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Abstract

The purpose of this note is to give the power formula of the
generalized Lah matrix and show L[z,y] = FQ[,y], where
F is the Fibonacci matrix and Q[z,y] is the lower triangular
matrix. From it, several combinatorial identities involving the
Fibonacci numbers are obtained.
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Recently, in [4], two kinds of the Generalized Lah matrix were

introduced and their algebraic properties were considered. Here we
extend these two kinds of generalized Lah matrix as follows.

Let z and y be two nonzero real numbers. The generalized Lah
numbers are defined by L, x(z,y) = z"y* (Z:i)z—: The generalized
n x n Lah matrix L[z, y] is defined by

sy (D&, if i>j
= ] ; i = Jj-1/ 332 =5
£[a:, y] [L"J (=, y)]m'"l’z""’n { 0, otherwise. 1)

Clearly, the Lah number Ly = Lni(—1,1). The Lah matrix
L = £(-1,1). The unsigned Lah number L}, = L,x(1,1). The
unsigned Lah matrix £+ = £(1,1). The matrices £ and L* were
introduced in [4].
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The purpose of this note is to give the power formula of the
generalized Lah matrix and show L[z,y] = FQ[z,y], where F is the
Fibonacci matrix and Q[z,y] is the lower triangular matrix. From

it, several combinatorial identities involving the Fibonacci numbers
are obtained.

At first, it is easy to see that the following theorem holds by some
simple computations.

L[z, y]Llw, v]
_ £[2(1 + yw), £22], ifw#-l
diag {—zv, 2202, ..., (-1)"z™"}, if yw=—1,
and
Lz, y]-l = L [_E}’ _%] . (3

By applying induction, we have

Theorem 1. Let k be a positive integer and z;, y; (i = 1, 2, ..., k)
be nonzero real numbers. Then

k
] = Yi.. - YrZ2...ZTp
il;{‘c[mzsyzl L [xl (1+t), T+, ], (4)

where tj=2{;llyl...yix2...z,-+1 #F-1l,forj=2 ..., k.

Proof. We argue by induction on &. By (2), for k£ = 1,2, the the-
orem is right obviously. Now carrying out the inductive step. We as-

sume the theorem is true for k. Let t; = 1 +Z§=1 Y1.. . YiT2 ... Tiy1-
Then

k+1 k
I £lzou) = (H L [mi,‘yi]) L[Tk+1,Yr+1]

i=1 i=1
[ Y1...YkZT2... Tk
= L|z1tg-1, ™ ] L[Zrs1, Y1)
r '.'l: ¢ (1 " 7 ...yk:vg...zkz ) mg}ff%ﬁxk+lyk+l
= 1tk-1 k+1
| s T B,
[ Y1 - YkYk+122 - - - Tk Tkt 1
= Lz (fk-1+y1.. - YkZ2...TpThy1 ]
| ( )’tk—l T Y. YrZ2 .. Tk Tk
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ces Z2...T
_ L[:z:ltk, Y1 yk+1t 2 k+1]
k

k
YieooYp4122 - - Tt
= Liny |1+ yl...y-zz...z-H)
[ ( z_: ' ‘ ’1+Z{-‘=ly1...yiz2...a:,-+1

by applying (2). Here the theorem is also true for k+1. By induction,
we complete the proof of the theorem. O

In Theorem 1, taking z) = z2 = =Zr=Z,Y =Y = =
yr = y and applymg (2) then we can obtain the stnkmg 31mphcxty
of the powers of the generalized Lah matrix L[z, y]:

Corollary 2. Let k be a positive integer. Then

- k-1 .
. [ —%xg_’ (1- -’By)szE%] ’ if zy # -1,
Llz,y)* = I, if zy = —1 and k even,
L[z, y), if zy = -1 and k odd.

where I is an identity matrix.

Corollary 3. Let the Lah matrix £ = £(—1, 1) and the unsigned
Lah matrix £+ = £(1,1). Then :

oo [ £ if kodd,
1 I, if keven,

and
(cHr=c [k, H .

Next we establish the relation between the generalized Lah ma-
trix £(z,y) and the Fibonacci matrix F.

The Fibonacci numbers have been discussed in so many papers
and books, see [1]. Let F, be the n-th Fibonacci number. The
Fibonacci n X n matrix F (4,7 = 1,2,...,n) is defined by

g1 ) Fimjsn, if i—j+120,
—[f,,,]—{ 0, if i—j+1<0, ()

which was studied in [2] and [3].
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In [2], Lee, etc. gave the Cholesky factorization of the Fibonacci
matrix and they also discussed the elgenva.lues of the symmetric Fi-

bonaccx matrix FFT. Also, gave the inverse of F as follows: if
=[fi;] (4,5 =1,2,...,n), then

1, ifi=j,
0, otherwise.

We define the n x n matrix Q[z,y] = [¢:i(z,%)] (4,7 =1,2,...,n)
as follows:

g;(z,v)

- (L))o (o)

(7

From the definition of Q[z, ], it is easy to see that g3 1(z, y) = zy,
q,(z,y) = 0 for j > 2, g1(z,y) = zy(2z - 1), qz,z(m,y) = z2y?,
q2,](m’ y) OfOI'j 2> 3, q: 1($, y) = (7""'2)'1"_2 ( ( l)x - (z - l)x
—1) and g;z(z,y) = 22 (i - 2)! 2% - 1)% — 2(i — 1)(i — 2)
—(i—3)] fori > 3.

Using the definition of the generalized Lah matrix L[z, y], F and
Q[z, y], we can derive the following theorem.

Theorem 4.

Llz,y) = FQlz,y]. (8)

Proof. To prove L[z,y] = FQ[z,y), it suffices to prove F 1 L[z, y]
= Q[z,y] in view of the invertibility of the matrix F. Let F~1 =
[fi;] be the inverse of F. Since f{; = 0 (j > 2), then we have

fialia(z,y) = zy and g1,1(z) = 2y = 3E_o fixLea (2, v)-

By reason of Ly, j(z,y) = 0and f] ; = 0 (j > 2), Xk fixLr,i(2) =
fiila,i(z) = 0= q(z,y) (5 > 2).

Since f3; = 0 (j 2 3), f3; = —1 and f;, = 1, then we have
22:0 fé,kLk,l(zay) = fé,lLl,l(xay) + fé,2L2,l($’y) = :L'y(2x - 1) =
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g2,1(z,y). From (6), we have, for i = 3,4,...,n, Xk f{’kLk,l(x,y) =
g:1(z,y).

Now, we consider # > 2 and j > 1. by (6) and the definition of
L; j, we have Y%_g fi 1 Lij(%,y) = fiiLij(z,y) + fi i1 Lio15(z9) +
fliaLi—2j(2,y)= Lij(z,y) — Li-1,j(z,y) = Li—2,j(2,y) = ¢i,5(z,y)-

Hence, we have F~1L[z,y] = Q[z,y], the proof is completed. O

From the theorem, we have the following curious identities in-
volving the Fibonacci numbers.

Corollary 5. We have

nlz™ (: : :) =rlg’ Fpry1 + 727 (r(r + 1)z — 1) Fr +

+ Z Frkniz*2R! (k— i) [z2 - k(kk——rl) <z+ (’»Iz--l)?’:—1 2))]'

k=r+2

Specially,

-1
n! (1:_ 1) =rlFy 1 +rir(r+1) = 1)Fp_r+

+L§2F—L+1k|(k i) [1_ k(ljc——rl) <1+ (k’f_])r(;_lm)].

and

nl(-1)" (jf: :) = PU(=1)" Fapit = (=1)7(r(r + 1) + 1) Pt

+ Z Fokn(= "'(:_ ;) [1‘ Ic(ljc_—rl) ((Lk——l)?k_ —12) _1)]'

k=r+2

If r =1, then we have
Corollary 6.

"n! = :z:F,, + 22z — 1)Fh1 + ZF,, rr12F 2 (k — 2)! x

k=3
x (k(k = 1)a? = (k= 1)z - 1).
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In particular,
n+l + Z _k'Fn—k-i-la

and

Fat (1)l = 3Fa g + 3 (- 1)*(k? = 2)(k — 9! Fa—is1-

k=3
If r = 2, then we have
Corollary 7.
™(n—1)n! =2F,_ 2%+ ZFR-LH:L- 2(k—2)! x
k=3

(L(L-1)2 2 (k=1)(k=2z — (k-3)).

In particular,

n
(n—1)nl =2F, 1 + 3 (k= 2)! (K* = 3k% + 3k +1) Fogn,
k=3

and

(n=1)n! = 2F, 1+ (-1)"*k-2)! x
k=3

x (K = k? = 3k +5) P
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