6 \\ \diamondsuit & 3j + 1 & 3j + 2 & 3j + 3 \\ \end{array} \right| \begin{array}{c} j = 1, 2, 3, \cdots, \left\lceil \frac{d}{2} \right\rceil \\ j = 1, 2, 3, \cdots, \left\lfloor \frac{d}{2} \right\rfloor \end{array} \right)_{d \times 4} \\ \mathbf{L}_3 &= \left(\begin{array}{cccccc} \diamondsuit & \lozenge & 6d - 3j + 4 & 6d - 3j + 6 \\ \diamondsuit & \lozenge & 3j + 2 & 3j + 3 \\ \diamondsuit & \diamondsuit & 6d + 2 & 3d + 3 \\ \end{array} \right| \begin{array}{c} j = \left\lfloor \frac{d+3}{2} \right\rfloor, \cdots, d \\ j = \left\lceil \frac{d+1}{2} \right\rceil, \cdots, d \\$$

In the matrix L_1 the first row corresponds to the label given to the common vertex θ and the second row has distinct values. The values in L_1 are distinct. The values in the odd rows of L_2 are 6d - 3j + p where p = 2, 4, 6 and $j = 1, 2, 3, \dots, \lceil \frac{d}{2} \rceil$ which are obviously distinct. We also observe that

 L_2 has distinct values in the even rows which are 3j+q where q=1,2,3 and

 $j = 1, 2, 3, \dots, \lfloor \frac{d}{2} \rfloor$. We now prove that the values in L_1, L_2, L_3 and L_4 are distinct.

Considering the values in L_2 :

If 6d - 3j + p = 3j + q then the congruence $6d - 6j + p - q \equiv 0 \mod(6)$ is not true for any $d \in \mathbb{N}$.

The values in the odd rows of L_3 are 6d - 3j + p where p = 4, 6 and $j = \lfloor \frac{d+3}{2} \rfloor, \dots, d$ which are distinct.

We also observe that L_3 has distinct values in the even rows which are 3j+q where q=2,3 and $j=\lceil \frac{d+1}{2} \rceil, \dots, d-1$. Also 6d+2 and 3d+3 is distinct from any value in L_3 .

The values in odd rows of L_2 are of the form 6d-3j+p where p=2,4,6 and j=1,2,3,..., $\left\lceil \frac{d}{2} \right\rceil$ and in L_3 the values in the odd rows are 6d-3j'+p' where p'=4,6 and j'= $\left\lfloor \frac{d+3}{2} \right\rfloor$,...,d.

The values $6d-3j+p \neq 6d-3j'+p'$ for any j, j'. Similarly the values in the even rows of L₂ are 3j+q where q=1,2,3 and $j=1,2,3,\cdots, \lfloor \frac{d}{2} \rfloor$ and the values in the even rows of L₃ are 3j'+q' where q'=2,3 and $j'=\lceil \frac{d+1}{2} \rceil,\cdots, d$. $3j+q \neq 3j'+q'$ for any j,j'.

Further the values in odd rows of L_3 are 6d - 3j + p where p = 4, 6 and $j = \lfloor \frac{d+3}{2} \rfloor, \dots, d$ and the values in the odd rows of L_4 are 6d - 3j' + 4 where $j' = d + 1, d + 2, \dots, \lfloor \frac{3d+1}{2} \rfloor$.

Therefore $6d - 3j + p \neq 6d-3j'+3$ for any j, j'.

Similarly the values in the even rows of L_3 are 3j + 3 where $j = \lceil \frac{d+1}{2} \rceil, \cdots, d-1$ and values in L_4 are 3j'-1 where $j' = d+1, d+2, \cdots, \lceil \frac{3d-1}{2} \rceil$ respectively. Therefore $3j + 3 \neq 3j'-1$ for any j, j'. Thus the values in L_1, L_2, L_3 and L_4 are distinct. Each value in the matrix L is associated with a vertex in tree $T_{4,d}$. We now show that the edge differences obtained from the given above labeling are distinct and therefore the labeling is graceful.

$$|R - R_0| = |6d+4 6d+3 6d+2 6d+1|$$

 $|R_1 - R_0| = |6d-2 6d-1 6d|$

From L_2 we calculate the absolute difference:

From L_3 we calculate the absolute difference:

$$|R_{2j} - R_{2j-1}| = |6d - 6j + 2 - 6d - 6j + 3|$$

 $|R_{2j+1} - R_{2j}| = |6d - 6j - 1 - 6d - 6j|$

¿From L_4 we calculate the absolute difference :

$$|R_{2j} - R_{2j-1}| = |6d - 6j + 5 |6d - 6j + 3|$$

 $|R_{2j+1} - R_{2j}| = |6d - 6j + 2 |6d - 6j|$

The matrix $D = [D_r]$ can be described in the following manner. Each D_r where r=1,2,3,4 has the first r-1 columns blank.

Specifically D is:

1	/ D ₁	$R - R_0$ $R_1 - R_0$	6d + 4	6d+3 6d-2	6d + 2 6d - 1	6d + 1 6d		
	D_2	$R_{2j} - R_{2j-1}$	l i		6d-6j+2		$j=1,2,\cdots,\lceil rac{d-1}{2} ceil$	
		$R_{2j+1}-R_{2j}$	♦	6d-6j-2	6d-6j-1	6 d – 6 j	$j=1,2,\cdots,\lceil rac{d-2}{2} ceil$	
	D ₃	$R_{2j}-R_{2j-1}$	♦	♦	6d-6j+2	6d-6j+3	$j = \lceil \frac{d+2}{2} \rceil, \cdots, d-1$	
l		$R_{2j+1} - R_{2j}$	♦	♦	6d-6j-1	3d – 6j	$j=\left\lceil\frac{d}{2}\right\rceil,\cdots,\ d-1$	
l	D ₄	$R_{2j}-R_{2j-1}$	♦	♦	♦	6d-6j+5	$j=d+1,d+2,\cdots,\lfloor\frac{3d}{2}\rfloor$	
1		$R_{2j} - R_{2j-1}$ $R_{2j+1} - R_{2j}$	 	\	 	6d-6j+2	$j=d,d+1,\cdots,\lfloor \frac{3d-1}{2}\rfloor$	d×4

Therefore for k=4 and any $d \in N$ the tree $T_{4,d}$ has a graceful labeling.

The Labeling:

We consider the case k = 5.

Tree $T_{k,d}$ is a quasistar with 5 paths of length 1, 1+d, 1+2d, 1+3d and 1+4d. N = 5 + 10d. Table 3.1 gives a graceful labeling for k = 5.

 R_{2j} and R_{2j-1} are the even rows and odd rows of the label matrix L respectively.

Table 3.1

R R ₀	5 + 10d 5j	5 + 10d 5j + 1	5 + 10d $5j + 2$	5 + 10d 5j + 3	5 + 10d 5j + 4	<i>j</i> = 0
R_{2j-1}		10d-5j+3	10d-5j+5	10d-5j+7	10d-5j+9	$j=1,\cdots,\lceil rac{d}{2} \rceil$
R_{2j}		5 <i>j</i>	5j + 1	5j + 2	5j + 3	$j=1,\cdots,\lfloor \frac{d}{2} \rfloor$
R_{2j-1}			10d - 5j + 5	10d - 5j + 7	10d - 5j + 9	$j = \lfloor \frac{d+3}{2} \rfloor, \cdots, d$
R_{2j}			5j + 1	5 <i>j</i> + 2	5j + 3	$j=\left\lfloor\frac{d+1}{2}\right\rfloor,\cdots,d-1$
R_{2d}			10d + 3	5d + 1	5d + 4	
$R_{2d+1} \\ R_{2j-1}$				$5d \\ 10d - 5j + 5$	5d + 2 $10d - 5j + 9$	$j=d+2,\cdots,\lceil\frac{3d}{2}\rceil$
R_{2j}				5j - 2	5 <i>j</i> + 1	$j=d+1,\cdots,\lfloor\frac{3d}{2}\rfloor$
R_{2j-1}					10d - 5j + 9	$j = \left\lceil \frac{3d+2}{2} \right\rceil, \cdots, 2d$
R_{2j}					5j + 1	$j = \lfloor \frac{3d+2}{2} \rfloor, \cdots, 2d$

$$L_{1} = \begin{pmatrix} 5+10d & 5+10d & 5+10d & 5+10d & 5+10d \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix}_{2\times 5}$$

$$L_{2} = \begin{pmatrix} \diamondsuit & 10d-5j+3 & 10d-5j+5 & 10d-5j+7 & 10d-5j+9 & j=1,2,3,\cdots, \lceil \frac{d}{2} \rceil \\ \diamondsuit & 5j & 5j+1 & 5j+2 & 5j+3 & j=1,2,3,\cdots, \lfloor \frac{d}{2} \rfloor \end{pmatrix}_{d\times 5}$$

$$L_{3} = \begin{pmatrix} \diamondsuit & \diamondsuit & 10d-5j+5 & 10d-5j+7 & 10d-5j+9 & j=\lfloor \frac{d+3}{2} \rfloor,\cdots,d \\ \diamondsuit & \diamondsuit & 5j+1 & 5j+2 & 5j+3 & j=\lfloor \frac{d+1}{2} \rfloor,\cdots,d-1 \\ \diamondsuit & \diamondsuit & 10d+3 & 5d+1 & 5d+4 & j=\lfloor \frac{d+1}{2} \rfloor,\cdots,d-1 \end{pmatrix}_{d\times 5}$$

$$L_{4} = \begin{pmatrix} \diamondsuit & \diamondsuit & \diamondsuit & 5d & 5d+2 \\ \diamondsuit & \diamondsuit & \diamondsuit & 10d-5j+5 & 10d-5j+9 & j=d+2,\cdots, \lceil \frac{3d}{2} \rceil \\ \diamondsuit & \diamondsuit & \diamondsuit & 5j-2 & 5+-1 & j=d+1,\cdots, \lfloor \frac{3d}{2} \rfloor \end{pmatrix}_{d\times 5}$$

$$L_{5} = \left(\begin{array}{c|c} \diamondsuit & \diamondsuit & \diamondsuit & 10d - 5j + 9 \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

In the matrix L_1 the first row corresponds to the label given to the common vertex θ and the second row has distinct values. The values in odd rows of the matrices L_r where r=2,3,4,5 are of the form 10d-5j+p where p=3,5,7,9 and $j=1,2,3,\cdots,\frac{d}{2}$. The values are obviously distinct. In L_2 the entries in the even rows are of the form 3j+q where q=0,1,2,3 and $j=1,2,3,\cdots,\frac{d}{2}$. We now prove that the values in columns are distinct.

If 10d - 5j + p = 3j + q then the congruence $10d - 8j + p - q \equiv 0 \mod(10)$ is not true for any $d \in N$. Also values in L_1 and L_2 are distinct as $5 + 10d \neq$ 10d-5j+p for any p=3,5,7,9 and $j=1,2,3,\cdots,\frac{d}{2}$. Further the values in odd rows of L_2 are of the form 10d - 5j + p where p = 3, 5, 7, 9 and $j = 1, 2, 3, \dots, \frac{d}{2}$ and the values in the odd rows of L_3 are 10d - 5j' + p'where p' = 5, 7, 9 and $j' = \frac{d}{2} + 1, \frac{d}{2} + 2, \dots, d.$ $10d - 5j + p \neq 10d - 5j' + p'$ for any j or j'. Similarly the values in the even rows of L_2 and L_3 are 5j+qwhere q = 0, 1, 2, 3 and $j = 1, 2, 3, \dots, \frac{d}{2}$ and 5j' + q' where q' = 1, 2, 3 and $j' = \frac{d}{2} + 1$, $\frac{d}{2} + 2$, ..., d - 1 respectively $.5j + q \neq 5j' + q'$ for any j or j'. Further the values in odd rows of L_3 are of the form 10d-5j+p where p=5,7,9and $j = \frac{d}{2} + 1, \frac{d}{2} + 2, \cdots, d$ and the values in the odd rows of L_4 are 10d - 5j' + p'where p' = 5, 9 and $j' = d + 2, \dots, \frac{3d}{2}$. $10d - 5j + p \neq 10d - 5j' + p'$ for any j or j'. Similarly the values in the even rows of L_3 and L_4 are 5j+q where q = 1, 2, 3 and $j = \frac{d}{2} + 1, \frac{d}{2} + 2, \dots, d - 1$ and 5j' + q' where q' = -2, 1 and $j'=d+1,d+2,\cdots,\frac{3d}{2}$ respectively. $5j+q\neq 5j'+q'$ for any j or j'. Also 10d+3,5d+1,5d+4 in L_3 are not equal to any value in L_4 . The values in the odd rows of L_4 are 10d - 5j + p where p = 5, 9 and $j = d + 2, \dots, \frac{3d}{2}$ and

values of the odd rows in L_5 are 10d - 5j' + 9 where $j' = \frac{3d}{2} + 1$, $\frac{d}{2} + 2$, \cdots , 2d, therefore $10d - 5j + p \neq 10d - 5j + 9$ for any j and j'.

The values in the even rows of L_4 are 5j+q where q=-2,1 and $j=d+1,d+2,\cdots,\frac{3d}{2}$ and the values in the even rows of L_5 are 5j'+1 where $j'=\frac{3d}{2}+1,\frac{3d}{2}+2,\cdots,2d$. Therefore $5j+1\neq 5j'+1$ for any j and j'. Thus the values in L_1,L_2,L_3,L_4 and L_5 are distinct.

Each value in the matrix L is associated with a vertex in tree $T_{k,d}$. We now show that the differences obtained from the labeling given above is graceful.

We construct matrix $D_{k-1)d \times k} = D$ which gives distinct edge differences for the labeling described above.

The values in the matrix D will be the edge differences of the tree $T_{k,d}$. The common vertex θ is assigned the value N. The matrix D can thus be described in the following manner. Each D_r where r=1,2,3,4,5 has r-1 entries blank, $D=\left[\begin{array}{c}D_r\end{array}\right]$

$$D_1 = \begin{pmatrix} 5 + 10d & 4 + 10d & 3 + 10d & 2 + 10d & 1 + 10d \end{pmatrix}_{1 \times 5}$$

Note that the differences in D_1 are between R and R_0 .

$$|R_1 - R_0| = |10d - 3 \quad 10d - 2 \quad 10d - 1 \quad 10d|$$

From L_2 we calculate the absolute difference:

From L_3 we calculate the absolute difference:

$$|R_{2j} - R_{2j-1}| = |10d - 10j + 4 \ 10d - 10j + 5 \ 10d - 10j + 6|$$

 $|R_{2j+1} - R_{2j}| = |10d - 10j - 1 \ 10d - 10j \ 10d - 10j + 1|$

$$D_{3} = \begin{pmatrix} R_{2j} - R_{2j-1} & \diamondsuit & 10d - 10j + 4 & 10d - 10j + 5 & 10d - 10j + 6 \\ R_{2j+1} - R_{2j} & \diamondsuit & \diamondsuit & 10d - 10j - 1 & 10d - 10j & 10d - 10j + 1 \\ R_{2d} - R_{2d-1} & \diamondsuit & \diamondsuit & 5d - 2 & 6 & 5 \end{pmatrix} \begin{matrix} j = \left \lceil \frac{d+1}{2} \right \rceil, \dots, d-1 \\ j = \left \lfloor \frac{d+1}{2} \right \rfloor, \dots, d-1 \\ j = \left \lfloor \frac{d+1}{2} \right$$

¿From L4 we calculate the absolute difference:

$$|R_{2d+1} - R_{2d}| = |1 2|$$

$$|R_{2j} - R_{2j-1}| = |10d - 10j + 710d - 10j + 8|$$

 $|R_{2j+1} - R_{2j}| = |10d - 10j + 2 \ 10d - 10j + 3|$

$$D_{4} = \left(\begin{array}{c|c} R_{2d+1} - R_{2d} & \diamondsuit & \diamondsuit & 1 & 2 \\ R_{2j} - R_{2j-1} & \diamondsuit & \diamondsuit & 10d - 10j + 7 & 10d - 10j + 8 \\ R_{2j+1} - R_{2j-1} & \diamondsuit & \diamondsuit & 10d - 10j + 2 & 10d - 10j + 3 \\ \end{array} \right) j = d + 1, \dots, \lfloor \frac{3d}{2} \rfloor$$

¿From L_5 we calculate the absolute difference :

$$|R_{2j} - R_{2j-1}| = |10d - 10j + 8|$$

 $|R_{2j+1} - R_{2j}| = |10d - 10j + 3|$

$$D_5 = \begin{pmatrix} R_{2j} - R_{2j-1} & \Diamond & \Diamond & \Diamond & 10d - 10j + 8 \\ R_{2j+1} - R_{2j-1} & \Diamond & \Diamond & \Diamond & 10d - 10j + 3 \\ \end{pmatrix} \begin{array}{c} j = \lceil \frac{3d+1}{2} \rceil, \cdots, 2d \\ j = \lceil \frac{3d}{2} \rceil, \cdots, 2d - 1 \\ \end{pmatrix}_{d \neq \delta}$$

The matrix $D = [D_r]$ can be described in the following manner. Each D_r where r = 1, 2, 3, 4, 5 has the first r-1 columns blank.

Spe	cifically D is:	_	_				
$\int_{0}^{D_1}$	$R = R_0$ $R_1 = R_0$	10d+5	10d + 4 10d - 3	10d + 3 10d - 2	10d + 2 10d - 1	10d + 1 10d	
D ₂	$R_{2j}-R_{2j-1}$	\$	10d - 10j + 3	10d - 10j + 4	10d – 10j + 5	10d - 10j + 6	$j=1,\cdots,\lfloor rac{d}{2} floor$
l	$R_{2j+1} - R_{2j}$	♦	10d – 10j – 2	10d - 10j - 1	10d – 10j	10d - 10j + 1	$j=1,\cdots,\left\lfloor \frac{d-1}{2}\right\rfloor$
D ₃	$R_{2j}-R_{2j-1}$	\$	♦	10 <i>d</i> – 10 <i>j</i> + 4	10d - 10j + 5	10d – 10j + 6	$j = \lceil \frac{d+1}{2} \rceil, \cdots, d-1$
	$R_{2j+1}-R_{2j}$	◊	♦	10d - 10j - 1	10d – 10j	10d - 10j + 1	$j = \lfloor \frac{d+1}{2} \rfloor, \cdots, d-1$
l	$R_{2d} - R_{2d-1}$	\langle	♦	5d – 2	6	5	
D4	$R_{2d+1} - R_{2d} \\ R_{2j} - R_{2j-1}$	*	*	*	1 10 <i>d</i> – 10 <i>j</i> + 7	$\frac{2}{10d - 10j + 8}$	$j=d+1,\cdots, \lfloor \frac{3d}{2} \rfloor$
	$R_{2j+1}-R_{2j}$	\$	♦	♦	10d - 10j + 2	10d-10j+3	$j=d,\cdots,\lfloor\frac{3d-1}{2}\rfloor$
D ₅	$R_{2j}-R_{2j-1}$	♦	♦	٠		-	$j = \left\lceil \frac{3d+1}{2} \right\rceil, \cdots, 2d$
1	$R_{2j+1}-R_{2j-1}$	 	♦	 	 	10d-10j+3	$j = \begin{bmatrix} \frac{3d}{2} \\ -1 \end{bmatrix}, \cdots, 2d - 1$

We observe that the differences in D_1 are distinct as they are 10d+p where $p=-3,-2,\ldots,5$ and the values in the remaining D_r where $r=2,3,\ldots,5$ are 10d-10j+q where $q=-2,-3,\ldots,8$. In each D_r j takes different values so the values 10d-10j+q are distinct. Therefore for any $d \in \mathbb{N}$ the tree $T_{5,d}$ has a gra ceful labeling.

Table 4.1 gives a labeling (which will be shown to be graceful) of T_6 , d (for any $\mathcal{Z} \in \mathbb{N}$).

 R_{2j} and R_{2j-1} are the even rows and odd rows of the label matrix L.

Ro	0	1	2	3	4	5	
R2j-	Т	15d - 5j + 2	15d - 5j + 4	15d - 5j + 6	15d-5j+8	15d-5j+10	$j=1,\cdots,\left\lceil \frac{d}{2}\right\rceil$
Raj		5j + 1	5 <i>j</i> + 2	5 <i>j</i> + 3	5 <i>j</i> + 4	5 <i>j</i> + 5	$j=1,\cdots,\lfloor \frac{d}{2} \rfloor$
R _{2j-1}			15d - 5j + 4	15d - 5j + 6	15d - 5j + 8	15d - 5j + 10	$j = \lfloor \frac{d+3}{2} \rfloor, \cdots, d$
R _{2j}	Ì		5j + 2	5j + 3	5j + 4	5 <i>j</i> + 5	$j = \lceil \frac{d+1}{2} \rceil, \cdots, d-1$
R _{2d}	\perp			15d + 4	5d + 3	5d + 4	5d + 5

	Table	4.1	contd				
R_{2j-1}				15d - 5j + 10	15d - 5j + 8	15d - 5j + 6	$j=d+1,\cdots,\lfloor\frac{3d-1}{2}\rfloor$
R_{2j-1}				15d - 5j + 10	15d - 5j + 8	15d-5j+7	$j = \left\lceil \frac{3d}{2} \right\rceil (d \ odd)$
R_{2j-1}				15d - 5j - 3	15d-5j+6	15d - 5j + 8	$j = \lceil \frac{3d}{2} \rceil \ (d \ even)$
R_{2j}	!			5j + 5	5j + 4	5j + 3	$j=d+1,\cdots,\lfloor\frac{3d-1}{2}\rfloor$
R_{2j}				5j + 5	5j + 10	5j + 3	$j = \lceil \frac{3d-1}{2} \rceil (d \ even)$
R_{2j}				5j + 6	5j + 3	5j + 4	$j = \lceil \frac{3d-1}{2} \rceil (d \ odd)$
R_{2j-1}					15d - 5j + 6	15d - 5j + 7	$j = \lceil \frac{3d+2}{2} \rceil (d \ even)$
R_{2j-1}					15d - 5j + 6	15d-5j+2	$j = \lceil \frac{3d+2}{2} \rceil (d \ odd)$
R_{2j-1}					15d - 5j + 6	15d - 5j + 2	$j = \lceil \frac{3d+2}{2} \rceil, \cdots, 2d$
R_{2j}					5j + 2	5j - 1	$j = \lceil \frac{3d+1}{2} \rceil (d \ even)$
R_{2j}					5j - 3	5 <i>j</i>	$j = \lceil \frac{3d}{2} \rceil (d \ odd)$
R_{2j}					5j + 2	5 <i>j</i> – 1	$j = \lceil \frac{3d+2}{2} \rceil, \cdots, 2d-1$
R _{2d}					15d + 2	10d - 1	
R_{2j-1} R_{2j}						15d - 5j + 6 $5j - 3$	$j = 2d + 1, \dots, \left\lceil \frac{5d}{2} \right\rceil$ $j = 2d + 1, \dots, \left\lfloor \frac{5d}{2} \right\rfloor$

The matrix $D=[D_r]$ can be described in the following manner. Each D_r where r=1,2,3,4 has the first r-1 columns blank. Specifically D is:

D1	$R - R_0$ $R_1 - R_0$	15d + 6	15d + 5 15d - 4	15d + 4 15d - 3	15d + 3 15d - 2	15d + 2 15d - 1	15d + 1 15d
D ₂	$R_{2j} - R_{2j-1}$	♦	15d - 10j + 1	15d - 10j + 2	15d - 10j + 3	15d - 10j + 4	$ \begin{array}{c} 15d - 10j + 5 \\ j = 1, \dots, \left[\frac{d}{2}\right] \end{array} $
	$R_{2j+1}-R_{2j}$	*	15d – 10j – 4	15d – 10j – 3	15d – 10j – 2	15d - 10j - 1	$10d - 10j$ $j = 1, \dots, \lfloor \frac{d-1}{2} \rfloor$
D ₃	$R_{2j}-R_{2j-1}$	♦	♦	15d - 10j + 2	15d - 10j + 3	15d - 10j + 4	$15d - 10j + 5$ $j = \left[\frac{d+1}{2}\right], \dots, d-1$
	$R_{2j+1}-R_{2j}$	♦	♦	15d – 10j – 3	15d - 10j - 2	15d - 10j - 1	$15d - 10j$ $j = \lfloor \frac{d+1}{2} \rfloor, \dots, d-1$
\bigsqcup	$R_{2d} - R_{2d-1}$	♦	♦	5d	5d + 3	5d + 4	5d + 5

$\int_{0}^{D_{4}}$	$R_{2j}-R_{2j-1}$	\$	 	♦	15d-10j+5	15d-10j+4	$ \begin{array}{c} 15d - 10j + 3 \\ j = d + 1, \dots, \frac{3d - 2}{2} \end{array} $
	$R_{2j+1}-R_{2j}$	\$	\$	\$	15d — 10j	15d - 10j - 1	$15d - 10j - 2$ $j = d + 1, \dots, \frac{3d - 4}{2}$
	$R_{2(\frac{3d-2}{3})+1} - R_{2(\frac{3d-2}{2})}$ $R_{2(\frac{3d}{3})} - R_{2(\frac{3d}{3})-1}$	\$	\$	\$	3 8	7 4	10 5
D ₅	$\begin{array}{c} R_{2(\frac{3d}{2})+1} - R_{2(\frac{3d}{2})} \\ R_{2(\frac{3d+2}{2})} - R_{2(\frac{3d+2}{2})-1} \end{array}$	\$	\$	\$	\$	9 6	1 2
	$R_{2j}-R_{2j-1}$	\$	\$	\rightarrow	♦	15d - 10j + 4	$15d - 10j + 3$ $j = \left\lceil \frac{3d+4}{2} \right\rceil, \dots, 2d-1$
	$R_{2j+1} - R_{2j-1}$	*	\$	\$	♦	15d - 10j + 4	$15d - 10j + 3$ $j = \lceil \frac{3d+2}{2} \rceil, \dots, 2d - 1$
	$R_{2(2d)} - R_{2(2d)-1}$	\$	\$	\$	♦	10d – 4	5d - 3
D ₆	$R_{2(2d)+1} - R_{2(2d)}$ $R_{2j} - R_{2j-1}$	\$ \$	\$	\$	\$	\$	$5d - 2$ $15d - 10j + 9$ $j = 2d + 1, \dots, \lfloor \frac{5d}{2} \rfloor$
	$R_{2j+1}-R_{2j}$	\$	\$	♦	♦	♦	$ 15d - 10j + 4 $ $ j = 2d + 1, \dots, \lfloor \frac{5d}{2} \rfloor $

We observe that the values in D_1 are distinct. The values in D_2 are 15d-10j+p where $p=-4,-3,\ldots,5$ which are clearly distinct. Comparing the values of D_2 with D_r where r=3,4,5,6 we observe that even though the values are 15d-10j+p for $p=-3,-4,\ldots,5$ and 9 the values in D_r , where r=2,3,4,5,6 are distinct as j takes different values in each D_r . Note that the remaining values in the D_r are distinct as they have no j component. Thus all the values in D are distinct and correspond to the edge differences of tree T_6,d . Therefore for k=6 and any even $d \in N$ the tree $T_{6,d}$ has a graceful labeling.

D1	$R - R_0$ $R_1 - R_0$	15d + 6	15d + 5 15d - 4	15d+4 15d-3	15d + 3 15d - 2	15d + 2 15d - 1	15d + 1 15d
D2	$R_{2j}-R_{2j-1}$	*	15d - 10j + 1	15d – 10j + 2	15d 10j + 3	15d - 10j + 4	$ 15d - 10j + 5 j = 1, \dots, \lfloor \frac{d}{2} \rfloor $
	$R_{2j+1} - R_{2j}$	*	15d – 10j – 4	15d – 10j – 3	15d-10j-2	15d – 10j – 1	$10d - 10j$ $j = 1, \dots, \lfloor \frac{d-1}{2} \rfloor$
D ₃	$R_{2j}-R_{2j-1}$	*	♦	15d – 10j + 2	15d – 10j + 3	15d – 10j + 4	$15d - 10j + 5$ $j = \left\lceil \frac{d+1}{2} \right\rceil, \dots, d-1$
	$R_{2j+1}-R_{2j}$	 	*	15d – 10j – 3	15d - 10j - 2	15d - 10j - 1	$15d - 10j$ $j = \left\lfloor \frac{d+1}{2} \right\rfloor, \dots, d-1$
	$R_{2d} - R_{2d-1}$	。	♦	5d	5d + 3	5d + 4	5d + 5
D4	$R_{2j}-R_{2j-1}$	♦	♦	*	15d – 10j + 5	15d - 10j + 4	$15d - 10j + 3$ $j = d + 1, \dots, \lfloor \frac{3d - 3}{2} \rfloor$
	$R_{2j+1}-R_{2j}$	•	۰	*	15d – 10j	15d – 10j – 1	15d - 10j - 2
	$R_{2(\frac{2d-1}{2})} - R_{2(\frac{2d-1}{2})-1}$	⋄	*	⋄	9	10	$j = d, \cdots, \lfloor \frac{3d-3}{2} \rfloor$
igsquare	$R_{2(\frac{2d-1}{2})+1} - R_{2(\frac{2d-1}{2})}$	♦	♦	♦	4	5	з /

/ _	<u> </u>	1	Table	ł	contd	i	ı v
Ds	$R_{2(\frac{3d+1}{2})} - R_{2(\frac{3d+1}{2})-1}$	♦	♦	♦	♦	6	2
	$R_{2(\frac{3d+1}{2})+1} - R_{2(\frac{3d+1}{2})}$	\$	 			1	8
	$R_{2j}-R_{2j-1}$	\$	♦	\$	\$	15d - 10j + 4	$ \begin{vmatrix} 15d - 10j + 3 \\ j = \left\lceil \frac{3d+3}{2} \right\rceil, \dots, 2d - 1 \end{vmatrix} $
	$R_{2j+1}-R_{2j-1}$	\$	♦	\$	♦	15d - 10j + 4	$15d - 10j + 3$ $j = \lceil \frac{3d+3}{2} \rceil, \dots, 2d - 1$
<u> </u>	$R_{2(2d)} - R_{2(2d)-1}$	♦	♦	♦	♦	10d - 4	5d - 3
De	$R_{2(2d)+1} - R_{2(2d)}$	♦	♦	♦	♦	♦	5d - 2
1	$R_{2j}-R_{2j-1}$	♦	♦	♦	♦	♦	15d - 10j + 9
l i							$j=2d+1,\cdots,\lfloor\frac{5d-1}{2}\rfloor$
	$R_{2j+1}-R_{2j}$	♦	♦	♦	♦	♦	$15d - 10j + 4$ $j = d, \dots, \lfloor \frac{3d - 3}{2} \rfloor$

We observe that the values in D_1 are distinct. The values in D_2 are 15d - 10j + p where $p = -4, -3, \ldots, 5$ which are clearly distinct. Comparing the values of D_2 with D_r where r = 3, 4, 5, 6 we observe that even though the values are 15d - 10j + p for $p = -3, -4, \ldots, 5$ and 9 the values in D_r , where r = 2, 3, 4, 5, 6 are distinct as j takes different values in each D_r . Note that the remaining values in the D_r are distinct as they have no j component. Thus all the values in D are distinct and correspond to the edge differences of tree T_6 , d. Therefore for k = 6 and any odd $d \in N$ the tree $T_{6,d}$ has a graceful labeling.

References:

- J.A.Gallian A dynamic survey of graph labeling, Electronic Journal of Combinatorics, 5(2002), ds6.
- R. Badrinath and P.Panigrahi Graceful labeling of Balanced star of Paths. To appear in Proceedings of R.C.Bose centenary conference, Indian Statistical Institute Kolkatta (2002).
- A. Rosa On certain valuations of the vertices of a graph, in Theórie des Graphes, Dunod, Paris(1968) 349-355,MR 36-6319.