The K-behaviour of p-trees
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Abstract

Let G = (V, E) be a graph with n vertices. The cligue graph of G
is the intersection graph K (G) of the set of all (maximal) cliques of G
and K is called the clique operator. The iterated clique graphs K*(G)
are recursively defined by K'(G) = G and K*(G) = K(KY(G)),
i > 0. A graph is K-divergent if the sequence |V (K*(G))| of all
vertex mumbers ol its iterated clique graphs is unbounded, otherwise
it is K -convergent. The long-run behaviour of G, when we repeatedly
apply the clique operator, is called the K-behaviour of G.

In this paper we characterize the K-behaviour of the class of
graphs called p-trees, that has been extensively studied by Babel.
Among many other properties, a p-tree contains exactly n — 3 in-
duced Fss. In this way we extend some previous result about the
K-behaviour of cographs, i.e. graphs with no induced P;s. This
characterization leads to a polynomial time algorithm for deciding
the K-convergence or K-divergence of any graph in the class.

1 Introduction

Given a graph G = (V, [) a subgraph H of G is a complete if every pair
of distinct vertices of M are adjacent. A cligue is a maximal complete
subgraph of G. The clique graph K(G) of a graph G is the intersection
graph of the cliques of . It is obtained by representing each clique of G
by a vertex of K(G) and connecting two vertices by an edge if and only if
their corresponding cliques intersect. The iterated clique graphs K*(G) are
defined by K°(G) = G and K¥(G) = K(K*"}(G)), i > 0. We refer to [14]
and [16] for the literature on iterated clique graphs. Graphs behave in a
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variety of ways when we repeatedly apply the clique operator K, the main
distinction being between K-convergence and K-divergence. A graph G is
said to be K -divergent if the sequence |V(K*(G))| of all vertex numbers of
its iterated clique graphs is unbounded, otherwise G is K-convergent. In
particular if lim;—oo |V (K*(G))| = 1 we say that G is K-null.

The first examples of K-divergent graphs were found in the class of
the complete multipartite graphs, denoted by Kjp, p,,....n,» Whose vertex-
sets can be partitioned into ¢ disjoint stable sets S; of cardinality p; and
for every u € S; and v € Sj,i # j, the edge uv belongs to G. In [6, 11]
it was proved that Ky, 2 is K-divergent. Moreover, Neumann-Lara in
[11} showed that all complete multipartite graphs Kp,,. ., with ¢ > 3
and p; > 2, 1 £ i < q, are K-divergent with superexponential growth.
The remaining ones are the cliques K, on n vertices, the bipartite graphs
Ko, po and the multipartite graphs with a universal vertex K gp,,.. p, that
were previously known to be K-convergent.

The question whether the K-convergence of a graph is algorithmically
decidable is an open problem. For restricted families of graphs containing
both K-convergent and K-divergent graphs, their K-behaviour has been
characterized for complements of cycles [11], clockwork graphs [8], regular
Whitney triangulations of closed surfaces [9] and cographs (7). However, in
all these cases the K-behaviour can be decided in polynomial time.

In our paper we extend the results presented in (7] about the K-behaviour
of cographs, i.e. graphs without any induced chordless path on four vertices,
termed P,. We consider the class of p-trees, introduced by Babel in [1},
as the class of graphs where each induced subgraph contains a vertex that
belongs to at most one P;. Many characterization of p-trees by forbidden
configurations, in terms of the number of Pys and by the uniqueness of
the p-chains connecting any two vertices of a p-tree are given in (1, 3]. In
particular it is proved that a p-tree contains exactly n — 3 Pys. To decide
the K-behaviour of p-trees we use a more recent characterization of p-trees
given by Babel in [2] based on special properties of the unique modular
decomposition tree associated 1o each graph of the class.

Using the modular decomposition tecnique, the K-behaviour of cographs,
has been completely characterized in [7). In this paper, the same tecnique
is used to decide the K-behaviour of p-trees.

The modular decomposition Lree of any graph can be computed in linear
time [10] and therefore it is the natural framework for finding polynomial
time algorithms of many problems.

In section 2 we give some definitions and recall some general results
given in [1], [11] and (7] that allow to derive the K-behaviour of the whole
graph from the K-behaviour of some suitable subgraph of itself. In section
3 we characterize the K-behaviour of p-trees. This characterization leads
to a linear time algorithm for deciding the K-behaviour of any graph in
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the class.

2 Preliminaries and definitions

All graphs in this paper arc finite and simple. Let G = (V, E) be a graph
with vertex-set V(G) and edge-set E(G). We denote by n the cardinality of
V. Il v is a vertex of G then N(v) is the set of vertices which are adjacent
to v and N[v] is the set N(v) U {v}. For any » and v in V, we say that
u is dominated by v or v is dominating u in G, if N[u] C N[v). Ifvisa
vertex dominating every other vertex of G, then we say that v is a universal
vertex. A stable set is a sct of pairwise nonadjacent vertices.

The complement graph of G = (V, E) is the graph G = (V,E), where
wv € I il and only if uv & E. Given a subset U of V, let G[U] stand for the
subgraph of G induced by U. Let X be a subset of V and z any vertex of
X. The quotient graph G/ X is defined as V(G/X) = (V(G) - X)u{z} and
E(G/X) = E(C[V(G) - X)) U {zv | wv € E(G), u € X, ve V(G) - X}.

Two graphs G = (V, [5) and G’ = (V’, E’) are called isomorphic, de-
noted G = (7, if there is a bijection f: V — V' satislying, for all u,v € V,
uv € J7 if and only if f(u)f(v) € .

Let G and G7 be two vertex disjoint. graphs. We can define the parallel
composition of G and G’ as the graph GUG’ so that V(GUG’) = V(G)U
V(G’) and [(GCUG’) = L(G)U E(G’). The serial composition of G and G’
is the graph G+ G’ defined by V(G+G') = V(G)UV(G’) and E(G+G’) =
E(CYUVE(G U {vw' |ve V(G), v € V(G')}.

Let Py denote the chordless path with vertices u, v, w,r and edges uv,
vw, wz. The vertices v and w are called midpoints whereas the vertices
u and z arc called endpoints. Following the terminology of Jamison and
Olariu [5], a graph G is p-connected (or, more extensively, Py-connected)
if, for each partition V}, V, of V into two sets, there exists an induced P,
which contains vertices from V) and Va. Such Py is a crossing between V;
and V,. The p-connecled cornponentsof a graph G are the maximal induced
p-connected subgraphs.

A module of a graph G is a subset M of vertices of V(G) such that each
vertex in V(G)\ M either is adjacent to all vertices of M, or is adjacent to
no vertex in M. The empty set, the subsets formed by single vertices of G
and the set V(G) are trivial modules. A graph is prime if it only contains
trivial modules. Say that M is a strong module if, for any other module A,
the interscction of M and A is empty or contains one of the modules. The
unique partition of the vertex set of a graph G into maximal strong modules
is used recursively to define its unique modular decomposition tree T(G).
The module M is parallel (P) if G[M] is disconnected; M is serial (S) if
C[M] is disconnected; M is neighbourhood (N) if both G[M] and G[M]
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are connected. Similarly, say that G[M] is parallel, serial or neighbourhood
when M is respectively so. The leaves of T'(G) are the vertices of G and the
internal vertices of T'(G) are modules labeled with P, S or N (for parallel,
serial, or neighbourhood module, respectively).

We will often identify the modules M; with the induced subgraphs G; =
G[M;].

For disconnected G, the maximal strong modules are the connected
components. In this case G =G UG2U...UG,.

If G is disconnected, the maximal strong modules of G are the connected
components of G. In this case G=C1 + G2+ ...+ G,.

If G is a serial graph and each G; has a modular decomposition of the
form

Ci =U} Gy, pi 2 2,

we say that G is a parallel-decomposable serial graph.
Note that any connected cograph without universal vertices is a parallel-
decomposable scrial graph, since cographs have no neighbourhood modules.

To study the K-behaviour of a graph G, we shall also use some powerful
results that allow to predict the K-behaviour of G from the K-behaviour
of some suitable subgraph of itself.

If H is a subgraph of G and I/ = G - {vy,v2,..., v}, where v; is a
dominated vertex of G — {v,vo,...,v..1},i=1,...,k, we say that H is a
strong retract of G.

The following result is given in [1].

Theorem 1 Lel G be a graph. If H is a strong retract of G, G and H
have the same K-behaviour.

It is easy to see that il v is a dominated vertex of a module M of G,
then v is a dominated vertex of G.

By using a weaker concept than dominance a sufficient condition for
K-divergency is given in [11].

Let G, H be graphs. A mapping f from V(G) to V(H) is a morphism
if f(u) and f(v) either coincide or are adjacent in H whenever » and v are
adjacent in G. A retraclion is a morphism f from a graph G to a subgraph
H of itself such that the restriction f|; of f to V(H) is the identity map.
In this case we say that / is a retract of G.

It’s useful to notice that, if v € V(G), there is always a total retraction
from G to v.

The following theorem given in [11], describes the relationship between
retracts and K-divergence.

Theorem 2 If G has a K-divergent retract H, then G is K-divergent.
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The following lemmas, proved in (7], are uscful to find a retraction of
G, once its modular decomposition is known.

Lemma 1 Lel G be a graph and M a module of G. If R is a retract of
G[M)], then G[(V(G) — M) U V(R)] is also a retract of G.

Lemma 2 Let G be a graph and M a module of G. Then the quotient
graph G/M is a retract of G.

Lemma 3 Let G be a graph. If P = S1USU...US, is a parallel module
of G and some S; is a single verlex v, then G — {v} is a retract of G.

Most of the results on convergence of iterated clique graphs are on the
domain of clique-Helly graphs. A graph is clique-Helly if its cliques satisfy
the Helly property: cach family of mutually intersecting cliques has non-
trivial intersection. Clique-Helly graphs are always K-convergent [6] and
can be recognized in polynomial time [15]. It will be useful to proof one of
our results to use the following theorem given in [15].

Let T be a triangle of a graph G. The exlended lriangle of G, relative
to T, is the subgraph T of G induced by the vertices which form a triangle
with at least one edge of T.

Theorem 3 A graph (i is elique-lelly if and only if every extended triangle
has a universal verles.

3 The K-behaviour of p-trees

The purpose of this section is to characterize the K-behaviour of a subclass
of the Pj-connected graphs, called p-trees, since they are provided with
structural propertics that can be expressed in a quite analogous way to the
characterization of ordinary trees.

To investigate the K-behaviour of p-trees we shall use the characteriza-
tion given in [2], based on the structure of the p-chains in a p-tree, that we
recall for rcader’s convenicnce.

A p-chain is a sequence of vertices such that cvery four consecutive
ones induce a Py. A p-chain X = {v1,vs,...,vx} is simple if the only Pys
contained in G[X] arc induced by the sct of vertices {v;, vit1, vit2, Vi+3}
fori=1,2,...,k - 3. In other words a p-chain is simple if and only if the
vertices of the p-chain induce precisely k — 3 Pys.

The graphs P, (k > 1), the graphs Rs, R and Ry (see Figure 1), the
split graphs Q« (k > 5) (sce Figure 2) and their complements are simple
p-chains. Remind that a graph is called split graph if its vertex set can be
partitioned in a complete and a stable set. A split graph Qy, has vertex
set. V = {w),v2,..., v}, where A = {vg:—1} is the stable set, B = {vy} is
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(4]
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Vs (7] v3 v2
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Vg Vs Vq v3 v2
k23] v7
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Ve Vs V4 v3 v2

Figure 1: The graphs Rs, Rs, Rz

the complete and the cdges connecting each vertex of B to the vertices of
A are {vg;vai..) and voivnj41,7 > 1}

It has been proved in [2] that every simple p-chain is isomorphic to one
of the above graphs. '

A vertex is a p-end-vertex if it belongs to exactly one Py.

Obviously simple p-chains are p-trees and it turns out that every p-tree
can be generated starting from a simple p-chain extended by a number of
p-end-vertices which can eventually be replaced by cographs.

Note that Qs and R; are isomorphic to a P4 with one endpoint replaced
by the cographs K, and K> respectively.

A spiked p-chain Py is 8 Pe = (vy,v2,...,vk), k > 6, extended intro-
ducing two additional vertices = and y such that z is adjacent to v and v3
and y is adjacent to vk and vg—g; moreover we request that z and y do
not belong to a common P,. One or both of the vertices z and y may be
missing. In the following we shall refer to Ps, Rg and R7 as spiked p-chains
Ps and their vertices, from now on, will be named by vy, ...,vs, T, .

A spiked p-chain Qi is a Qx = (vy,v2,...,vk), k > 6, with additional
vertices zg, 23,..., 2x..5 such that .

N(z:) = {v2,va,...,01,%41} U {22,24,...,2i1} for i odd;
N(z) = {1)1,1;3,...,1),‘_1,1),'.;.]}U{23,25,...,.21'_1} for i even.
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Figurc 2: The graphs Qg and @,

m v vg V4 Us Vg V7 vg

Figure 3: The spiked p-chain P

Any of the vertices z3, za, .. ., 2k-5 may be missing (see Figure 4).
A spiked p-chain Pg (or Q) is the complement of a spiked p-chain P,
(or Q).

Finally we have the ollowing characterization ol p-trees.

Theorem 4 (Babel [2]) A graph is a p-tree if and only if it is either a
Py with one verlex replaced by a cograph or a spiked p-chain with the p-
end-vertices replaced by cographs.

It is easy to verify that vy, z,y,vx and vy, 29,23, ..., zk—5, Vs are the
only p-end-vertices of spiked P (Pi) and Qi (Q,) respectively. In fact
P, Qr and their complements are simple p-chains and the unique P
containing z;,  or y is induced by {2, vit1,vi42,vi+3}, {z,v3,v4,v5} o1
{, Un—2,Un-3,vn-4q} respectively.

Following the “taxonomy™ of the class of p-trees proposed in Theorem 4
we shall characterize their K-behaviour.

Theorem § et G be cither a spiked p-chain Py (k 2 5) or Qi (k > 6)
with the p-end-vertices replaced by o cograph or a Py with an endpoint
replaced by a cograph. Then G is K-null.
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Figure 4: The spiked p-chain Qg

Proof The vertices of any cograph replacing a p-end-vertex of the spiked
p-chain or an endpoint of P4 are dominated either from vg or ve—;. After
their climination we obtain either a shorter path or a split graph. By
repeated elimination of dominated vertices we obtain a strong retract of G
isomorphic to K and then by Theorem 1, G is K-null. [ ]

Notice that Theorem 5 holds more in general whenever we replace co-
graphs by any graph.

From this point onwards, let us denote by f, the cograph eventually
replacing a p-end-vertex v.

Theorem 6 Let G be a spiked p-chain Q, k > 6, with the p-end-vertices
replaced by cographs. Then G is K-null.

Proof Vertex vz dominates any other vertex of G except the vertices of
H,,, v4 and vs. Afier their climination, we obtain a strong retract of G
with a universal vertex vs. Then, by Theorem 1, G is K-null. [ |

The following lemma will be very uselul in the next pages; even if it is
a particular case of Theorem 11 in [7], we will give a direct proof. .

Lemma 4 Let G be a P53 with the midpoint replaced by a cograph H. Then
G is K-converyent if and only if each connected component of H contains
a universal verter. Purthermore G is K-null if H is connected.

Proof Let Py = (v;,v;,v3). Without loss of generality, we can assume
that we replace the vertex v, with the cograph H = Hy U Ha U --- U Hy,
g>1

Ifeach H;,i=1,...,q, contains a universal vertex u; then u; is a strong
retract of H; and Glvy, vz, u1, u2, ..., uq] = Ka,q is a K-convergent strong
retract of G. Hence G is also K-convergent by Theorem 1. Furthermore G
is K-millil g = 1.



Otherwise at least one /; is a parallel decomposable serial graph. With-
out loss of generality let us assume that i = 1. Then by Lemma 2 we can
retract each Hj, j > 2, to a single vertex u;, and by Lemma 3 we can re-
tract H to H1. Let Hy = M+ Ma+---+ M,, r > 2, and M; = USL | M, 5,
p; 2> 2, be the modular decomposition of M. From Lemma 2 we can retract
each M; ; to a single vertex and therclore Ky, 5,,... p., 7 2 2 is a retract of
H. Since v; and w3 are not connected by any edge and both are connected
to every vertex of H, then Kp, p,.....5.,2, T 2 2, is a K-divergent retract of
G. Hence G is also K-divergent by Theorem 2. ]

Lemma 5 Let G be isomorphic Lo a Py (k > 5). Then G is K -convergent
if and only if k = 5,6 or k =3h + 1, with h > 2. Furthermore in the last
case G is K-null.

Proof Vertex v; dominates vertex v, After deleting vs, by iterating the

process, we can successively delete from Pk the vertices vai, i = 2,..., A,

with h = |£], since cach one of them becomes dominated by the vertex

v3;—9. Then, il k = 3h, h > 2, or k = 3h+2, h > 1, the strong retract of Pi

is H= K2, 2,...,% that is K-convergent if and only if k = 5, 6. Otherwise
N e

r&)
k=3h+1, h > 2, and the strong retract of Py is /I = Ko o ... 2+ K
N’

15)
that is /(-null. By Theorem 1, G and I/ have the same K-bchaviour. =
Let us denote by 27 a graph isomorphic to a P; with the midpoint
replaced by a cograph /1.

Theorem 7 Let G be a I’y wilth a midpoint replaced by a cograph H. Then
G is K -converyent if and only if each connecled component of H conlains
a unwversal verter. Furthermore G is K-null if H is connected.

Proof Without loss of generality, we may assume replacing the vertex vs
“ with a cograph //. The vertex »s dominates vertex v,. Then Py is a strong
retract of . Then G has the same K-behaviour of P by Theorem 1.
Hence the proof (ollows from Lemma 4. |

Theorem 8 let G be a Ps with the p-end-vertices replaced by cographs.
Then G is K-convergent if und only if each connecled component of the
cographs H,, and H,, has a universal vertez.

Proof Let G be isomorphic to P; with the p-end-vertices v, and vs re-
placed by the cographs /1, and H,,. Let Hy,, = H} UHZ U---UH and
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Figure 5: The graphs Re and Ry

Hyy = HILUHZ U---UH. Let us assume that each connected component
of H,, and I1,, contains a universal vertex. Let u}, 1 < i < ¢1, and ug, 1<
J < gs, be the universal vertices of the connected components of H,, and
H,, respectively. Then Glus, vy, va, ul,..., ul' ul, u, ..., ud®] is a strong
retract of G. The only triangles of Glvg, va,va, ul, ... ul',ud,ud, ... ud®
are of the form v3,u},ul, 1 <1< q1, 1 <j < gs. For each of the above tri-
angles, the extended triangle is Glug, u}, ..., uf,u},u2,... ) that con-
tains the universal vertex vs. Then, by Theorem 3, Glvz, v3, v, ul, ..., u,
ud,u?, ..., ud’) is clique-Helly and therefore K-convergent. Then G is also
K-convergent by Theorem 1.

Otherwise at least one connected component of either H,, or H,,, say
ol H,,, does not contain a universal vertex. By Lemma 2 we can retract
each I-I,';l , 1 <1< ¢, to a single vertex v;, and by Lemma 3 we can retract
Hy, 10 v;. Then v; dominates vz and ({v1} U {v2}) + ({va} U H,,) is a
retract of G isomorphic to a Py with the midpoint replaced by the cograph
H={v}ull,.

By Lemma 4, P7 is K-divergent. Ilence, by Theorem 2, G is also K-
divergent. u

In the following theorems we will assume, for the cases of Pg and Rg,
that the additional vertex present is the vertex y.

Theorem 9 let G be a Rg with the p-end-vertices replaced by cographs.
Then G is K-convergent if and only if . or Hy has a universal verter.

Proof Let G be isomorphic Lo T2g (see Figure 5) with the p-end-vertices
vs and y replaced by the cographs //,, and H,. The vertex v; dominates
the vertex v3. Then the graph Ko+ ((/1y, + H,) U {v4}) is a strong retract
of G isomorphic to a 2§ with the midpoint replaced by the cograph A =
(Hus + Hy) U {v4}. By Lemma 4, P is K-convergent if and only if each
connected component of H contains a universal vertex, that happens if
and only if either H,, or f,, contains a universal vertex. By Theorem 1,
G behaves like £3. |
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Theorem 10 Let G be a Ry with the p-end-vertices replaced by cographs.
Then G is K-convergenl.

Proof The p-end-vertices arc = and y (see Figure 5). The vertex v,
dominates every vertex of My and the vertex vs dominates every vertex
of Hy. Then by Theorem 1 G behaves like a Ps and it is therefore K-
convergent by Lemma 5. .

Theorem 11 Let G be a spiked p-chain Pg with the p-end-vertices replaced
by cographs. Then G is K-convergent if and only if H,, has a universal
verter.

Proof The p-end-vertices are v, vg and y. If H,, contains a universal
vertex ug, then it dominates ¥4 and every vertex of Hy,, /1, and after their
deletion v3 dominates every vertex of /1,,,. Hence K2, is a K-convergent
strong retract of & and by Theorem 1, G is also K-convergent. Otherwise
we can retract fy, to a single vertex v, then »; dominates vs and Ko+
((Hyg + (Hy U {va})) U {vs}) is a retract of G isomorphic to a Py with the
midpoint replaced by the cograph Il = (Hy, + (Hy U {va})) U {vs}. Since
H.,, does not. contain a universal vertex /7 has a connected component that
is a parallel decomposable serial graph. By Lemma 4, P3 is K-divergent.
Hence, by Theorem 2, ¢ is also K-divergent. [ ]

Theorem 12 Lel C be a spiked p-chain Py, k > 7, with the p-end-vertices
replaced by cographs. Then G is K -conuergent if and only if k = 3h+1, with
h > 2 and the cographs H, and Iy have a universal vertex. Furthermore
if G is K-convergent then it is K-null.

Proof lLet G be a spiked p-chain Py, k > 7 (sce Figure 3).

If Kk = 3h+ 1, with b > 2, we must consider two cases. Both the
cographs H,, and /1, have a universal vertex, say u; and wu, respectively,
then the vertex u; dominates every vertex of H,, and Fl, and the vertex
ux dorninates every vertex of /{,, and /[,. Hence P is a K-null strong
retract of G by Lemma 5 and, by Theorem 1, G is also K-null.

At leasl one of the cographs H,, or I1,,, say f,,, does not contain a
universal vertex. By Lemma 2, we can retract f1,,, to a single vertex v; and
delete every vertex of I, since they are dominated vertices. After, we can
delete one after the other the vertices vy, 1= 1,2, ..., h, with A = |_-3’5] and
every vertex of [, since each one of them becomes a dominated vertex.
Then K9 o 9+ I, is a retract of G. Since H,, does not contain a

N s’

h
universal vertex it is either a disconnected graph or a parallel decomposable
scrial graph. I /1, is a disconnected graph, by Lemma 2, we can retract
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each component to a single vertex and, by Lemma 3, we obtain a K as a

retract of H,,. If H,,_ is a parallel decomposable serial graph, in the same

way we can retract cach parallel module to a K2 obtaining a K-divergent

retract K9 o o with h’ > 3. Hence, by Theorem 2, G is K-divergent.
N o’

If k = 3k with h > 3 or k = 3h+2, with & > 2, by Lemma 2
and Lemma 3, we can retract I, and H,, to a single vertex v; and v
respectively. Then the vertex vy dominates every vertex of A, and the
vertex vg dominates every vertex of I7,. Hence P is a K-divergent retract
of G and by Theorem 2, G is also K-divergent. [ ]

Finally, we note that the characterization given in the above theorems
leads to a linear time algorithm for deciding the K-behaviour of any p-tree.
In fact, it is known that a p-tree can be recognized in linear time [2] and
the conditions of the above theorems can also be tested in linear time.
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