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Abstract

We develop a new type of a vertex labeling of graphs, namely 2n-
cyclic blended labeling, which is a generalization of some previously
known labelings. We prove that a graph with this labeling factorizes
the complete graph on 2nk vertices, where k is odd and n, &k > 1.

1 Introduction

Let H and G be simple graphs. By a decomposition of a graph H on
n vertices we mean a family of pairwise edge disjoint subgraphs G =
{Go,G1,...,G,)} such that every edge of H belongs to a member of G.
If each subgraph G, is isomorphic to a graph G we speak about a G-
decomposition of H. If G has exactly n vertices and none of them is
isolated, then G is a factor of H and such a G-decomposition is called
a G-factorization. The decomposition is cyclic if there exists an ordering
(z1,22,...,2,) of the vertices of H and isomorphisms ¢, : Go — G,
r=0,1,2,...,s, such that ¢.(z;) = 24, for each i = 1,2,...,n. Sub-
scripts are taken modulo n.

Many papers were written on graph decompositions. Decompositions of
complete graphs and complete bipartite graphs received special attention.
However, most of these papers deal with decompositions into isomorphic
subgraphs of smaller order.

Not that much is known about decompositions of complete graphs into
isomorphic spanning trees. An obvious necessary condition for the existence
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of a G-decomposition of K, is that the number of edges of G divides the
number of edges of K,,. It follows that a factorization of a complete graph
with an odd number of vertices into spanning trees is impossible. Therefore,
we deal only with complete graphs Ka, with an even number of vertices.
Another easily observed necessary condition for the existence of a spanning
tree factorization of K, is that the largest degree of a vertex of the spanning
tree is at most n. This condition is called the degree condilion in [6].

It is a well known fact that Ko, can be factorized into hamiltonian
paths P,,. It is also easy to observe that a cyclic factorization of K3, into
symmetric double stars is possible. By a symmetric double star we mean
two stars K -1 with central vertices connected by an edge. Until recently,
almost nothing was published about other classes of spanning trees.

The first general result is due to P. Eldergill (1]. He introduced a method
for a cyclic decomposition of Ka, into symmetric trees. By a symmelric
tree he means a tree symmetric with respect to an edge. That is, a tree with
an automorphisimn v and an edge (z,y) such that ¥(z) = y and Y(y) = z.

Eldergill’s method is, similarly to many other methods of decomposition,
based on a graph labeling. A labeling of a graph G with at most n vertices
is usually defined as an injection X from the vertex set V(G) into a subset
of the set {0,1,2,...,2n}. The vertex labels then induce the edge labels in
some way. There are many different ways how such an edge label can be
defined. However, for the purpose of a graph decomposition the edge label
is usually defined naturally as the “length” of the edge. An exact definition
is given below.

Two important types of vertex labelings were introduced in 1960’s by A.
Rosa. In 7] he defined a p-labeling and a graceful labeling, which he used for
decompositions of Ka, 4 into 2n+1 copies of a graph with n edges. Graceful
or p-labelings were often used to construct new types of labelings which
in some sense generalize their properties. Among them are: p-symmetric
graceful labeling introduced in {1} by P. Eldergill, allowing decomposition
of Ks, into symmetric graphs, or a blended p-labeling introduced by the
first author [3]. A blended p-labeling exists for a wider class of graphs than
symmetric trees and guarantces a decomposition of Kqx42. We will develop
their further generalization.

The main goal of this paper is to investigate methods for factorizations
of K, where k is not a power of 2. We will show that these methods allow
factorizations of K into spanning trees with diameter 4, as opposed to
the methods known so far.
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2 Known methods and results

As we already mentioned, two fundamental types of labelings are the p-
labeling and the graceful labeling (also called $-labeling) defined by A.
Rosa.

Definition 2.1 Let G be a graph with n edges and the vertex set
V(G) and let X be an injection A : V(G) — S where S is a subset
of the set {0,1,2,...,2n}. The length of an edge (z,y) is defined as
{(z,y) = min{|A(z) = A@@)|, 2n + 1 = |A(x) — AM(y)|}. If the set of all lengths
of n edges is equal to {1,2,...,n} and S C {0,1,2,...,2n}, then X is a
p-labeling; if S C {0,1,2,...,n} instead, then XA is a graceful labeling.
Every graceful labeling is indeed also a p-labeling, and a graph which

admits a graceful labeling is called graceful.
In 1967 Rosa proved the following theorem.

Theorem 2.2 (A. Rosa) If a graph G with n edges has a p-labeling, then
there is a cyclic G-decomposition of Kayyy inlo 2n+ 1 copies of G.

The idea of the prool is the following. We can unify the vertices
of Kanyy with the elements of Zs,4: (the additive group of integers
modulo 2n + 1). Computing the lengths of the edges as in the def-
inition of the p-labeling, we have 2n + 1 edges of each length i for
i = 1,2,...,n. Since in T there is exactly one edge of each length, we
can rotate T in Kopqy to oblain a T-decomposition.

We state here the notions related to decomposition of Ka, into sym-
metric graphs. To simplify our notation we will from now on occasionally
unify a vertex with its label. It means that rather than saying “the vertex
z such that A(z) = i", we will say just “the vertex i".

Definition 2.3 A connected graph G with an edge (2,y) (called a bridge)
is symmetric if there is an antomorphism ¢ of G such that ¥(z) = y and
Y(y) = 2. The isomorphic components of G — (x,y) are called banks and
denoted by H,H', respectively. A labeling of a symmelric graph G with
2n +1 edges and banks H, H' is p-symmetric graceful if H has a p-labeling
and (i) = i +n (mod 2n) for each vertez i in H. A labeling of a symmet-
ric graph G with 2n — 1 edges is symmetric graceful if it is p-symmetric
graceful and the bank H is moreover graceful. A graph which admits a
p-symmetric graceful labeling or a symmetric graceful labeling is called p-
symmetric graceful or symmetric graceful, respectively.

The following theorem was proved by Eldergill for symmetric trees.
Since the assumption that the graph must be acyclic was never used, the
theorem is true for symmetric graphs in general.
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Theorem 2.4 (Eldergill) Let G be a symmetric graph with 2n — 1 edges.
Then there exists a cyclic G-decomposilion of Ka, if and only if G is
p-symmetric graceful.

One can easily observe that the construction of a p-symmetric graceful
labeling is based on the p-labeling or graceful labeling defined by A. Rosa.
In a graph with n — 1 edges that has either a graceful or a p-labeling there
is one edge of each length 1,2,...,n—1, while in a graph with 2n—1 edges,
which is symmetric graceful or p-syminetric graceful there are two edges of
each length 1,2,...,n—1 and one symmetric edge of the maximum length n.
Since any graceful graph with n —1 edges yiclds a symmetric graceful graph
with 2n—1 edges, one can find an infinite class of symmetric graceful graphs
whenever an infinite class of graceful graphs is known. Eldergill’s method
is very restrictive, allowing decoimnpositions only into symmetric graphs,
which all have an odd diammeter. To answer the question about spanning
trees with more general structure we need a more powerful decomposition
method.

To find such a method, the first author defined a blended p-labeling (3).
The existence of this labeling for a graph G guarantees a G-decomposition
of K442. Such a decomposition is called bi-cyclic. He also constructed
several classes of non-symmetric trees that admit a blended p-labeling. As
our method is just a straightforward extension of the blended p-labeling,
we state its definition here.

Definition 2.5 Let G be a graph with 1k + 1 edges, V(G) = Vo U 14,
VoanVi =0, and |[Vo| = |V} = 2k + 1. Let A be an injection, X : V; —
{0i,1;,...,(2k);},i=0,1.
The pure length of an edge (2;,y;) with z;,y; € V;,i € {0,1} is defined
as follows: If M2;) = a; and My;) = b;, then U;i(2;, ;) = minf{|a - b, 2k +
1-ja—0b|} fori = 0,1 and the mixed length of an edge (20,y,) with A(zp) =
ag and AM(y1) = by, asloy(xo,y)) = b—amod (2k + 1) for zq € Vo, 3y, € V).
Then G has a blended p-labeling or just blended labeling for short if
(?) {lii(-'l’i,yi)l(-'l"i,yi) € E(G)} = {1) 23 o ak} fori = 0’ 1
() {lor(zo,m)l(z0, ;) € E(G)} = {0,1,...,2k}.

A graph G with a blended labeling can be split into three subgraphs.
Two subgraphs, Hy and H,, are induced on the vertices of the sets V5 and
Wi, respectively, and contain the edges of the pure lengths lpg and 1;;. We
call these edges pure edges. The third subgraph is the bipartite graph Ho;
with the partite sets Vp, 1} and edges of mixed length lp,. We call these
edges mized edges. If a blended labeling is restricted to these three sub-
graphs, we can observe that the labeling on Hy and H) is nothing else than
the usual p-labeling, which guarantees cyclic decompositions of the com-
plete graphs Koy, on the vertices of Vg and ¥, respectively. The labeling
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of Hy, is called in [3] and elsewhere a bipartite p-labeling. A bipartite p-
labeling of a graph Hp; with 2k + 1 edges, one of each mixed length, allows
a decomposition of the complete bipartite graph Ka41,2441 into 2k+1 iso-
morphic copies of Hy;, when the vertices in each of the partite sets V5, V)
rotate concurrently.

Vo 12
00 -0 01
1 1;
2 2
Ho 30 3] Hl
4o Ho, 4

Figure 2.1: Blended labeling of a tree on 10 vertices

However, a blended p-labeling can only be used for graphs with 4k + 2
vertices. The method which allows decomnpositions of K, into non-
symmetric graphs is based on a switching blended labeling. This is a modi-
fication of the blended labeling and was defined by the first author and M.
Kubesa in [4]. Switching blended labeling is still too restrictive, since it
requires a specific “strong” type of automorphisin, which does not exist for
certain classes of trees. Later we show that trees with diameter 4 do not
allow a switching blended labeling at all.

Therefore, we develop a new technique for decompositions of complete
graphs with an even number of vertices. This technique allows decomposi-
tions of the complete graphs K, where n,k > 1 and k is odd.

3 Decomposition of K,

Here we give a method of [actorization of the complete graph on 2nk ver-
tices into n isomorphic “locally dense” factors. The method is based on
Eldergill’s cyclic factorization of K, into symmetric trees. First we take
a tree T on 2n vertices with a symmetric graceful labeling, which allows
a factorization of Ks,. Then we blow up this tree to construct a bigger
graph U on 2nk vertices (for any k& > 1), which is a connected factor of
Kani and show that there is a U-factorization of Ka,i. In the next section
we develop a method of decomposition of U into k isomorphic copies of a
graph G (for k¥ odd). Finally, by decomposing each copy of the graph U
into k isomorphic copies of G we obtain a G-decomposition of Kay; into
nk isomorphic copies of G.

The construction of the graph U = U(T, s; k) can be described in two
steps. First we obtain the graph T[K}] by blowing up each vertex i of the
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tree T into the set V; with k vertices and each edge (i,j) of T into all k2
edges between the vertices of the scts V; and V;. Then we choose a vertex
s in T and its symmetric image 1(8) = 8 + n and add all edges into the
corresponding sets V; and V4, so that we have two complete graphs I;
in addition to the edges of T[K)]. For convenience we use the following
notation: Kv, denotes the complete graph on the vertices of the vertex set
Vi and Ky, v; denotes the complete bipartite graph on the vertices of the
partite sets V;, V;.

Definition 3.1 Let T be a symmelric tree on 2n verlices with a
p-symmetric graceful labeling. We define the graph U(T, s; k) with the un-
derlying tree T, where 8 is the label of any vertez of T,0 <8< n—1, o
have the vertex set

2n-1
VU@T,sk) = |J Vi Vil =k VinV; =0fori#j,

i=0
and the edge sel

E({U(T,s;k)) = {(xy)|zeVi,yeV; A(i,j) € E(T)}
U {(z,9)lz,y € Vi} U {(z,9)lz,y € Vagn}-

In other words, the graph U(T, s; k) is a union of 2n — 1 bipartite graphs
Ky, v; on the vertices of the scts V5, V; whenever i is adjacent to j in T
and two complete graphs Ky, and Ky, on the vertices of the vertex sets
Vi, Vagn for the chosen vertex with label s in T. Each vertex set V; is of
size k and the subscript 7 is the label of the corresponding vertex in T'.

It is easy to observe that Ka,; can be decomnposed into n isomor-
phic copies of U(T, s; k) (see Figure 3.1) and we will give a proof of this
fact. One can also notice that similar approach can be used for other
G-decompositions of K»,. For instance, we can use similar approach when-
ever there is a bi-cyclic G-decomposition of the complete graph Ko, into n
copies of G. Recall that bi-cyclic decompositions are based on blended label-
ings. Even more general types of decomposition can be probably used—one
must be just carclul about the choice of the two particular vertices in G
that correspond to the complete graphs Ky in U.

Lemma 3.2 Let T be a tree on 2n verlices wilh a p-symmelric graceful
labeling. Then there is a U(T, s; k)-factorization of Koy into n isomorphic
copies of U(T, s; k) for any k> 1.

Proof. When T is a p-symmetric graceful tree on 2n vertices, then
according to Theorem 2.4 there is a cyclic T-factorization of K5, with
the factors Ty, T},...,T-1. By Definition 3.1, the graph U(T, s; k) with
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the underlying tree T is a connected factor of Ka,x. From each copy
of T we obtain an isomorphic copy of U(T, s;k). We may assume that
T = Tp and construct the graph U(Ty, s; k). Every other factor T, for
r=1,2,...,n =1 is obtained by a cyclic permutation of the labels on
the vertices of Ty. Using the same permutations for the subscripts of the
sets V; of U(Th, s; k), we get the remaining factors U(Ty, s + k). To-
gether U(To, s; k), U(Ty,s+1;k),...,U(Ty -1, 8+n—1;k) form a U(T, s; k)-
factorization. We just nced to check that each edge of Kapni belongs to
exactly one copy of U(T, s; k).

The vertices of the complete graph K., can be split into 2n sets V; for
1=0,1,...,2n — 1 with k vertices in each of them. Then we can view the
edge set of Ko, as a union of the edge sets of n(2n — 1) complete bipartite
graphs Kv; v;, i # j and 2n complete graphs Ky; on k vertices of each of
the sets V;.

Since there is a T-factorization of K,, each edge (i, 7) of Ka, belongs to
exactly one factor T,.. By the definition of U(T, s; k), the edge (i, j) € E(T})
corresponds to the complete bipartite graph Ky, v; in U(T,,s+r; k). Then
each complete bipartite graph Ky 1; also helongs to exactly one factor of
Kauk, in particular, to U(T,, s + r; k).

Now we check the complete graphs Ky, for i = 0,1,...,2n — 1. In
Tp the vertex s and its symmetric image s + »n (inod 2n) are chosen to
add Ky, and K-, into U(Tp, s; k). In T, the corresponding vertices are
() = s+ 7 (nod2n) and ¢,(s + 1) = s + n + r (inod 2n). So we have
two different vertices in each T, for r =0,1,...,n — 1.

Suppose now that while makiug copies of T we obtain the same image
of the vertex s or ¢ + n in two dillerent factors T, and T;. Because our T-
factorization is cyclic, we can assume that r =0 and ¢t € {1,2,...,n - 1}.
Firstly, let

(i)
d(s) = do(s) =y, then
s+t = s (mod2n), and
. = 0,

which contradicts our asswnption that ¢ # 0.

(ii) Secondly, if

du(s+n) = ¢o(s+n)=s+n, then
s+n+t = s+ n (mod2n), and
I = 0

we again get the same contradiction.
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(iii) Finally, if

du(s+n) = ¢o(s)=s, then
s+n+t = s(mod2n), and
n+t = 0(mod2n), or
t = n,

which is impossible, since we have assumed that ¢ € {1,2,...,n—1}.

Therefore, the images of the vertices s and s + n appear in 2n different
vertices of Ko, and each of them is in exactly one factor T,.. This means
that also each corresponding complete graph Ky; fori =0,1,...,2n—11is
in exactly one factor U(T5, s; k).

Since all complete graphs Ky, and all complete bipartite graphs
Ky, v; are pairwise edge disjoint, then also each edge of Kan is in ex-
actly one U(T;, s; k), and so U(To, s; k), U(T1, 8; k),...,U(Tn-1,8: k) give a

U(T, s; k)-factorization of Kang. 0
Underlying tree T = P, ;—g—i—g
3 P 0 3 Pay i
Pjy-factorization of Ky I/{? S
-]
2 1 2 1

Graph U(P,;,1;3)

U(P4oal;3)

U(Ps,1; 3)-factorization of K)a
Figure 3.1: U(T, s; k)-factorization of Koy
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4 2n-cyclic blended labeling

Now we show a decomposition of the graph U = U (T, s; k) into k isomorphic
copies of a graph G with 2nk — 1 edges, and consequently we obtain also
a G-decomposition of K, into nk isomorphic copies of G. Hence, we
need to explore the properties of a graph G that would decompose U. To
characterize such a graph G we introduce a new type of labeling.

The labeling is in fact a generalization of the blended p-labeling. The
main idea is that we split the graph U into two copies of the complete
graph K. and 2n — 1 copics of the complete bipartite graph Ky .. Each of
these graphs is then decomposed separately using known methods based on
vertex labelings. The complete graphs X are both decomposed cyclically
into k copies of a graph with (k — 1)/2 edges, which requires k to be odd.
Each complete bipartite graph K, is then decomnposed bi-cyclically into
k copies of a graph with & edges.

Definition 4.1 Let G be a graph with 2nk — 1 edges, for k odd and
k,n > 1, and the vertez set V(G) = Uiy Vi, where |Vi| = k and V;NV; = @
for i # j. Let X be an injection, X : Vi = {0;,1;,2;,...,(k = 1);}, for
1=0,1,...,2n - 1.
The mixed length of an edge (zi,y;) with M=) = a; and M(y;) = b; for
i < j is defined as
lij(xi,yj) = b—a (nod k)

for zi € Vi, y; € V; and the purc length of an edge (2:;,y;) with z;,y; €
Vi, Ma:) = a; and A(y;) = b; as

Lii(zi,y:) = min{|a = b|, k = |a = b|}.

We say that G has a 2n-cyclic blended labeling (or for short just 2n-
cyclic labeling) if there exists an underlying tree T on 2n vertices with a
p-symmetric graceful labeling such thal

(i) for each edge (i,3) € E(T)
{li.itzi, u;)(2,95) € B(G)} = {0,1,2,...,k — 1}

(#) and for some vertex s € T and its symmelric image t = s+n (inod 2n)
{lss(zs, ¥e)l(24:95) € E(G)} = {1,2,..., (k- 1)/2}, and
{lu(@e,y)l(z,3) € E(G)} = {1,2,...,(k - 1)/2}.

We notice that similarly as a graph with a blended p-labeling, a graph
G with a 2n-cyclic blended labeling can be also split into subgraphs H,
and H, on the vertices of the sets 5 and ¥; with pure cdges, and 21 — 1
subgraphs H;; for each (i, j) € E(T) with mixed edges. When a 2n-cyclic
labeling is restricted to H, and H;, we have just the usual p-labeling, while
when restricted to H;; we obtain a bipartite p-labeling.
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We will show that we can use a graph G with a 2n-cyclic labeling to find
a 2n-cyclic decomposition of the graph U. The decomposition is obtained
by permuting the vertices of U under a permutation with 2n cycles, each of
them of length k, so that the vertices of each of the sets V; rotate separately.
Then the p-labelings of the subgraphs H, and H, guarantee, according to
Theorem 2.2, a cyclic decomposition of Ky, and Ky, into k copies of Hy
and H;, respectively. Similarly, the bipartite p-labelings of subgraphs H;;
guarantee bi-cyclic decompositions of each of the complete bipartite graphs
Kv, v; into k copies of H;j.

Before we state the lemma we need to deline the notion of an 2n-cyclic
decomposition. We again unify a vertex with its label in our notation.

Definition 4.2 Let G be a graph with at most 2nk vertices such that
there exits a G-decomposition Go,G1,..., G5 of a graph U on 2nk vertices.
We say that the G-decomposition is 2n-cyclic if l.here exists an ordering
(00,10,20,..-,(k — 1), 01,11,21, .., (k — L)1, - ...t » O2n-1, 21,2201,
covs (B =1)an-1)

of the vertices of U and isomorphisms ¢, : Go — G, wherer =1,2,...,s,
such that ¢.(x;) = (¢ + r); (nodk) for cvery 2 = 0,1,2,...,k—1 and
1=0,1,2,...,2n ~ 1.

Now we are ready to prove the [ollowing lemma.

Lemma 4.3 Let a graph G with 2nk — 1 edges, for k odd and
k,n > 1, have a 2n-cyclic blended labeling. Then there exists e 2n-cyclic
G -decomposition of U(T, s; k) into k copics of G.

Proof. Let a graph U = U(T, s; k) have the vertex set V(U) = Uf;'g v,
where V,NV; = B for i # j and Vi = {0;,1;,2;,...,(k - 1);}, i =
0,1,2,...,2n-1.

Suppose that G = Gg and define the graphs G, Ga,...,Gg—1, all with
the vertex sets V(G;) = V(U(T, s; k)) to be isomnorphic to G. For each G,
where r =1,2,...,k — 1, let there be an isomorphism ¢, : Go — G, such
that ¢,(z;) = (x + r); (inodk) for any x; € Gp.

The lengths of the edges are preserved by the automorphisms ¢,. In
particular, if ¢ € {s,s +n} and (2, (2 + a);) is an edge of a pure length a,
1< a < XL in Gy, then ((z+7)y, (z+a+7),) is the edge of the pure length
ain Gy, and if (@i, (2 + b);) is an edge of a mixed length b,0 <b< k-1,
in Go, then ((z +7)i, (z +b+7);) is the edge of the mixed length bin G;.

In U we have k edges of each pure length 4y € {1,2,... 4551}, where
t € {s,s + n}, and k edges of each mixed length I;; € {0, 1 2,. -1}
for each (7,7) € T. In G we have one cdge of each pure length lu, where
t € {s,s+ n}, and one edge ol each mixed length I;; for each (i,j) € T.
While making k isomorphic copies of G we obtain k copies of edges of each
mixed and pure length.
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Suppose now that the same edge (2, (2 +a);) of the pure length {;;, = a
is in two different copies of G, G, and Gp. We can again without loss of
generality assume that r = 0. But if (2, (2 +¢),) € G, then (2, (z+a);) =
((y+p)e, (y+p+a),) for some y since cach edge of G, arises from an edge of
Go by adding p to both its endvertices. Hence, (y, (y+a);) € Go. However,
(z¢, (z+a).) is the only edge of the pure length Iy = a in G, which yields z =
y and therefore p = 0. This contradicts our assumption that G, is different
from Gj. Similarly we suppose that an edge (z;, (2 +b);) of a mixed length
l;; = bis in two different copies of G, Gy and Gy, wherep € {1,2,...,k-1}.
I (zi’ (1:+ b)J) € Gpa then (z;, (z + b)J) = ((?] +p)ia (y+p+ b)]) for some y
for the same reasons as above, and (yi, (¥ + b);) € Go. From the uniqueness
of the edge of the mixed length l;; = b in Gy we again get z = y and p = 0,
which is a contradiction.

Thus in k copies of G we have all k(2nk — 1) different edges of U, and
so Go,G1,Ga,...,Gr- form a 2n-cyclic decomposition of U. m]

Finally we can state the main theorem of this paper, which is a direct
consequence of the previous two lemmas.

Theorem 4.4 Lel G with 2nk — 1 edges be a graph that allows a 2n-cyclic
blended labeling for k odd and k,n > 1. Then there exists a G-decomposition
of Kaui inlo nk copies of G.

Proof. By Lemma 3.2 the complete graph Ka,,; can be factorized into n
copies of U(T, s; k), and by Lemma 4.4 the graph U(T, s; k) can be factor-
ized into k copies of G il (¢ has 2n-cyclic blended labeling. Therefore, Ko,
is decomposable into nk isownorphic copies of G. a

5 2n-cyclic labeling of lobsters with d =4

Here we give an example of an infinite class of trees which have a 2n-cyclic
labeling and the diameter d = 4. As we know, the blended labeling can be
used only for factorizations ol Ky, while for Ky the only method known
so far was the switching blended labeling. We will show that no trees with
diameter 4 and 4k vertices allow a switching blended labeling. Before we
give a proof of this fact, we need to state the definition of the switching
blended labeling.

Definition 5.1 Let T be a lree on 2n = 4k wvertices such that V(T) =
VoUW, Von V) =0 with |Vg] = |Vi| = 2k. Let A be an injection, A :
Vin — {0, 10,20, (2k = 1),,,}, m = 0,1. The pure length and the
mized length of an edge are defined as for the blended labeling. The tree T
has a switching blended labeling (or just switching labeling for short) if

(1) {100(170,?/0)”1:0,:‘/0) € E(T)} = {1) 2,"'3,‘7}:
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(2) {lu(z1,y)l(21, 1) € E(T)} ={1,2,...,k -1},
(3) {lor(z0,1)|(z0, 1) € E(T)} = {0,1,2,...,2k — 1}, and

(4) there exists an antomorphism ¢ of T —(ig, (i+k)a), where (ig, (i+k)o)
is the unique edge of the pure length k in T, such thal p(ig) = j1 and
o((2 + k)o) = (j + k)1 for some j.

Theorem 5.2 If a tree T on Ak vertices, where k > 2, allows a swilching
blended labeling, then diamT > 4.

Proof.  Suppose to the contrary that a tree T with 4k vertices has a
switching labeling, and diamT = d < 4. Then there is the edge eq =
(%0, (#+k)o) of the maximum pure length lgo(ep) = kin T'. Let e be the edge
of the same pure length {},(e,) = k in Vi, such that ¢; = (j,, G+ k)1) €T
and p(io) = j1, Y((i + k)o) = (j + k1.

By G we denote the graph G = T + e¢;. Then the graph G — eg is
isomorphic to T and in G there is a cycle C,, which contains both edges
eo,e1. Since the endvertices of ¢y are both in ¥ and the endvertices of e,
are both in 1}, the minimum length of the cycle Cp is p = 4.

Suppose first that p = 4. It means that Cy = io, (i + K)o, (§ + k)1, 51
or Cq = g, (¢ + k)o,J1,{(j + k)1- Notice that these cases are equivalent,
since j = j + k + k (inod 2k). Hence we investigate just the former case.
Then the edges (70,51) and ((i + k)o, (j + &)1) must be in T. But this is
not possible, becanse they are both of the same mixed length lg; ((70, 1)) =
J—1 (mod 2k), and lp, (((F + k), (j+ k) = j+k—(i+k) = j—1 (inod 2k),
which contradicts property (3) of the switching labeling. Therefore the
length of the cycle C, is at least p = 5 and the diameter d ol T is at least 4.

Now suppose that p = 5. Then there is a cycle C5 = 70, (¢ + k)o, (F +
k)1,J1,v (again the case C, = g, (7 + k)a,J1,(J + k)1,v is equivalent).
Because we assumed that the diameter d of the tree T (or equivalently of
G —e; or G —eg) is equal to 4, all other edges in T must be incident to the
vertex v. This is true because il there is an edge 2ip, where & # (i + k)g, v,
then from (4) it follows that there must be also an edge yj1,y # (§ + k)1, v,
and vice versa. But then there is the path z,7,v,71,(J + k)1, (¢ + k)o in
G — eg or ¥, j1,v, %0, (i + k)o, (j + k) in G — e;, both of them of length
5, which contradicts our assumption that d < 4. Similarly, if there is one
of edges (i + K)o, y(j + k)1, where 2 # io,(j + k)1 and y # j, (i + K)o,
then there must be the other one, too. Then again there is the path z, (7 +
k)Ox (j+ k)l)jla v, i() inG- Cp OT Y, (.l+k)l )jl y U, ‘i(), (1+k)0 in C—Cl, giVillg
the same contradiction.

But now if the vertex v belongs to ¥4, then all the edges incident to v
are either pure edges with both eudvertices in V5 or mixed cdges with one
endvertex v in Vp and the other endvertex in ¥q. It means there is only one
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pure edge in ¥}, namely (j,, (j+k),) of the length & > 2. This is impossible,
since the tree T must contain edges of all pure lengths §;; =1,2,...,%. The
same argument holds when v € V| and the proof is complete. a

Further we give a 2n-cyclic labeling for certain class of lobsters. A
lobster is a tree from which by dcleting all vertices of degree one we obtain
a caterpillar. A caterpillar is a tree from which by deleting all vertices
of degree one we obtain a path or a single vertex. In the latter case the
caterpillar is isomorphic to a star.

Any lobster with diameter 4 can be obtained from a star K ,. f p=1
or 2, then the lobster is indeed a caterpillar. Therefore, we will assume
that p > 3. The vertex ¢ of degree p will be called the central verter,
the remaining vertices will be denoted f9,1y,...,f,_) and called secondary
vertices. To obtain our lobster, we join new vertices of degree 1 to at least
three secondary vertices ¢;.

We denote such a lobster by L(p; do, di,. .. ,dp—), where d, is the num-
ber of neighbors of degree one of the secondary vertex £, and p is the degree
of the central vertex ¢. Sce example in Figure 5.1.

Figure 5.1: Lobster L(5;4,5,0,5,0).

Now we consider lobsters L(k;dy,dy,...,di_1) on 2nk vertices where
n,k > 1, and k is odd, so that the necessary condition [or the existence of
a 2n-cyclic labeling is satisfied. Let & = 2m + 1. The vertices of degree
one are distributed almost regularly in multiples of k. Particularly, the
degree of each secondary vertex {, is determined as follows. Always is
do=k-1. Letn—1=am+Db, where 0 < b < m. Il b =0, then
dy=akforq=1.2,...,2m. If0 < b < m, then d;, = dyyy = (@ + 1)k for
g=12,....,b,and dy =dyqy=akfor g=b+1,b+2,...,m.

Notice the case when m =n-1. Thendy =k-1l,anddy =da =... =
ds;, = k. This means we obtain a k-balanced lobster, which is a lobster
such that the degrees of the secondary vertices of joined stars K ., differ
at most by 1 and the central vertex has degree k. For certain values of k
a blended labeling of k-balanced lobsters on 2n vertices, n odd, was found
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by Kubesa [6). He also gives a blended labeling for two infinite classes of
certain “totally unbalanced” lobsters of diaineter 4.

Construction For each graph with a 2n-cyclic labeling there must also
exist an underlying tree T with a p-syminetric graceful labeling. The tree
we use in our construction is always a double star S on 2n vertices. In order
to obtain a p-syminetric graceful labeling of S, we assign labels 0 and n to
the central vertices of the stars K ,—;, which are then connected by the
symmetric edge (0,7) of the maximum length n. The labels of the vertices
of degree 1 joined to the central vertex 0 are 1,2,...,n — 1, thus the edges
have the lengths 1,2,...,7—1. The labels of the vertices of degree 1 joined
to the central vertex n are n+1,n+2,...,2n -1, and the edges have again
the lengths 1,2,...,n = 1.

Figure 5.2: Symmelric graceful labeling of a double star S on 12 vertices.

Now we give a 2n-cyclic labeling of the lobster L(k;dn,dy,...,dr_1)
with the vertex set V(L) = U;T’;(," Vi, where V; NV; = @ for i # j and
Vi={0;,1;,2;...,(k-1)},i=0,1,2,...,2n - 1. Let k =2m + 1.

For each edge (¢,j) € S there is the corresponding subgraph H;; with
k mixed edges. Also for the vertex 0 € V(S) and the symmetric vertex
n there are subgraphs Hy and H, with m pure edges in each of them.
The subgraph Hy, corresponding to the symmetric edge (0,n) in S has
the mixed cdges (0p,0,),(00, 14}, (00,24),..., (0o, m,) of lengths lo, =
0,1,2,...,mand (1p,0,), (20,0,),..., (g, 0,) of lengths lp, = m+1,m+
2,...,2m. We add m pure edges on vertices of sets V;, for ¢ = 0,n. The
edges are (0;,m;), (0;, (m+1);),...,(0;,(2m);) of pure lengths l;; = m, m ~
1,...,1

The central vertex ¢ of the lobster is the vertex with the label 0,,.
The secondary vertices lg, £y, .. -, &, have the labels 0y, 1g, ..., mp, and the
secondary vertices ly41,bing2,---,lam receive the labels (m + 1),, (m +
2)ny---»(2m),. So far all the vertices {, are of degree one for ¢ =
1,2,...,2m, ouly the vertex to has k neighbors, so that dg = k — 1. Now
we increase degrees of the other vertices £,.
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Since there are edges (0, j) and (n,n + j) for j = 1,2,...,n —~ 1 in the
underlying double star S, we must construct subgraphs Ho; and Hp nyj.
We always add the edges (go,7;) for ¢ = j (inodm), where ¢ = 1,2,...,m
and r = 0,1,...,k — 1. It means that each Hy; is the star K ; with the
central vertex ¢, which receives the lahcl gg. Obviously, if n—1 = am, each
of the vertices ¢, is connected to exactly ak vertices of degree 1 (d,; = ak),
and for n — 1 = am + b, where 1 < b < m, there are k more neighbors
of degree 1 added to each of the first b vertices ¢, so that d, = (a + 1)k.
Similarly, we add the edges ((m + q)n,Tm4;) for ¢ = j (modm), where
¢=12,...,mandr =0,1,...,k—1. Then each subgraph H,(,m+;) is again
the star K x with the central vertex (m + q),,, which means dmtq = ak for
g=b+1,b+2,...,m,0r dipyqg =(a+ 1)k for ¢ =1,2,...,b. See example
in Figure 5.3.

There is a 2n-cyclic factorization of the graph U(S, 0; k) into k copies of
the lobster L(k;do,d,,...,dr_1) on 2nk vertices with the 2n-cyclic labeling
given above. Consequently, according to Theoremn 4.4 there is also the
L(k;do,dy,...,dr — 1)-factorization of Koy

V3 030
130

230 D
(to)=00 04=A(c)
330 O 0 o

VZ 430 /‘\"/ 7 1/6

020 i: e l-' 00:
lz/ 0ls
220 0 O y O 2:

320 K 20=A(l2) 24 36
L _/o
420 0 == Odg
3 Allg)=3.

0,0 0 (t3)=34 005

1,0 O _ L Og Ols

2,0 do Alta)=44 \025

3] O O 35

W 4o ods Vs

Figure 5.3: 2n-cyclic blended labeling of the lobster L(5;4,10,5,10,5)
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