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Abstract
Let D = (V, E) be a primitive, minimally strong digraph. In 1982,
J. A. Ross studied the exponent of D and obtained that exp(D) <
n + s(n — 3), where s is the length of a shortest circuit in D([7]). In
this paper, the k-exponent of D is studied. Our principle result is
that
k+1+3(n-3), if 1<k<s,
expD(k)S{ k+ s(n—3), if s+1<k<n,
with equality if and only if D isomorphic to the digraph D, with
vertex set V(Ds,n) = {v1,v2,...,un} and arcset E(Ds n) = {(vi, vi41) :
1<i<n-1}U{(vs,01), (vn,v2)}. If (5,n—1) # 1, then
k+1+s(n-=-3), if 1<k<s,
expD(k)<{ k + s(n—3), if s+1<k<mn,
and if (s,n — 1) = 1, then D, is a primitive, minimally strong
digraph on n vertices with the k-exponent
[ k+14+s8(n-3), if 1<k<s,
expD(k)—{ k + s(n - 3), if s+1<k<n
Moreover, We provide a new proof of Theorem 1 in [6] and Theorem
2 in [14] by applying this result.

*Research Supported by the National Natural Science Foundation of China
(10471152) and the Natural Science Foundation of Guangdong Province(04009801).

tE-mail: huyahui@mail.csu.edu.cn

{E-mail: mcsypz@zsu.edu.cn

SE-mail: wjliu@mail.csu.edu.cn

ARS COMBINATORIA 83(2007), pp. 47-63



AMS Classification: 05C20; 05C50; 15A33
Keywords: Primitive minimally strong digraph; Primitive nearly reducible
matrix; k-exponent

1 Introduction

Exponents of primitive, nearly reducible matrices have been studied
in [3, 5, 7, 9, 11, 13]. In 1990, from the background of a memoryless
communication system, R. A. Brualdi and B. L. Liu ([2]) generalized the
concept of exponent for a primitive matrices(or a primitive digraph) and
introduced the concept of k-exponent. In this paper, we study the k-
exponents of primitive, nearly reducible matrices. The definitions of irre-
ducible matrices, nearly reducible matrices, primitive matrices and their
exponents as well as the definitions of strong digraphs, minimally strong
digraphs, primitive digraphs and their exponents can be found in [3] and
[7). For any n x n nonnegative matrix A, we define its associated digraph
D(A) = (V, E) to be the digraph with vertex set V = {v;,vs,...,v,} and
arc set E = {(vi,v;) : ai; > 0}. Clearly D(A) depends only on the zero-
nonzero pattern of A. It is well known that with this correspondence of
matrices and digraphs, we have the following results: A irreducible <=
D(A) strong, A nearly reducible <= D(A) minimally strong, A primitive
<= D(A) primitive and in this case A and D(A) have the same k-exponent
exp4(k) = expp(a)(k) (which we shall define later). So we can use the
graph theoretical language to formulate and prove our results.

Let D = (V, E) denote a digraph with n vertices. A walk 7 of length p
from u to v in D is a sequence of vertices u, u1, ..., up = v and a sequence
of arcs (u, u1), (v1,u2), ..., (4p-1,v), Where the vertices and arcs need not
to be distinct, and denoted by m = (u, 3, ..., up—1, v). The initial vertex
of m is u, the terminal vertex is v, and u, ..., up-1 are the internal vertices
of m. If u = v, then 7 is a circuit (or a closed walk). A circuit whose length
is 1 is called a loop. A circuit 7 is elementary if the vertices are distinct
except for u = v. A path is a walk with distinct vertices.

We recall that a digraph D is primitive if there exists an integer k > 0
such that for all ordered pairs of vertices v;,v; € V, there exists a walk of
length k from v; to v; in D, and the least such k is called the exponent of
D, denoted by exp(D). We know that a digraph D is primitive if and only
if D is strongly connected and the greatest common divisor of the lengths
of its elementary circuits is 1.

Let D = (V,E) be a primitive digraph with n vertices vy, vs,...,vn.
For any v;, v; € V, let expp(v;,v;) := the smallest integer p such that
there is a walk of length ¢ from v; to v; for each integer t > p. Clearly
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exp(D) = max{expp(ui,v;) : ui,v; € V}. Let the exponent of vertex v; be
defined by expp(v;) := max{expp(vi,v;) : v; € V}i =1,2,...,n). Then
expp(v;) is the smallest integer p such that there is a walk of length p from
v; to each vertex of D. It follows also that exp(D) = max{expp(u;): u; €
V'}. We choose to order the vertices of D in such a way that expp(vi,) <
expp(vi;) < -+ < expp(vi, ), and we call the number expp(v;, ) the k-point
exponent of D (the k-exponent for short), which is denoted by expp(k).
Clearly exp(D) = expp(n).

Let D = (V, E) be a primitive, minimally strong digraph with n ver-
tices (PMSD,). We define exp™(n) = max{expp(n) : D € PMSD,}
and exp™(n, k) = max{expp(k) : D € PMSD,}(k = 1,2,...,n). Clearly
exp™(n,n) = exp™(n). In 1982, J. A. Ross [7, Theorem 4.9] obtained that
expp(n) € n+ s(n —3), where s is the length of a shortest circuit in D. In
1999, B. L. Liu obtained

Theorem A ([6], Theorem 1)

n2-5n+7+k if 1<k<n-2
exp™(n, k) = ¢ n?—4n+5, if k=n-1,
n? — 4n + 6, if k=n.

In 2002, B. Zhou characterized primitive, minimally strong digraphs on
n vertices whose k-exponent (1 < k < n) achieve the maximum value
exp™(n, k), and obtained

Theorem B ([14], Theorem 2) Let D be primitive, minimally strong di-
graph on n vertices, and let n > 4 and 1 < k < n. Then expp(k) =
exp™(n, k) if and only if D is isomorphic to the digraph Dy_»,, = (V, E),
where V = {v1,v2,...,v0n} and E = {(vi,vi41) : 1 < i < n-1)}U
{(vn-2,71), (vn,v2)}.

In this paper, using the same constructions employed in (7] by J. A.
Ross, we prove

Theorem 1.1 Let D be a primitive, minimally strong digraph on n ver-
tices, and let s = s(D) be the length of a shortest circuit of D. Then

k+1+sn-3), if 1<k<s,
exPD(k)S{k+s(n—3), if stl<k<n,

with equality if and only if D isomorphic to the digraph D,, = (V,E),
where vertez set V (D, ) = {v1,v2,...,vn} and arc set E(D; ) = {(vi,vit1) :
1<i<n—-1}U{(vs,v1),(vn,v2)}. If (s,n—1) # 1, then

k+14+s(n-3), if 1<k<s,
eXPD(k)<{Ic+.<>‘(n—3), if s+1<k<n.
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And if (s,n — 1) = 1, then D, is a primitive, minimally strong digraph
on n vertices with k-exponent

k) = k+14+s(n-3), if 1<k<s,
XPp,. (k) =\ k4s(n-3), if s+rl<k<n.

Moreover, we give a new proof of Theorems A and B by using Theorem
1.1.

2 Preliminaries

Let D = (V, E) be a primitive digraph for which 71,72,...,7, are the
distinct lengths of the elementary circuits. Write L(D) = {ry,72,...,7a}.
For z,y € V(D), the relative distance dp(py(z,y) from z to y is defined
to be the length of the shortest walk from z to y that meets at least one
circuit of each length r; fori =1,2,..., A

Let ay, as, . .., ax be distinct positive integers with ged(a,,a;,. . .,ax) = 1.
The Frobenius number ¢(a;,az,...,ax) is defined to be the least integer
m such that every integer with ¢ > m can be expressed as t = z;a; +
29as + - - - + zxak, where 21, 29, ..., 2 are nonnegative integers. We know
that ¢(ay,as,...,ax) is finite if ged(ay,ag,...,ax) = 1, and ¢(a;,a2) =
(a1 — 1)(az —1).

Lemma 2.1 ([10], Theorem 2.2) Let D be a digraph on n vertices, and let
L(D) = {r1,72,...,72}, then
expp(z,y) < dypy(z,y) + dL(D),

where ¢p(py = $(T1,72,...,7r). Furthermore, we have
expp(z) < max{dy(p)(z,¥) : ¥y € V} + dr(D)»

expp(n) < max{dypy(z,¥) : T,y € V} + ér(D).

An ordered pair of vertices z,y in a digraph D is said to have the unique
walk property if every walk from x to y of length at least d;(p)(z, y) consists
of some walk 7 of length dr(p)(z,y) from z to y augmented by a number
of elementary circuits each of which has a vertex in common with 7 (note
that the word "unique” in this definition refers to the length of the walk =
rather than to the walk = itself).

Lemma 2.2 Let D be a primitive digraph, L(D) = {ry,72,...,7a}. If the
ordered pair of vertices x,y has the unique walk property, then

expp(z,y) = dy(p)(z,¥) + d1(D)
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Proof. If expp(z,y) < dr(py(x,y) + dL(D), then there exists a walk from
z to y of length w = dy(py(x,y) + ¢ (p) — 1 by the definition of expp(z, y).
By the definition of unique walk property, there exist nonnegative integer
21, 29,...,2x such that ¢y (py — 1 = 2171 + 2212 + - - - + 2575, This contra-
dict that ¢r(p) is Frobenius number of r1,75,...,75. Hence expp(z,y) >
di(p)(z,y) + ér(p). By Lemma 2.1, expp(z,y) = dp(p)(z,y) + é(p). O
Lemma 2.3 ([7], Lemma 2.1) Let D = (V,E) be a minimally strong di-

graph and let X C V. If the digraph Dx induced on X is strong, then Dx
is minimally strong.

Ina strong digraph D=(V,E), each vertex = has indegree é,(z) and
outdegree 65 (z) at least one. A vertex z is called an antinode if & o(z) =
6h(z) = 1; otherw1se z is called a node. We assure that D is minimally

strong and 7 =(z, zl, ..., Tk) is a path with & > 2 whose initial and
terminal vertices are nodes and whose internal vertices are antinodes. Let-
ting Y={z,, ..., zx-1}, we say = is a branch provided Dy .y is strong.

By Lemma 2.3 we know that Dy_y is minimally strong, and we write
Dyv_y =D ~m. Wesay D ~ 7 is formed from D by removing the branch
m, or D is formed from D ~ 7 by adding the branch 7. Every minimally
strong digraph which is not an elementary circuit contains a branch.

Lemma 2.4 ([7], Corollary 2.3) Let D be a minimally strong digraph
which is not an elementary circuit, and D contains an elementary circuit
of length s. Then there exists a branch © of D such that D ~ w contains
an elementary circuit of length s.

Let D = (V,E) be a digraph and let z,y € V. We say z and y are

connected in D if there exists a sequence of vertices zg, z1,...,Z; with
k > 0 such that z = xo,y = z, and either(z;, z;11) € E or (ziy,:) € E
for i = 0,1,...,k — 1. This is clearly an equivalence relation, and the

equivalence classes are the connected components of D. We denote by D*
the digraph with vertex set V and arc set E* = {(z,y): there exists in D
a walk of length k£ from z to y}.

Let D denote a strong digraph of order n, and let A = h(D) be the
greatest common divisor of the lengths of the (elementary) circuits of D.
We call the integer h the index of cyclicity.

Lemma 2.5 ([7], Lemma 4.4) Let D be a strong digraph with inder of
cyclicity h. Then for each integer j > 1, the digraph D™ has h connected
components. Moreover, each connected component is strongly connected
and primitive. In particular, for every integer j > 1, D7 is strongly con-
nected and primitive whenever D is.

Lemma 2.6 ([7/, Lemma 4.5) Let D be a strong digraph with indez of
cyclicity h. If (zo, 1, ..., zn) is any walk in D, then for each integer j > 1,
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the vertices g, 1, ..., Th_1 are all in different connected components of
DM, and x4, z), are in the same component.

Let D be a minimally strong digraph. If a branch is removed from D,
the resulting minimally strong digraph either is an elementary circuit or
contains a branch. Thus one may continue to remove branches from the
resulting digraphs until an elementary circuit is obtained. The number
of branches which must be removed to obtain an elementary circuit is an
invariant of the digraph D ([1, 8]), and is denoted by (D).

Now let D be a minimally strong digraph which is not an elementary
circuit. Suppose there exists a sequence Dy, Dy, ..., D, = D of minimally
strong digraphs which satisfy
(2.1) Dg is an elementary circuit,

(2.2) D; is formed from D;_y(i = 1,2,...,u) by adding the branch
mi=(zy, =i, ..., z},) such that for i = 2,3,...,pu, we have zh = 2i7!
and zi =zi7! where 1< 8; <7y <kio1—1,

we say the digraph D is special. Note that for i =1,2,..., p — 1, the path
; is a branch of D; but not a branch of D. Also, we notice that u = u(D).

Let D be a minimally strong digraph which is not an elementary circuit.
Then by (7, Lemma 2.5], the number of branches of D is greater than 2,
and the number of branches of D equals 2 if and only if D is special.

Let D = (V, E) be an arbitrary digraph, andlet Y C V with Y # &. Let
y € V and form the digraph D*Y=((V -Y) U{y}, Ey), where (u,v) € Ey
if and only if one of the following holds
(2.3) w,veV-Y,and (u,v) €E.

(24) u €V -Y,v=y, and there exists w € Y such that (u,w) € E.
(2.5) u=y,veV —Y, and there exists w € Y such that (w,v) € E
We say D *Y is the contraction of Y (in D).

Lemma 2.7 ([7], Lemma 4.3) Let D be a primitive, minimally strong di-
graph. Suppose that for any branch o of D, either s(D ~ a) > s(D) or
every circuit in D ~ a has length divisible by s(D). Then D is special, and
its two branches w and p satisfy

(2.6) s(D ~ p)> s(D)

(2.7) Ewvery circuit in D ~ m has length divisible by s(D).

Moreover, D contains a unique circuit of length s(D).

Remark The proof of following Lemma 2.8 is almost the same as in [7,
Lemma 4.7]. However, the conclusion here is different from [7, Lemma 4.7].
So we include the proof here.

Lemma 2.8 Let D be a primitive special digraph with u(D) > 2, and let
s = s(D). Suppose the branches p and 7 of D satisfy (2.6) and (2.7). Then

52



(D ~ m)* has s connected components Ay, As,. .., As which are strongly
connected. Let

D*= ("'((D’*Al)*A2)~-~)*A3.
If s > 3 and D* is not an elementary circuit, then expp(1) < s(n — 3).

Proof. By (7, Lemma 4.7), it suffices to prove the last assertion. By the
proof of [7, Lemma 4.7], we have that D* and D* are strongly connected,
|Ail > 2(t=1,...,8) and A; (i = 1,...,s) contains a loop vertex in
(D ~ m)*. Let ); be the contraction of A; in D* foreachi=1,...,s. By
the proof of [7, Lemma 4.7] again, there exists a vertex z of D* which must
be an internal vertex of 7 such that 6}.(z) = 2, and the terminal vertices
of these arcs are an internal vertex z of # and ), for some r = 1,...,s.
Choose ), and Y, such that dp-(Yp,z) = min{dp-(V;,z) :i=1,...,s
and dp-(z,Y,) = min{dp-(2,Yi) : i = 1,...,s}. By the proof of [7, Lemma
4.7] again, we have that p, g, are distinct. Then in D* there exists a path
from ), to any vertex which avoids either J, or J,. Let a, € A, be a
loop vertex in (D ~ 7)° (notice that ap is also a loop vertex in D®). It
follows that in D* there exists a path from a, to any vertex which avoids
either A, or A,. Since |A;| > 2 and |A4| > 2, there exists a walk of length
n — 3 from a, to each vertex in D®. Also, there exists a walk of length
s(n — 3) from a, to each vertex in D. Hence expp(a,) < s(n — 3). Thus
expp(1l) < expplap) < s(n—3). O

Lemma 2.9 (2], Lemma 3.3)Let D be a primitive digraph with n vertices.
Then
expp(k) < expp(k—1)+1 (2<k<n),

expp(k) <expp(l)+(k—1) (1<k<n).

Lemma 2.10 (/6/, Lemma 8)

n2—5n+7+k, if 1<k<n-2,
expDn-z,n(k) = n2—4n+51 if k=n—l,
n®—4n+6 if k=mn,

where Dy_o n = (V,E) with V = {v1,v2,...,v2} and E = {(v;,vi41) : 1 <
i< n—1}U{(va=2,%), (vn,v2)}.

3 Proofs of The Theorems

First we prove Theorem 1.1.
Proof. The proof is by induction on u = pu(D).
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If £ = 1, then D is isomorphic to the digraph ﬁs,n with the vertex
set V(Ds,n) = {vy, vg, ..., vn} and the arc set E(f)s,n) = {(vi, V1) :
1<i<n- 1} U {(1)3,1)1), (vn’vp-i-l)}' Clea.rly L(Ds,n) = {S’n —p}‘ By
the condition that D is a primitive minimally strong digraph and s is the
length of the shortest circuit of D, we have that n—p >s>2,p>1 and
(s,m — p) = 1. Observe that the ordered pair of vertices v511,vn in Dgn
have unique walk property. By Lemma 2.2, we have

eprm(vs.,.l):max{eprm(vs.,.l,v): veV}

=expp,  (Vs+1,0n) =dyp, \(Vsr1,0n) + S5, )

=n-s—1+n—p+(s—-1)(n—p-1)=n+s(n—-p-2).
Clearly

expp, (vs) <expp, | (vs—1) <+ < epr._n(vp.,.l)

< expp, . (vp) = expp, . (vn) <expp, (vp-1)

=expp, (vn-1) <--- <expp,  (v1) =expp,  (Un-p+1)

<expp, (vn-p) <expp  (Un—p-1) <:- < expp, . (Vs+1)
Hence

expp(k)=expp, (k)

expp, (Vs—k+1), if 1<k<s-p,
expﬁ’:n(v -(%l)’ if k=s—-p+1,
= where [ € {1,2,...,2p}, [a] denotes
the largest integer not exceeding a.
€XPD, . (Vn-ktss1), if s+p+1<k<n

k+p+s(n—p-2), if 1<k<s-p,
=¢ k+p—l+[H)+s(n-p-2), if k=s—p+],
k+s(n—p—2), if s+p+1<k<n
k+1+s(n-3)-(s—-1)(p—-1), if 1<k<s-p,

k+1+s(n—-38)—(s—1)(p-1)+[%!), if k=s—p+l,
where l € {1,2,...,p},

k+s(n—3)—(s-1)(p-1)+1+[%}), if k=s—p+l,
wherel € {p+1,...,2p},

k+s(n—-38)—s(p—-1) if s+p+1<k<n
< k+1+s(n-3), if 1<k<s,
=1 k+s(n-3), if s+1<k<n,

with equility if and only if p = 1, namely D & D,,. This proves the
theorem when p = 1.
Now suppose u(D) > 2, we must show that

k+ s(n—3), if 1<k<s,
exPD(k)S{k—1+s(n—3), if s+1<k<n.
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First we assure that D contains a branch 7 such that s(D ~ 7) = s(D)
and D ~ 7 is primitive. Let ! be the number of internal vertices of 7, then
we have [ > 1 since D is a minimally strong digraph. By the inductive
hypothesis, we have

‘ E+1+s(n—-1-3), if 1<k<s,
e"pbw(k)s{ms(n-z—s), if s+1<k<n-—L
Let v, (k=1,2,..., n—1) be a vertex in D ~ 7 such that expp...(k)

= eXpp..(¥i. ), then

exPD(vt'k) < €XPprr (vik) +1.

It follows that
expp(k) < max{expp(v;,):1<t <k}

< max{expp . (vi,) : 1 <t < k} + ! =expp.,(k) +1

< k+14+s(n-1-3)+1, if 1<k<s,
= k+s(n—-1-3)+1, if s+1<k<n-lI
< k+1+s(n-3)-1l(s—-1), if 1<k<s,
= k+s(n-38)—-I(s—1), if s+1<k<n-1I
<

k+s(n-3), if 1<k<s,
k-14+s(n-3), if s+1<k<n—1L

When n -1+ 1 < k < n, let v; be a vertex in D such that expp(k) =
expp(v;). Ifv; € V(D ~ ), and let k, be an integer such that expp....(k1) =
€XPp~.r(v;), then we have that ky <n—-l<n-I1+1<k, and so

expp(k) = expp(v;) < exppon(vj) +1

< ky+1+s(n-1-3)+1, if 1<k <s,
SUki4stnot=3)+1, if stl1<k <n-—I

_J RF+14+s(n-3)—Uls—-1), if 1<k <s,
T ki +s(n-3)=I(s—-1), if s+1<k<n-1!

< ki + s(n —3), if 1<k <s,
= |l ki—148(n=38), if s+1<k <n-1I

<k-1+s(n-3).
Let m = (vo,v1,v2,...,v41). Thenexpp(v1) > expp(ve) > ... > expp(u1).
For any nonnegative integer z, there exists a walk of length expp, (vi41)+2
from vertex vy to each vertex in D ~ =, hence there exists a walk of length
eXpPpar(Vi+1) +{ + z from vertex v; to each vertex in D ~ w. And more-
over, there exists a walk of length expp,.,(vi+1) + 1+t + 2 from vertex v;
to vertex v,(1 <t <!). Hence
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expp(v1) < expp.oy(Vis1) + 2l < exppar(n—1)+ 2l
<n—Il+sn—-1l-3)+2=n—-1l+s(n-3)-1Il(s-2)

<n-l+s(n-3)<k—-1+s(n-3).

Hence
expp(u) < expp(vi-1) < -+ < expp(ve) < expp(v1) Lk—1+ s(n - 3).

Thus, If v; is one of the internal vertices of 7 and expp(k) = expp(v;),
then we have

expp(k) = expp(v;) <k — 1+ s(n—3).
Therefore
expp(k) <k-1+4+s(n-3) (n—-1+1<k<n)

Hence we may assume that the removal of any branch o from D yields
a digraph D ~ a with either s(D ~ a) > s(D) or D ~ a not primitive.
By Lemma 2.4 there exists a branch 7 with s(D ~ w) = s(D), so we have
MD~7)=h>1.

First we assume that h # s, then h < s and hls, and so s/h > 2. By
Lemma 2.5, (D ~ =) has h connected components, each strongly connected
and primitive. By Lemma 2.6 , (D ~ 7)*® has at least s/h > 2 loop vertices
in each component.

Suppose that there exists some component A; of (D ~ )° containing
three loop vertices. Let £ € A; be a loop vertex of D*® and let y € A; be
an exit vertex of D?® such that dp.(z,y) is minimum. By the proof of (7,
Theorem 4.9, there exists in D* a walk of length n —3 from z to any vertex
v € V. Then there exists in D a walk of length s(n — 3) from z to any
vertex v € V. Hence expp(z) < s(n — 3). Therefore expp(1) < expp(z) <
s(n — 3). By Lemma 2.9,

- i <k<

o) <k-1+an-9) s { P o i IEEEN L

Suppose now that each component of (D ~ m)* contains exactly two
loop vertices, then D ~ 7 contains exactly one circuit of length s. Let
o = (zo, Z1, ..., Ts—1, To) be the circuit of D ~ 7 of length s. Then there
exists a vertex of o, say z,.-1, such that 6,"5~,,(z3_1) > 2 Since p(D) > 2.
By the proof of (7, Theorem 4.9], in D* there exists a walk from zo to any
vertex of length n — 3. Then in D there exists a walk from z¢ to any vertex
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of length s(n — 3). Therefore expp(1) < expp(zo) < s(n — 3). By Lemma
2.9,

k+ s(n-3), if 1<k<s,

expp(k)sk—1+s("—3)${k_1+s(n-3), if s+1<k<n

Now assume that h = s, in this case the removal of any branch a from D
yields a digraph D ~ a with either s(D ~ a) > s(D) or h(D ~ o) = s(D).
By Lemma 2.7, D is special and its branches p and = satisfy (2.6) and (2.7),
moreover, D contains a unique (elementary) circuit of length s = s(D). By
Lemma 2.6, each component of (D ~ m)* exactly contains one loop vertex.
For the remainder of this proof we shall consider D to be such a digraph.

We first suppose s > 3, and let 7 = (o, 31, ..., zx) and T = (o, ¥1,
..+, Y1), where 7 is the branch of D ~ =« which is not p, by (2.2) we have
zo=yjand zx =y; where 1 <1< j<I~1 If j —i < s—2, then the
digraph D* is not an elementary circuit by the proof of [7, Theorem 4.9}.
By Lemmas 2.8 and 2.9,

expp(k) <k —1+expp(l)<k-1+3(n-3)

< k+ s(n - 3), if 1<k<s,
=1 k—-1+s8(n-3), if s+1<k<n.

If j—i > s—1, then by the proof of (7, Theorem 4.9], in D*® there exists an
elementary circuit £ which vertex set is {%i,...,y;}U {z1, z2, ..., Tx=1},
and so for some p € {1, ..., k—1} and ¢q € {i,...,7}, there exists an
arc (zp,yq) of §&. Let A, be the connected component of (D ~ 7)* which
contains y,, and let a € A; be a loop vertex. If some arc with initial vertex
Tp has terminal vertex in V — A,, then the digraph D* is not an elementary
circuit. By Lemmas 2.8 and 2.9,

expp(k) <k —1+expp(l) <k-1+s(n—3)

<{k+s(n—3), if 1<k<s,

k—14+s(n-3), if s+1<k<n.

If all arcs of D* with initial vertex z, have terminal vertex in A;. Then by
the proof of [7, Theorem 4.9], we have that max{dp.(a,z):z € V} < n-3.
Since a € A, is a loop vertex, in D* there exists a walk of length n — 3 from
a to any vertex z € V. Furthermore in D there exists a walk of length
s(n — 3) from a to any vertex z € V. Therefore, expp(a) < s(n — 3). By
Lemma 2.9

expp(k) <k —1+expp(l) <k—1+4+exppla) <k-1+s(n-23)
<{k+s(n—3), if 1<k<s,

k-1+s(n-3), if s+1<k<n.
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The proof of the theorem when s > 3 is now complete.
Suppose now s = 2. Then, in the sense of isomorphism, the special

digraph D = (V, E) with V = U{xl,xz,... Tiirr - ,xr.“,..,m};‘,_l}

U{a,b} and E = L“J kul{(zj,zﬁl )} U{(a,b), (b,a)}, where zi(1 < i < p,
i=1 j=0

1<j<k,—-1), a,b are distinct vertices, |V| = n; and z} = z} = q,
T = zi’:l, oy, =257, 1< s S S kiop—1fori=2...,p Let
p = (a,b,a) and m; = (z},x},..., 2} )i =1,2,...,u). Thenp and T=m,
are two branches of D, and satisfy the following (3.1) and (3.2):
(31) s(D~p)>2
(3.2) Length of any circuit in D ~ 7 is an even integer, and p is a unique
circuit of length 2 in D.

We want to show that

2n — 5, if k=1,
expp(k) £ { 2n—4, if k=2,
k—14+2n-3), if 3<k<n.

For each i = 1,..., u, we use p; to denote the length of the elementary
circuit in D containing 7;. By (3.2) and D primitive, we have that 2|p;(i =
1,2,...,u#—1) and p, is an odd integer, and so ¢.(p) = ¢(2,p,) = p. — 1.
By Lemma 2.1, for any vertices z,y € V(D), we have

expp(z,vy) < dpp)(z,y) + dr(p) = dr(p)(Z,y) + P — 1.

Let ¢; and I; be the .number of internal vertices in paths (z}, =i, ...,
sm) and (a:r‘H, cos Zy,) (1=1,2, ..., p—1) respectively. Let w; be the
number of vertices in path ("’smv . T‘i+1) (t=1,2,...,u—1), and let
w be the number of internal vertlces in T =m,. Put X = {z, zb, ...,

1} It is easy to see that 2 (ti+li+tw)+w+2=n,and w > 1since

D is a minimally strong dlgraph
We first estimate the exponent expp(a) of the vertex a. By Lemma 2.1,

expp(a) < max{dy(p)(a,v):vE€V}+p,—1

Clearly,
max{dy(p)(a,v) : v € X} = dyp)(a, 7, ),
and
d a,xl —1h if t 2 19
max{d(p)(a,v) :v €V — X, } = { digga, b, ! it 4 =0
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Since .
.
dy(py(a, 1‘;:“_1) ST itlitw)+w
i=1

=(n-w-2)+w=n-2,

p=1 p—2
dypy(@zl,) = % (ti+hitw)+ L witl+th
i=1 i=1

pn=2
=(n-w=-2)+) witt+1,

i=1
p—-1 p=2
dppy(a,b) = S+l twi)+ Zl w; +2
i=1 i=

n—2
=(n—w—2)+Zw,~+2,

i=1
Pp = Wy—1 +w and w > 1, then
dypy(e,7h, ) +pu—1=n-2+wu1+w—1
= (n - 3) + (wp—l +w)
u—1 p-1 p—2
=(n-3)+n-2) (T ti+ L L+ 3 w)
=1 i=1 i=1
< 2n -5, ' :
p—=1
drpy(azl, ) +pu—1=(n—-2)+ ; wi +t1

<m-2)+(n-2-w)
<(n—-2)+(n-3)=2n-5.

-1
droy(@b) +pu—1= (1= 2)+ 5 wi+1

i=1

= (n— 1)+”ilwi
i=1
=(n-— 1)+(n—2—w)—“z_:l(ti + ;).
i=1

p—1
If Y, (t:i+1)2>1,then

i=1

p—1
(n—2-w)— Y (ti+h)<n—-4.

i=1
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p—=1

If > +6L)=0,thenwi(¢=1,...,p—1)isodd since p; : =1, ...,
i=1

p — 1) are even, and w is even since p, is odd. It follows that

-1
(n—2—w)—#z:(t,~+li)$n—4.

i=1

Therefore
dL(D)(a.,b) +p,‘ -1<L 2n—-5

Consequently
expp(a) < max{dypy(e,v):vE€V}+p, —1<2n-5.

Now we estimate the exponent expp(b) of the vertex b. Clearly, For
any vertex v € V, dr(p)(b,v) = dy(p)y(a,v) + 1. Hence

expp(b) =expp(a) +1 < 2n - 4.

Finally, we estimate the exponent expp(z},) of the vertex z},
Since
max{dy(p)(zl,,v) :v € V - X, and v # b}
-1 u=2
< E(tz +litw)+ Y wi+max{ly,... syt e} 4,

i=l i=1

then
max{dy(p)(z!,,v) :v€V - X, andv#b} +p, — 1

p=-1
< E(t,+l +w,)+Zw,+w+max{ll, a1yt a1}

i=1 i=1

Shr-w-2)+(n-2)=2n-4-w<2n-5.

Since
dL(D)(:I},l.z,b) Zl +Zt,+2w.+ 2:2(0,‘}'2
i=
=n-w-2)+ Ew,-+2—t1
e
and '
u—1 w1
w21, z L; + 2 titw 21,
i=1 i=1
then ' '

dy(py(xl,,b) +pu— 1



pn—2
=n-w-2)+ Y wit+2-Hh+wu1tw-—1

=2
u=—1
=(n-1+ Y wi—t
=
! p—1 p=1
=(n—1)+(n—w—2)—(Zl,-+ z titw)—t
i=1 i=1

<2n-5.
Notice that
max{dL(D)(xiz,v) v € Xy} = dL(D)(mlz,mﬁ“_l)

p—1
S Y ti+lhtw)+w+l
i=1
=n-w-2)+w+l=n-1,
hence
max{dy(p)(z},,v) : v € X} +pu — 1
<n—l+4wyg+w-1
<(n-1)+(n-2)-1=2n-4.
Therefore,
expp(zl,) <2n—4.
It follows that
expp(1) < expp(a) < 2n -5,
expp(2) < max{expp(a),expp(b)} < 2n -4,
expp(3) < max{expp(a),expp(b),expp(zl,)} < 2n—4.
By Lemma 2.9,
expp(k) < 1+expp(k—1) <--- < k—8+expp(3)
<k-34+2n-4=k—-1+2(n-3),for3<k<n
Thus we complete the proof of Theorem 1.1. O
As an application of Theorem 1.1, now we give a new proof of Theorems
A and B.
Proof. Let D € PMSD,, then (D) <n — 2. By Theorem 1.1,

expp(n) <n+s(n-3)<n+(n—-2)(n-3)=n>-4n+6
with equality if and only if D is isomorphic to D,_2 5, and
expp(n—=1)<(n-1)+s(n-3) < (n—1)+(n—-2)(n—3) =n?2—-4n+5

with equality if and only if D is isomorphic to D,_3 ».
It follows that Theorems A and B hold when k =n — 1 and k = n.
Suppose that 1 < k < n—2. If s = n — 2, then D is isomorphic to
D;_2,. By Lemma 2.10,
expp(k) =expp, _, (k) =n?-5n+T7+k.
If s <n — 3, then by Theorem 1.1,

k+14+s(n-3), if 1<k<s,
exPD(k)S{k+s(n—3), f stl<k<n—2
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k+14+(n-3)(n-3), if 1<k<s,
k+(n—-3)(n-23), if s+1<k<n-—2

s+1+(n-3)(n-3), if 1<k<s,
n—2+Mn-3)n-3), if s+1<k<n-2

<{'n—3+1-!-(71—-3)(71—3), if 1<k<s,

=1 n2-5n+17, if s+1<k<n-2
=n?-5n+7<n?-5n+T7+k.

Therefore Theorems A and B hold when 1 < k<n-2.

The proof of Theorems A and B is complete. [
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