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Abstract

We prove the following extension of the Erdés-Ginzburg-Ziv Theorem. Let
m be a positive integer. For every sequence {a;}ies of elements from the cyclic
group Zm, where |I| = 4m — 5 (where |I| = 4m — 3), there exist two subsets
A, B C I such that [AN B| = 2 (such that |[AN B| = 1), |A| = |B| = m, and
Zag = zb, =0.

i€A i€b

1 Introduction

Since the seminal theorem of Erdés-Ginzburg-Ziv (EGZ) [13] [14] [1]—
which states that any sequence of 2m — 1 elements from a finite abelian
group of order m contains an m-term subsequence whose terms sum to
zero—many generalizations, analogs, related problems [17] [15] (1] [2}, and
what are known as generalizations in the sense of EGZ for edge colorings of
graphs [7] [16] as well as for colorings of the integers [12], were published.
Two surveys appeared in [3] [5]. In the early 1990’s, the first author posed
the following related conjecture.

Conjecture 1.1. Let m be a positive integer. For every sequence {a;}icr
of elements from the cyclic group Z.,, where |I| = 4m — 5 (where |I| =
4m — 3), there ezist two subsets A, B C I such that |AN B| = 2 (such that
|AnB|=1), |A|=|B|=m, and 3 a;= Y b;=0.
i€A i€b

While the case [AN B| =1 follows directly from the Cauchy-Davenport
Theorem [6] for m prime, there were no tools to attack the case |[ANB| = 2,
until recently. The main tool to handle this kind of problem was developed
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by the second author [10]. It is stated below as Theorem 2.1. The aim of
this note is to affirm the conjecture above. It is worthwhile to note that a
continuation by the second author along similar lines will appear in [9].

2 Preliminaries

Let G denote an abelian group of order m, and let S be a sequence of
elements from G. The length of S is denoted by |S|. If A, B C G, then
their sumset, A + B, is the set of all possible pairwise sums, i.e. {a +b |
a€ A be B}.

Furthermore, an n-set partition of S is a sequence of n nonempty subse-
quences of S, pairwise disjoint as sequences, such that every term of S be-
longs to exactly one subsequence, and the terms in each subsequence are dis-
tinct. Thus such subsequences can be considered sets. Let ¢ be the function
which takes a sequence to its underlying set, so that if S = (0,0,1,2,0,2,2),
then o(S) = {0,1,2}. For a € Z,,, let @ denote the least positive integer
representative of o.. If S’ is a subsequence of S, then S\ S’ denotes the
subsequence of S obtained by deleting the terms of S’ in S.

The following {10] [8] [11] is a recent composite analog of the Cauchy-
Davenport Theorem [6].

Theorem 2.1. Let S be a sequence of elements from an abelian group G of
order m with an n-set partition P = P,,... ,P,, and let p be the smallest
prime divisor of m. Then either:

(%) there ezists an n-set partition A = A;, As,...,An of S such that:

1> Al 2 min{m, (n+1)p, |S| - n+1};

i=1

furthermore, if n' > % — 1 is an integer such that P has at least n — n'
cardinality one sets and if |S| > n+ 5 +Pp—3, then we may assume there
are at least n — n' cardinality one sets in A, or

(#6) (a) there ezists & € G and a nontrivial proper subgroup H, of index
a such that all but at most a — 2 terms of S are from the coset o+ H,; and
(b) there exists an n-set partition Ay, As,...,An of the subsequence of S
consisting of terms from o+ H, such that iA,- =na+ H,.

i=1

When using the above theorem, the following basic proposition about
n-set partitions is useful [2].

Proposition 2.1. A sequence S has an n-set partition A if and only if the
multiplicity of each element in S is at most n and |S| > n. Furthermore, a
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sequence S with an n-set partition has an n-set partition A’ = Ay,... , A,
such that ||Ai| — |A;|| < 1 for alli and j satisfyingl1 <i<j<n.

Finally, we need the following theorem which describes the extremal
instances for EGZ [4].

Theorem 2.2. Let S be a sequence of elements from Zp,. If |S| = 2m —
2 and S contains no m-term zero-sum subsequence, then S contains two
distinct residues, whose difference is coprime to m, each with multiplicity
m—1.

3 The Proof

Let S be a sequence of elements from Z, %/ G with |S| = 4m — 5 (with
|S| = 4m — 3). If there exists o € G such that |¢~!(a)| > 2m — 2 (such
that|p~1(a)| > 2m — 1), then the proof is complete with both m-term
subsequences monochromatic. Hence we may assume |p(S)| > 3, else the
proof is complete by the pigeonhole principle.

Suppose there does not exist a subsequence S’ of S with |S'| =2m -3
(with [S’] = 2m — 2), such that there exist an (m — 2)-set partition P of S
(such that there exists an (m—1)-set partition of S’). Hence, since |¢(S)| >
3, it follows from Proposition 2.1 that there is & € G with |~ ()| > 3m—3
(with |¢~!(a)| = 3m — 1), and the result follows from the arguments from
the first paragraph. So we may assume such S’ exists.

Since S\ S| = 2m — 2 (since |S \ §'| = 2m — 1), it follows from
Theorem 2.2 that there is an m-term zero-sum subsequence of S\ S’, unless
wlo.g. »(S\S’) = {0,1}, with both 0 and 1 occurring with multiplicity
m—1in S\ S (it follows from EGZ that there is an m-term zero-sum
subsequence of S\ S’ regardless). We can avoid this case by swapping a
Oor 1 from S\ S with a term 8 from S’ with 8 # 1 and 8 # 0, unless,
up to order, S = (0,0,...,0,1,1,...,1,7), with v # 0 and v # 1; but it

2m-3 2m-3
is easily checked, since (v, 1,...,1,0,...,0) is zero-sum, that the sequence
(0,0,...,0,1,1,...,1,7) satisfies conjecture 1.1. So we may assume that
N, e’

2m~3 2m~3
there is a m-term zero-sum subsequence in S\ ', say T

Let $” =S\ T, and let P’ be a (2m — 4)-set partition of S” (let P’ be
a (2m — 2)-set partition of S”’) obtained by adding the terms of (S\ S")\T
to P as singleton sets. Fix two elements in T, say {¢1,t3} = T’ (fix an
element in T, say {t;} = T"). Applying Theorem 2.1 to P, it follows that
either (i) holds and hence there exist m — 2 elements from S” (there exist
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m — 1 elements from S”) which along with 7 form a m-term zero-sum
sequence, and the proof is complete, or else (ii) holds and hence, w.l.o.g.
by translation, there exists a proper nontrivial subgroup H < G with index
a such that all but at most a — 2 terms of S” are from H. Note that this
proves the theorem for m prime.

We proceed by induction on the number of primes in the factorization of
m. Hence, since 47! —5 < 3m—3—a (since 42 -3 < 3m —1—a), it follows
by induction hypothesis that there are two Z-term zero-sum subsequences
of S”, A and B, that share exactly two terms (that share exactly one
term). Thus, since (2a —3)2 +22 -1 <3m -3 —a — (22 — 2) (since
(2a—3)2 422 —1 < 3m—1—a—(22-1)), it follows by 2a—2 applications of
the Erd6s-Ginzburg-Ziv Theorem with the group H, that there exist two
m-term zero-sum subsequences A’ and B’, with A a subsequence of A’,
with B a subsequence of B’, and with A’ and B’ sharing exactly two terms
(sharing exactly one term), completing the proof. a
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