THE LAST DESCENT IN SAMPLES OF GEOMETRIC
RANDOM VARIABLES AND PERMUTATIONS

ARNOLD KNOPFMACHER! AND HELMUT PRODINGER?

ABSTRACT. For words of length n, generated by independent geomet-
ric random variables, we study the average initial and end heights of
the last descent in the word. In addition we compute the average
initial and end height of the last descent in a random permutation of
n letters.

1. INTRODUCTION

Let X denote a geometrically distributed random variable, i. e., P{X =
k} = pg*~! for k € N and g = 1 — p. The combinatorics of n geometrically
distributed independent random variables Xj,..., X, has attracted recent
interest, especially because of applications in computer science. Two such
areas in which they arise, are skip lists [2, 15, 18, 8] and probabilistic
counting [3, 6, 7, 9].

One of the first combinatorial questions investigated for words a; ... an,
with the letters a; independently generated according to the geometric dis-
tribution, was the number of left-to-right maxima in [16]. In [10] the authors
began a study of descents in samples of geometrically distributed indepen-
dent random variables. A descent corresponds to a pair of geometic random
variables a;,a;+1, with a; > a;41 for strict descents and a; > a;4+1 in the
case of weak descents. We call g; the initial height and a;;; the end height
of the descent. The size of a descent is defined to be the initial height minus
the end height.

Recently the authors [11] studied the height of the first descent in a string
of n geometrically distributed independent random letters. We continue
the study of descent heights in this article, by considering the initial and

Date: October 25, 2004.

1991 Mathematics Subject Classification. Primary: 05A15; Secondary: 60C05.

Key words and phrases. geometric random variables, generating function, permuta-
tions, descents.

1This material is based upon work supported by the National Research Foundation
under grant number 2053740.

$This material is based upon work supported by the National Research Foundation
under grant number 2053748.

ARS COMBINATORIA 83(2007), pp. 365-379



end heights and hence the size of the last descent in such a string. For
example in w = 2251144311 the initial and end heights of the last descent
are respectively 3 and 1 (strict case) and 1 and 1 (weak case). The size of
the last descent in our example is 2 in the strict case and 0 in the weak
case. In this paper strict descents are considered in Section 2 and weak
descents in Section 3. In each case the limit ¢ — 1 is studied in Section 4.

By comparing the results of Section 4 to the corresponding results for
the first descent in [11], we obtain an interesting conclusion relating first
descents and last descents in geometric samples:

Theorem 1. The ratio of the ezpected size of the first strict (weak) descent
to the expected size of the last strict (weak) descent tends to E
1.165382215... asq — 1.

m>2 m'

Many permutation statistics can be deduced from the corresponding geo-
metric random variable statistic by letting ¢ — 1. However, this does not
apply in the case of descent heights, so we consider separately the initial
and end heights of the last descent for a random permutation of n letters
in Section 5. In this case a simple bijection shows that the expected size of
the first descent equals the expected size of the last descent.

2. STRICT DESCENTS

2.1. The end height of the last strict descent. For the end height
of the last strict descent in a sample of geometrically distributed random
variables we use the following decomposition for the set of all words:

{all words} = U ({any word}{letter > h}-

h21 - {weakly increasing word starting with h})

U {weakly increasing word}.

We now consider a probability generating function F'(z, u), where z labels
the number of random variables (=letters), and u marks the end height of
the last strict descent.

This leads to
F(z’u)__z(.i pg! ) h=1,h, Hl — T
h2>1 Mi=h+1 i=h
i W
2
= lpiz hzz:lqzh_l ;.111 — p;j I +;'Iz-'[ l—pzj—l:f
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We check that F'(z,1) produces all words:

had 1

pz 1 __ !
S0 | = | e e

h>l j=h-1

using Theorem 2 below.

Theorem 2.
ad 1

pz22q2h—-1 H — quz (1--z)]:[1 pq-"z

h>1 j=h—1

Proof. 1t is beneficial to use the notation (z), := (1 — z)(1 — zg)...

zg™"1). We will make use of Heine’s formula

@)m®)mt™ _ (B)oo(at)eo = (¢/D)m(t)m ,m
mz?_o (q)m(C)m - (c)oo(t)oo o (q)m(at)mb ’

see e. g. [1].
We wish to evaluate
22¢2h+ (ny
(p)mh»P " (p2)n = (p)
with
B:= z ¢**(pz)n.
>0

Apply Heine’s formula with t =¢%,a =¢q,b=pz,c=0:

(pz)oo(q3)oo (q2)m m
B= (¢%)oo mz>:o (@m(@)m (p2)

(Pz)oo _ _ (P2)oo 1 _
p2z2 [(pz)oo 142 p2qz? [("qu)oo 1+ qz]
(P2)oo 1 1
T pgz2? h p? - P9z
And finally
P p_ g 1-z
A= (pZ)coB 1 T
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For the mean end height of the last descent we must compute E%F(z, 1).
Now

—-F( 1) =

1
2h—1 I I (4)
qu—l
h>1 i=h 1- o

Since the dominant pole is at z = 1 we have by means of singularity
analysis [4], [5],

ad 1

[z"]a P~ 3 bt 1] 150

h>l j=h-1

(p)oo Z(h + l)pq2h+1 (p)h

h2>0

Therefore we have shown

Theorem 3. The expected end height of the last strict descent is asymp-
totically as n — oo,

(p)w Y (h+1)pg**+ (p),. (5)

h>0

2.2. The.initial height and size of the last strict descent. We now
consider a probability generating function F(z,u), where z labels the num-
ber of random variables, and u marks the initial height of the last strict
descent.

Let us use the following decomposition again

{all words} = U ({any word} {letter > h}
h21 - {weakly increasing word starting with h})
U {weakly increasing word}.

This leads to
i 1
i1
F(zu) Z(qu’ u'z) an
h>1 t=h+1 J—h
+H 1=
i1 1- pq-' z
h—1, h+1
(1 —z)(l ;‘f H 1- qu"lz H 1- pqﬂ—lz

(6)
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For the mean initial height of the last descent we must compute %F (z,1).
Now

2
—F( =72 2"Hl s

pz h>1 i=h (7)
(h +1)g??
;; 111 1- pq-’ 1

Since the dominant pole is at z = 1 we have

I > I
[2"])=— F(z N~ ¢ -+ Y (h+1)pg?t? :

Ou h2>:1 ;.:.ll-u[ 11 qu h>1 j=h—1 1-pg
> (h+ 1)pg** " (p)a—1

(p)°° h>1

by using (2). Therefore we have shown

Theorem 4. The ezpected initial height of the last strict descent is asymp-
totically as n = oo,

(p) —— 3 _(h+2)pg***! (p)a. 8)
® r>0

The mean size of the last descent is obtained by subtracting the mean
end height from the mean initial height of the last descent. From Theorems
3 and 4 and identity (2) we obtain

Theorem 5. As n — oo, the exzpected size of the last strict descent is
asymptotically 1/p.

Figure 1 illustrates the dependence on g of the initial height, end height
and size of the last strict descent.
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FIGURE 1. Mean initial height, end height and size of the
last strict descent as a function of q.
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3. WEAK DESCENTS

The computational steps in the case of weak descents are very much par-
allel to the corresponding steps for strict descents. Hence we include only
the main steps in the derivations below.

3.1. The end height of the last weak descent. We now consider a
probability generating function F(z,u), where z labels the number of ran-
dom variables, and u marks the end height of the last weak descent.

We use the following decomposition

{all words} = U ({any word}{letter > h}-
h21 - { strictly increasing word starting with h})
U {strictly increasing word}.
This leads to
F(z,u) = Zqzhuhﬂ H (+pe2) + [[(+pd2).  (9)

2 20 j=h+1 i>0
Once again F(z,1) = ﬁ, in view of
Theorem 6.

oo .
p2Y ¢ [ +pd2)=1-0-2)[[a+pe2). (10)
k>0  j=h+1 i>0
Proof. We make use of the following identity proved in [11],

S ]

h2>1 i=1

- 1-gqz.

1- quz—Hl —-pgiz

Therefore

Z pz2 q2h H

h>1 3=0

1+gz
1- quz —H 1- quz T 1-pz
Replacing z by —z and multiplying through by (—pz)co,

ot I (pris) =1- 12 E(pr)e

h>1 j=h+1 l+p
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Hence
2

h T] @+pe'2) = 1- T (—p2)os + T (~P2)eo
hz>;>pz .1-];-;!:!-1 # 1 <+ pz 14pz
=1-(1- z)(_pz)oo-
(]
Now

F( 1) = ”z — Y b+ 1’[ (1+pg’2). 1)
% >0 j=h+1
Since the dominant pole is at z = 1 we have

[2"] auz*"(z,l)~p2(h+ Dt [ @ +re).
h>0 j=h+1

Consequently we have

Theorem 7. The expected end height of the last weak descent is asymptot-

ically as n = oo,
pgh

(—P2)oo (B + 1)( o (12)
h>0
3.2. The initial height and size of the last weak descent. We now
consider a probability generating function F'(z,u), where z labels the num-
ber of random variables, and » marks the initial height of the last weak
descent.

We use again the decomposition

{all words} = U ({any word}{letter > h}
h21 - {strictly increasing word starting with h})

U {strictly increasing word}.

This leads to
F(z u)=_1’2222q2h‘“ ]| 1 +p¢2) + [J +p2).  (13)
! 1-2z l-gqu
h20 j=h+1 i>0
Now

F( 1) = Zqzw H (1+pg’2)
h>0 Jj=h+1 (14)

H (1+ pg’2).

h>0 j=h+1
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From the dominant pole at 2 = 1 and by using (10) we find that

Tl F(z1) ~ 4 5+ (P Y (bt 1) 2
h2>0 ( )

Hence

Theorem 8. The ezpected initial height of the last weak descent is asymp-
totically as n — oo,

1 >+ (P Y 1) B (15)
o (-pa)n pq)
From Theorems 7 and 8 we deduce

Theorem 9. As n — oo, the ezpected size of the last weak descent is
asymptotically ;-.

Figure 2 illustrates the dependence on g of the initial height, end height
and size of the last weak descent.

13|
10| 3

-
»
o N w s

8 s o

0.2 0.4 0.6 o.8 v 0.2 0.4 0.6 0.8 M 0.2 0.4 0.6 0.8

FIGURE 2. Mean initial height, end height and size of the
last weak descent as a function of q.

4. THE BEHAVIOUR FOR g - 1

The figures indicate that the quantities in Theorems 3, 4 and 5, as well
as in Theorems 7, 8 and 9 tend to infinity as ¢ & 1. We will quantify this
observation in this section.

We start our study with

Ry = Y (h+ pd (o) = -paz Y (ea) (0

h2>0 h20 =1

We use Heine with t = 2¢%,a=p,b=¢q,c=0:

21h (9) o0 (192%) o0 (2¢*)m m
é(zq) (Pn = Eom mz):o Do t™
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We use Heine again; t = ¢, a = 2¢%, b = 0, ¢ = pgz?. For this, (¢/b)mnd™
has to be interpreted as (b—c)(b—cg) . ..(b— cg™?), after which b can be
replaced by zero;
- @ty _(o6)en 5~ (=1)"¢() (pg?2)™ (@)m
e P00 2y @l

lm(';) 2.,,\m
-zqzz( )™q'2/ (pg*2)

m>0 (26%)m
(-1)™13) (pgz)™
ngl (zqz)m
Hence
_ (-1)™-1¢(3) (pgz)m
R“a,}:«l o
(=1)™~14(5) (pg)™ 2 g
- o G e 5 )
Thus
(=)™ (Hmy1 = 1) (- 1)mHm 1
llle -(1-¢9= mz>1 (m+1)-"-1 mz>:1 —E'l'l.

Since 1/(p)oo — € as ¢ = 1, we infer that the quantity in Theorem 3 for
the end height behaves for ¢ = 1 as
ey Tm +e— 1 0.400379677...
1—¢q - 1—¢
and the quantity in Theorem 4 for the initial height behaves for ¢ — 1 as
€Y o1 S +e  1.400379677...
1—¢ - 1-¢

Next we consider

Rs = Z(h+ l)pqzh 1 p(l +p) Z

h>0 (—pq)h = _p)h
_p(l+p)d .
7 ,§,‘ )t p)h -
We apply Heine, with ¢ = 2412, a=0,b=g,and e = —p:
(Do ('—;Z)m(zqz)m ‘m
R4 hz>0(zq ( p)h (—p)oo(Zq?)oo mzzo (q)m q.
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A further application of Heine, with ¢t = ¢, a = z¢%, b= —p/q, and ¢ = 0
turns this into

— (q)oo (—g)oo(zqa)oo (q)m —p\™
B = (=P)oo(262) 0 (@)oo mgz:o (@) m(2¢%)m (_)

1 +p/q Z (=p™

- 2q% £ q™(2¢°)m
_pP—q (—l)mp"'
,,%:1 7™(2¢*)m
Thus
_(1+p)p-q) d « (=)"p™
q? Z * 4™(20%)m |,y

_a +p)(p 2§~ (Chympn T g
s r@m g 1-¢
At this stage, we can perform the limit for ¢ = 1 and find

. —1)m+1 Ty 1)™(H,, - 1
;5.}33.(1_,1) Z((m-)}-l)'z mz»()(—)

1
Z ( 1) Hm — 241,
m>1 e
Since (—pg)oo — € as ¢ = 1, we infer that the quantity in Theorem 7 for
the weak end height behaves for ¢ —+ 1 as

e Loy S e -1 0.400379677...
1-¢g - 1-g¢g
and the quantity in Theorem 8 for the weak initial height behaves for ¢ — 1
as

€T m1 L™ e 1.400379677...
1—gq - 1-¢ )
Finally, in [11] 1t is shown that the size of the ﬁrst strict (weak) descent
is asymptotic to 1— as g — 1, where L = Em>2 2 = 1.165382215 ...
By comparing this thh Theorems 5 and 9 we deduce Theorem 1.

5. THE HEIGHT OF THE LAST DESCENT IN PERMUTATIONS

5.1. End height of last descent in permutations. Various permuta-
tion statistics, such as the number of descents [10] can be deduced from
the corresponding geometric random variable statistic by letting ¢ — 1.
However, it is not possible to deduce the end height of the last descent in a
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permutation of n letters from the corresponding geometric random variable
statistic. We therefore consider this question separately.

Suppose that this end descent height is m. If this occurs in position
n — j then we have n — m choices for the element that precedes m in the
permutation and ("“"‘ 1) choices for the elements that form the strictly
increasing sequence of j values that follow m. There are (n — j — 2)! ar-
rangements of the remaining elements to complete the permutation. Hence
the total number of permutations whose last descent has end height m is

nom-l n-m-—1
3 (n- m)( " )(n _j-2). (16)

j=0
As all permutations of n letters other than 12...n have a descent, if we
sum (16) over m we obtain the identity

n—-m-—1

Z(n m) Y (" T l)(n—j—2)!=n!—l. (17)

m=1 j=0
A direct proof is as follows

n—1 n—m-—1 n—m-—1
A= Z(n m) Z ( p )(n—j—2)!
m=1 j=0
n—2 n—j—1

(n- ] 2)! (n—m)!
z Z (n-m-j-1)!

m=1

_nf(n 3—2)'(J+1)”_ZJ:_ (,+1)

=0 m=1

='§(n—j—2)!(j+l)(j_?_2)

n—2 1

= 2:[(J+1)' (G+2)

] =nt-1.

The average end height is then given by the expression

n-m-1
g(n)_ m(n m 3 (” m = 1)(n—j-2)!. (18)

n!
j=0
Theorem 10. We have

n

i (n+1)[ Z (n+1)'] B-en+1), (19

j=
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as n — oo, where 3 — e =0.2817181715... .

Proof. We have
_ n-1 n—m-—1 n—m—1 )
= 'm_lm(n m) ,-_z(:) ( p )(n—1—2)!
2(n— ] 2)"'-""1 (n-m)!
n'rz:o mz_:lm(n—m-j—l)!
n—2 n—-j—1
1
m,%‘“ =26+ 3 m(377)
n—-2 n—j-1
(n+1) Z(n -j- 2)'(J+1)Z( )
J“'O
n—2 n—j—1
E(n Q-G+ Y (- m+1)( )
m=1
1 1n-—2 n—j—1 _ 1
(n+1)( —H) Z__;(n j- 2)I(J+1)(J+2)"§1 ("]':;')
n—2
=m+1(1- ) - -G +06+2(3 1))
J—O
N 1 = G+DE+2)
=(m+1)(1- m)—(n+1)rzo Gl
1 = 2 2
= +1(1- ) - ("“)Z[(,H)' G+t Gl
=(n+1)[3—1=20%—(7_'2T)'] (n+1)(3—-e)
0O

From [11] we see that the ratio of the expected end heights, for the first
descent and last descent tends to zf5=2y = 1.274823389... as n — oo.

3—e
The g(n) sequence
0,1,6,33, 202, 1419, 11358, 102229, 1022298, 11245287, 134943454, 1754264913, ...

is not in Sloane [19).
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5.2. Initial height of last descent in permutations. It is also not
possible to deduce the initial height of the last descent in a permutation
of n-letters from the corresponding geometic random variable statistic, as
g—1.

Suppose that the end descent height is m and the initial descent height
is k > m. If m occurs in position n — j then we have k — 1 choices for
m and ("~7~") choices for the elements that form the strictly increasing

sequence of j values that follow m. There are (n — j — 2)! arrangements
of the remaining elements to complete the permutation. Hence the total
number of permutations whose last descent has initial height k is

ki”_f:_ (" m- 1)(n—j—2)!. (20)

m=1 j=0
As all permutations of n letters other than 12...n have a descent, if we
sum (20) over k we obtain the identity

n k-1n-m-1

ZZ ) (" e 1)(n—j—2)!=n!-1. 1)

k=2m=1 j=0

A direct proof is

C:=zﬂ:’§ﬂ-2m:—l (n—?_l)(n—j—m!

k=2m=1 j=0

5 3 S0 Sl Lk L)

m=1 k=m+1 j=0

=Zl(n m)”_im:_l( ; 1)(n.-j-2)!=A

m=1 j=0

The average initial height is then given by the expression
= n'ZkZ > ( i )(n—]—2)!. (22)
k=2 m=1 j=0
Theorem 11. We have
h(n) n+1 1 1 2 e
nl = T[‘*"JEJ"H’(’{M_)!] ~@+D(2-3), @)
as n — oo, where 2 —e/2 = 0.6408590857 ... .
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Proof. We have

n k-1 n—-m-—1

D:=%Zkz > (n_?—l)(n—j—2)!

k=2 m=1 j=0
-1 n n-m-1

1'2 Yy (" ™= 1)(n—j—2)!

m=1 k=m+1 j=0

-1 n—m-—1
'Zm(n m) Z (n—f?'_l)(n-—j—2)!

m=1 j=0 J
n+ln—1 n—m-—1 n—m — 1 ]
) (n-m) Y ( f )(n—]—2)!
m=1 j=0
B
=5+ gut =D
n+1 201 1 2 4—e
=73 [4 rzoﬁ‘m‘(n-n)'] (r+1)=3

0O

From [11] we see that the ratio of the expected initial heights, for the
first descent and last descent tends to 32535 = 1.120810868... as n — oo.

The h(n) sequence forn > 1is
0,2,13, 74, 458, 3226, 25835, 232550, 2325544, 25581038, 306972521, 3990642850, . ..

is also not in Sloane [19].
We deduce from Theorems 10 and 11 that the mean size of the last de-
scent is asymptotic to (e/2 — 1)(n + 1) as n = oo.

In [11] it was shown that the mean size of the first descent is also asymp-
totic to (e/2 — 1)(n + 1) as n — oo. Indeed we can give a simple combi-
natorial proof that the expected sizes of the first and last descents over all
permutations of n are the same. Given a permutation w(1),7(2),...,7(n)
the mapping that sends w(i) ton+1—n(n+1—1) for 1 < i < n, is eas-
ily seen to be a size preserving bijection from the last descent to the first
descent.
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