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Abstract

A graph is called set reconstructible if it is determined
uniquely (up to isomorphism) by the set of its vertex-deleted
subgraphs. We prove that some classes of separable graphs with a
unique endvertex are set reconstructible and show that all graphs are
set reconstructible if all 2-connected graphs are set reconstructible.

1. Introduction

In this paper all graphs considered are simple. We use the terminology
in Harary [4]. The degree of a vertex v of a graph G is denoted by deg v
(or degg v). The minimum degree among the vertices of G is denoted by &G).
A vertex v with deg v = m is referred to as an m-vertex. A 1-vertex is called an
endvertex and the unique neighbour of a 1-vertex is called its base. The degree
sequence of a graph G is denoted by DS(G). NDS(v) denotes the sequence of
degrees of the neighbours (neighbourhcod degree sequence) of v in G. Maximal
connected nonseparable subgraphs of G are called blocks of G. The complement

G of a graph G is defined as the graph having the same vertex set as G and

uw is anedge of G iff it is not an edge of G. For any graph G, we define
the pruned graph of G denoted by P(G) as the maximal subgraph of G without
endvertices.
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A vertex-deleted unlabeled subgraph G-v of a graph G is called a card
of G. A graph is said to be set reconstructible (set-rec) if it is determined
uniquely up to isomorphism from the set S of its (non isomorphic) cards. If a
property (parameter) Q of a graph G is uniquely determined by the set of cards
of G then Q is called a set-recognizable property (set-reconstructible parameter).

In this paper, we study the following strong form of Ulam’s
Conjecture for graphs.

Harary’s Conjecture [3]. All graphs with at least four vertices are set
reconstructible.

It is known [5,6,7] that many parameters and several classes of graphs
like graphs with less than 12 vertices, disconnected graphs, trees and separable
graphs without endvertices are set-rec. Arjomandi and Corneil [1] have proved
that unicyclic graphs are set-rec. Outerplanar graphs have been set reconstructed
by Giles [2].

In this paper we address the set reconstructibility of only connected
graphs having at least 12 vertices. We prove that some classes of separable

graphs with a unique endvertex are set-rec and show that all graphs are set-rec if
all 2-connected graphs are set-rec.

2. P-graphs.

The following results are proved in Manvel [6].
Theorem 1. DS(G) of any graph G with 8(G) < 3 is set-rec.
Theorem 2. The connectivity of G is set-rec.

Theorem 3. The number of cutvertices of G is set-rec.

Theorem 4. Separable graphs without endvertices are set-rec.

Theorem 5. G is set-rec iff G is set-rec.
Definition [8]. A graph G with p vertices is called a P-graph if
(i) there exist only two blocks in G and one of them has just two
vertices (denote the endvertex by x and its base by r ) and
(ii) there exists a vertex u # r with deg u = p-2.

Throughout this paper, u, r and x are used in the sense of the above definition.
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Remarks:
For P-graphs G, the following hold.
. G-x is the only card without endvertices in S (the set of cards of G).
. G-r is the only disconnected card in S.
. G-u is the only (p-2)-vertex deleted connected card in S.
. The degree sequence of a P-graph is set-rec by Theorem 1.
. P-graphs are set-recognizable (Recognizability of (i) follows by

W W N e

Theorems 1, 2 and 3. Existence of u as in (ii) is guaranteed by the existence
of a (p-2)-vertex deleted connected card in S (by Remark 3)).

We will not always spell set-recognizability out, but all cases (and
subcases) based on properties of G treated below are set-recognizable.

3. Set reconstruction of P-graphs.

In this section we prove that P-graphs are set-rec if all 2-connected
graphs are set-rec. This result will be useful while proving our main result.

Lemma 1. A P-graph G having no 2-vertices is set-rec.

Proof. The P-graphs under consideration are set-recognizable by Remarks 5
and 4. Moreover, when a card has an endvertex, it is x. Now G can be obtained
uniquely from G-u (which is known by Remark 3) by adding a vertex and
joining it to all the vertices of G-u other than x. |

Lemma 2. A P-graph G having a 2-vertex adjacent with r is set-rec.

Proof. For a P-graph G, the hypothesis occurs iff the unique disconnected card
G-r of G has at least one endvertex.

In G, no 2-vertex has a 2-vertex neighbour as otherwise both these
neighbouring 2-vertices are adjacent to u and u becomes a cutvertex of G
leading to a contradiction. Hence in all 2-vertex deleted cards, x is identifiable
as the only endvertex and r is identifiable as the base of x.

Now the card G-s, where s is a 2-vertex adjacent to r in G, is
identifiable as a 2-vertex deleted card in which the identifiable vertex r has
degree (degg r)-1. Now all graphs obtained by adjoining a new vertex to G-s
and joining it to ‘a (p-3)-vertex other than r’ and to r are isomorphic and the
graph thus obtained is G. (W]
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Notation. Let G be a P-graph and T denote the set of neighbours of the
2-vertices of G other than u and r. Unless otherwise stated we use the letters
t and s to denote respectively a member of T and a 2-vertex neighbour of t.

Note that the set of degrees of vertices in T can be derived from S.

Lemma 3. Let G be a P-graph. If G has a 2-vertex and a (p-2)-vertex other than
u and r, then G is set-rec.

Proof. From DS(G) and deg r, we can set-recognize the hypothesis.

Now G can be obtained uniquely (up to isomorphism) by augmenting
any G-s (by adjoining a vertex w to G-s and joining it to two (p-3)-vertices other
than the base of the endvertex). a

Theorem 6. A P-graph having exactly one 2-vertex is set-rec.

Proof. By Lemmas 2 and 3, we can assume that t#r and 3 <degt <p-3.
If deg r # deg t, then in G-u we can distinguish x from the other endvertex by
their bases and hence G is set-rec. So, assume that deg r=deg t.

Clearly degr >3. Ifdegr=3 (and hence deg t=3) then in the unique
2-vertex deleted card G-s, u is identifiable as the only vertex of degree
p-3(29)and t as the only 2-vertex and hence G can be obtained uniquely by
augmenting G-s.

So, consider the case deg r >3. In G-x, the vertices u and s (and hence t)
are identifiable respectively as the only (p-2)-vertex and the only 2-vertex and
hence (G-x)-u is known from G-x. Hence t is known in (G-x)-u as the base of
the unique endvertex.

P((G-x)-u) = P(G-u) = G-{u, x, s} as degr=degt> 3 (Figure 1).

Figure 1.
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Now, out of the bases u; and u, of the two endvertices in G-u, one must
be the actual t of G and if it is known, X is known in G-u and hence G is the
graph obtained from G-u by adjoining a new vertex and joining it to all vertices
of G-u other than x. . -~-(1)

If there is an automorphism of G-u taking u; to up , then this
automorphism takes u, to u, since u; and u, are the only vertices of G-u that
occur as bases of endvertices (Figure 1). Hence the two choices for G
constructed as in (1) by taking u, for t and u, for t respectively are isomorphic
and so G is set-rec.

Now, let there be no automorphism of G-u taking u, to u,. -—(2)

Obviously, there exists an isomorphism from G-x-u to an induced
subgraph of G-u and this isomorphism should map t to u; or tto u,. Without
loss of generality, let & be such an isomorphism with 0(t) = u;. If there exists
another isomorphism B from G-x-u to an induced subgraph of G-u with
B(t) = u,, then B restricted to G-u-u,™-u,' is an automorphism of G-u-u,"-u,’
taking u, to u, , where u;' is the endvertex of G-u adjacent to u; , i=l1,2.
Hence Po.! gives an automorphism of G-u taking u, to u, , leading to a
contradiction of (2). Hence all isomorphisms from G-x-u to an induced
subgraph of G-u take t to u; so that u; in G-u is the actual t of G. Hence
G is set-rec as in (1). O

Lemma 4. A P-graph G with at least two 2-vertices is set-rec if there is a
t adjacent to all 2-vertices of G.

Proof. Now u and t are the only vertices adjacent to all 2-vertices in G.
By Lemma 3, we can assume that deg t < p-3 so that the hypothesis is
set-recognizable, because in this case there are exactly two cards in S each
having exactly k+1 endvertices, where k is the number of 2-vertices in G (k is
known from DS(G)).

Since G has at least two 2-vertices, in every G-s, the vertices uand t
are the only vertices adjacent to all 2-vertices and hence G can be obtained

uniquely from a G-s by augmentation. O

Theorem 7. A P-graph G having at least two 2-vertices is set-rec if thereisa t
withdegt 2p-3.

Proof. By Lemma 2, we can assume that no 2-vertex is adjacent to r.

Throughout this proof, t stands for a member of T with deg t 2 p-3.
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Clearly degt < p-2. By Lemmas 3 and 4, we can assume that
deg t=p-3 and t is nonadjacent to at least one 2-vertex of G. eeee (D)

We have two subcases.
Case 1. tis adjacent to at least two 2-vertices of G.

Now G has at least three 2-vertices (by (1)).

Any vertex v other than u, t, r and x is not adjacent to x and not
adjacent to the 2-vertices that are adjacent to t so that deg v < p-4. Since r is
adjacent to none of the 2-vertices (and there are at least three 2-vertices in G),
degr<p-4. degx=1<p-4. Hence

deg w < p-4 for all w ¢ {u,t}. .. (2)

A card obtained by deleting a 2-vertex adjacent to t can be located in S
as a G-s such that ‘the number of vertices in G-s adjacent to 2-vertices is equal
to the number of vertices in G adjacent to 2-vertices’ and NDS(s) = (p-2 , p-3).

In this G-s, u is identifiable as the only (p-3)-vertex (by (2)) and t is
identifiable up to ‘similarity’ (as in (i) below) and hence G can be obtained
uniquely (up to isomorphism) from G-s by augmentation.

@) In this G-s, t is a (p-4)-vertex adjacent to a 2-vertex (by our
hypothesis for Case 1), say s, and nonadjacent to a 2-vertex (by(2)),
say s, and thus t is adjacent to all the vertices of G-s other than s,
and x. If possible, let there be one more such t, say t' .Then t' is
adjacent to all the vertices of G-s other than s, and x and hence the
mapping (t t) (s; sz) of G-s is an automorphism of G-s that fixes u.

Case 2. tis adjacent to exactly one 2-vertex of G.

By (1), G has exactly two 2-vertices and t is adjacent to exactly one of
them.

A card obtained by deleting a 2-vertex adjacent to t can be located in S
as a G-s such that it has exactly one 2-vertex and NDS(s) = (p-2 , p-3).

Let s be the 2-vertex and t; be the neighbour of s, other than u in G-s.

In this G-s, the vertices u as well as t are identifiable up to ‘similarity’
using their degrees alone (as in (i) and (ii) below).

@) In this G-s, u is a (p-3)-vertex adjacent to a 2-vertex and

nonadjacent to the unique endvertex x. Hence u is adjacent to all the
vertices of G-s other than x. The only other vertex which can have
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degree p-3 in G-s is t;. If deg Gs ti=p-3, then t, is adjacent to all the
vertices of G-s other than x. Hence t; and u have the same neighbours
in G-s and hence (u t;) is an automorphism of G-s.

(ii) In this G-s, s; is the only 2-vertex, x is the only endvertex and
t is a (p-4)-vertex nonadjacent to s, and hence t is adjacent to all the
vertices of G-s other than s, and x. Also any other (p-4)-vertex v
which is adjacent neither to s, nor to x in G-s must be adjacent to all
other vertices of G-s. Hence such a v and our t have the same
neighbours in G-s and (t v) is an automorphism of G-s.

Two graphs G, and G, obtained from G-s by adjoining a vertex w and
joining it with one among u and t, (if there is a tie) and with one among t and
v (if there is a tie) are isomorphic under the mapping f given below.

edges joined | edges joined f: V(G)) = V(Gy)
to get G, to get G, (vertices moved by f)
a. uw, wt uw, wv ft)y=v, f(v)=t
b. uw, wt tw, wt fu)=1t,, f(t;)=u
c. uw, wt tHw, wv f(u)=t,, f(t;)=u
f(t)=v, f(v)=t

Each map f is an isomorphism because the vertices u and t, and the vertices
t and v respectively have the same neighbours in G-s. 0

Theorem 8. A P-graph G with at least two 2-vertices and deg t < p-4 for all
t €T is set-rec if all 2-connected graphs are set-rec.

Proof. We will use induction on p, the number of vertices of G.
By Lemma 2, we can assume that no 2-vertex is adjacent to r.

Now deg w < p-4 for all we {u,r} since a vertex w ¢ T U {u, r, x} is
adjacent neither to x nor to the 2-vertices. Clearly the degree of r must be
strictly less than p-2 as it is adjacent to none of the 2-vertices in G. Also if
deg r = p-3 then G must have exactly two 2-vertices and hence G-u has exactly
three endvertices with base of x (=r) different from the base of the other
endvertices so that x can be distinguished from other endvertices in G-u by their
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bases as degg., r = p-4 and degg., t < p-4 fort € T. Hence, in case deg r = p-3,
G can be obtained uniquely by augmenting G-u.

So, we can assume that deg w < p-4 V w#u.

Let G'= (G-x)-ur. Now we determine the set of cards of G' from S.

In each G-w € S-{G-u, G-x, G-r}, the vertices u, x and r are identifiable
respectively as the only (p-3)-vertex, the only vertex nonadjacent with u and
the only neighbour of x. Hence for C € S-{G-u, G-x, G-r}, C-x-ur is known.
Also G'-u = (G-x-ur)-u = (G-x)-u where (G-x)-u is known (since u is the only
(p-2)-vertex in G-x). Similarly, G"-r = (G-x-ur)-r = (G-r)-x where (G-r)-x is
known (since x is the only isolated vertex in G-r). Thus the set

§'= {C-x-ur: C € S-{G-u, G-x, G-r}} U { G™-u, G'-r}
is the set of cards of G'.

Obviously, G' is connected. If G'is 2-connected, it is set-rec by
hypothesis.

Now let G' be separable. r is not a cutvertex of G' as u is adjacent to
all the vertices of G' other than r. Hence r and all its neighbours in G'
are confined to a single block, say B. If u was a cutvertex of G' then all other
blocks except possibly B contain u. Let B; # B be an endblock of G'. Then B,
is an endblock of G'+ur = G-x and hence u is a cutvertex of G-x leading to
a contradiction (since G-x is a block). So u is not a cutvertex of G' and hence
all the neighbours of u in G' are in the block of G' containing u. Now since
degg u=p-3, G' has just two blocks one of which has just two vertices. That is,
G' is a P-graph on p-1 vertices with r as the unique endvertex. If G' has a t
with deg t > (p-1)-3, then G' is set-rec by Theorem 7. Otherwise in G',
deg t < (p-1)-4 for every t € ‘ T of G' * and by induction hypothesis G' is
set-rec.

Now r in G' is identifiable as the only vertex nonadjacent with the
identifiable vertex u and hence G can be obtained uniquely from G' by
augmentation. O
Theorem 9. P-graphs are set-rec if all 2-connected graphs are set-rec.

Proof. Follows by Lemma 1, Theorems 6, 7 and 8. o
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4; Main result.

We now prove our main theorem.

Theorem 10. All connected graphs are set reconstructible iff all 2-connected
graphs are set reconstructible.

Proof. The necessary part is obvious.
Sufficient part. Assume that all 2-connected graphs are set-rec. Let G be a
separable graph on p (>12) vertices. If G has no endvertex then G is set-rec
(by Theorem 4) and hence we can assume that G has an endvertex and a
(p-2)-vertex (because of Theorem 5, Theorem 4 and the hypothesis). -..(1)
So DS(G) is set-rec by Theorem 1.

We have two subcases.

Case 1. G has at least two endvertices.

Now E has at least two (p-2)-vertices. ...(2)
Let u; and u, be two (p-2)-vertices in G . By (2), G has at most two endvertices

and (1) now gives that G has either one or two endvertices.
Case 1.1. G has exactly one endvertex, say y.

Now E is a P-graph (as in (i) and (ii) below) and hence is set-rec by
Theorem 9.

(i) If yis not adjacent to u;, i=1,2, thenin a-y, u, and u, are
(p-2)-vertices and hence G-y is ablock as G-y has only p-1
vertices. Hence G is a P-graph.

(ii) If y is adjacentto u; (say), thenin G-y, u, is adjacent to all the
vertices and hence no vertex other than u, can be a cutvertex of

G-y. Alsoif u, was a cutvertex of G-y, then u, and all its p-3
neighbours in G -y are confined to a single block with p-2 vertices
and the only other vertex of 6 -y must be an endvertex adjacent
u,. Thus E has two endvertices, leading to a contradiction.

Hence G-y has no cutvertex and G is a P-graph.
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Case 1.2. 8 has exactly two endvertices.

Now the bases of the two endvertices in 6 are different (otherwise (2)
will be contradicted). Any vertex other than the bases of the endvertices can not

have degree p-2. Hence G has at most two (p-2)-vertices and (2) now gives
that ahas exactly two (p-2)-vertices, which are the bases of the endvertices. In
this case E is clearly set-recognizable from DS( E ) and is set-rec by
augmenting an endvertex-deleted card a-y (by adding a vertex to a-y and
joining it to a (p-3)-vertex).

Case 2. G has exactly one endvertex, say y.

If G has more than one (p-2)-vertex, then G is a P-graph and hence is
set-rec by Theorem 9. Hence let G have exactly one (p-2)-vertex, say w.

Case 2.1. w and y are nonadjacent in G.

Now we can assume that w is a cutvertex of G as otherwise G is a
P-graph and hence is set-rec. So w and q (the base of y) are the only cutvertices

of G. Hence G is the union of three subgraphs Bwq (the nonendblock containing

w and q), Fy (the union of endblocks containing w) and the endblock By (K2
containing y. (Figure 2).

If deg q = p-3 then Fy = K; (because G has only one endvertex).
Consider a 2-vertex deleted card G-z with exactly two endvertices (the deleted

2-vertex cannot be from Byyq as every 2-vertex in Byq is adjacent to w and q so
that no additional endvertex is created). Such a G-z will be as in Figure 3 having
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an automorphism that interchanges the two endvertices, interchanges the two
bases and fixes all other vertices. Hence all augmentations of G-z by introducing
a 2-vertex so that the resulting graph has only one endvertex and only one
endblock isomorphic to Kj; are isomorphic.

Figure 3

If deg q # p-3 then deg q < p-3 (because IF,| > 3). Now in the cards
G-v that are connected and have at least one endvertex (cards for which deleted
vertex is not one of w, y and q), the vertices w, y and q are identifiable as the
only (p-3)-cutvertex, the only endvertex nonadjacent with w and the base of y
respectively.

Among these cards G-v, if we choose one, say G, such that
@) w and q are in the same block and
(ii) the block containing w and q has maximum number of vertices,

then the nonendblock of G is Bwq.
Hence By is known with w and q labeled. ..-(3)

The only endvertex-deleted card in S is G-y and its only cutvertex is w.
By (3), there is an isomorphism O from Bygq on to a block of G-y such that
o(w)=w. The graph Gg obtained from G-y by adding a vertex and joining it
only with 0(q) is a candidate for G. If B is another such isomorphism and Gg is
the corresponding augmented graph, then Gg = Gp under the mapping Y where
¥ =Pa’ on vertices of 0UBwg)
= 0f on vertices of B(Bwg)
= identity on all other vertices
when 0(Byyq) and B(Bwq) are different blocks of G-y

351



and ¥ =Pa on vertices of Buwyg)
= identity on all other vertices

when 0(Byq) and B(Bwq) are one and the same block of G-y.
Hence G is known up to isomorphism.

Case 2.2. w and y are adjacent in G.

Now in E, w is the only endvertex and y is the only (p-2)-vertex and

they are not adjacent. Hence G is set-rec as in Case 2.1.
This completes the proof. O

Conclusion. We observe that “ reconstructibility ” of P-graphs turns out to be
of great use while shuttling between a graph and its complement in order to
“ reconstruct ” it.

Harary’s conjecture is stronger than Ulam’ conjecture. So if at all
Ulam’s conjecture is false, then there exists a pair of non-isomorphic
2-connected graphs having the same set of cards.
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