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Abstract

Various authors have defined statistics on Dyck paths that lead
to generalizations of the Catalan numbers. Three such statistics are
area, maj, and bounce. Haglund, who introduced the bounce statis-
tic, gave an algebraic proof that n(n — 1)/2 4 area — bounce and maj
have the same distribution on Dyck paths of order n. We give an
explicit bijective proof of the same result.

1 Introduction

In [6], Garsia and Haiman introduced a two-variable analogue of the Cata-
lan number called the g, t-Catalan. Haglund conjectured a combinatorial
interpretation of the g,t-Catalan that involved enumerating Dyck paths
relative to two statistics called area and bounce [10]. This conjecture was
later proved by Garsia and Haglund [5). In [10], Haglund proved that the
statistic n(n — 1)/2 + area — bounce had the same distribution as the ma-
jor index statistic (maj) on Dyck paths of order n. Haglund’s proof of
this fact is a long algebraic manipulation, which shows that both distri-
butions are given by the same explicit formula. Mark Haiman [11] posed
the problem of finding a purely combinatorial proof of this result. We
solve this problem by constructing a bijection on Dyck paths of order n
that sends n(n — 1)/2 + area — bounce to maj. We obtain our map by
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assembling many standard bijections on lattice paths using a simple ver-
sion of the Garsia-Milne Involution Principle that we call “combinatorial
subtraction.” Some authors refer to this technique as “sieve-equivalence”;
see [1, 7, 8, 9, 12, 13, 14, 15} for discussion and applications.

The rest of the paper is organized as follows. Section 2 defines the
statistics mentioned above for Dyck paths and similar statistics for lattice
paths contained in rectangles. Section 3 sets up notation for discussing
bijective proofs. Section 4 discusses the combinatorial subtraction prin-
ciple. Section 5 reviews five well-known bijections on lattice paths from
the literature. Section 6 shows how to assemble these bijections using the
subtraction principle to obtain the desired map.

2 Statistics on Lattice Paths

A lattice path in a ¢ x d rectangle is a path from (0, 0) to (c,d) consisting of
c east steps and d north steps of length 1. Such a path can be encoded as
a word with d zeroes (north steps) and c ones (east steps). If P is a lattice
path with corresponding word w = wyws -+ - We4d, We define the following
statistics.

e inv(P) is the number of pairs i < j such that w; = 1 and w; = 0.
Equivalently, inv(P) is the area above the path in the rectangle with
corners (0,0), (¢,0), (0,d), and (c,d).

e maj(P) is the sum of all indices ¢ < ¢ + d such that w; = 1 and
wiy1 = 0. Suppose we label the lattice points visited by P with the
integers 0,1,2,..., starting at the origin. Then maj(P) can also be
defined as the sum of the labels of the “left-turns” where P goes east
and then north.

e a(P) is the number of pairs ¢ < j such that w; = 0 and w; = 1.
This is the area below the path P in the rectangle with corners (0,0),
(¢,0), (0,d), and (c,d).

For example, if P is the path encoded by w = 0101110011, then c =6,
d =4, inv(P) = 9, maj(P) =2+ 6 = 8, and a(P) = 15.

A Dyck path of order n is a lattice path in an n X n rectangle that never
visits any point (x,y) with y < z. Such paths are contained in a triangle
T, with vertices (0,0), (0,n), and (n,n). Define the following statistics for
a Dyck path D of order n.

e Set area(D) = a(D) — n(n + 1)/2. This is the number of complete
lattice cells between D and the diagonal line y = z.
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¢ Define maj(D) by the same formula used above for general paths.

¢ Define Haglund’s statistic bounce(D) by the following construction.
A ball starts at the origin and moves north until blocked by an east
step of D. The ball then moves east to the line y = z. The ball
moves north again until blocked by the east step of D that starts on
the vertical line now occupied by the ball. The ball then bounces east
to the diagonal y = z. This process continues until the ball reaches
(n,n). Call the east steps that block the ball blocking east steps.
Define bounce(D) to be the number of cells in T, in the columns
above the blocking east steps.

For example, if D is the Dyck path encoded by w = 0010010011101101,
then n = 8, area(D) = 10, maj(D) = 3+6+11+14 = 34, and bounce(D) =
6+2+1=9. See Figure 4 below, where the cells contributing to bounce(D)
are marked by X’s.

3 Notation for Bijective Proofs

In later sections, we will be assembling many simple bijections to create
more complicated maps. Here we introduce some notation to help organize
this assembly process.

3.1 Sets of Weighted Objects

A set of weighted objects consists of a set A and a weight function wt 4 :
A — Z. Tt is helpful, for technical reasons, to assume that the image of
wtn is bounded below and that Ax = {a € A : wt4(a) = k} is finite for
each integer £. In all our work, A itself will be finite, so these assumptions
automatically hold. Define a generating function operator v on sets of
weighted objects by setting

7(A) = Z qwt.q(a).
a€A
(The assumptions above guarantee that this expression makes sense at least
formally.)

We will use capital letters like A, B,C,... to denote sets of weighted
objects, suppressing mention of the associated weight functions. If the defi-
nition of such a set depends on some numerical parameters, the parameters
may be listed in parentheses or omitted when clear from context. For in-
stance, we let R(c,d) be the set of lattice paths in a ¢ x d rectangle weighted
by the area statistic . If c and d are fixed, we write R instead of R(c, d).

It will be convenient to let 0 denote the empty set and 1 denote any
one-point set {x} with wt(z) = 0.
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3.2 Operations on Weighted Sets

Let A and B be two sets of weighted objects. Define A 4+ B to be the set
that is the disjoint union of A and B, with weights given by

wta+B(a) = wta(a) for a € A4;

wt 44+ 5(b) = wtg(b) for b € B.
Define AB to be the set Ax B = {(a,b) : a € A, b € B}, with weights given
by
wtag((a, b)) = wta(a) + wtp(b).
Finite sums and products of weighted sets are defined similarly. If s is a
fixed integer, we define ¢®A to be the set with the same objects as A and

weight function
wtgea(a) = wta(a) + s fora € A.

This notation is related to the ordinary algebra of generating functions
by the operator «y. One easily checks that

v (Z Ai) = (4,
i=1 i=1

Y (H Ai) =[] 40,
i=1 =1

and v(¢°A) = ¢°v(A).

3.3 The Equality Symbol

Suppose C and D are expressions that represent two sets of weighted ob-
jects. We write C = D if we have explicitly constructed a particular weight-
preserving bijection f : C — D and its inverse f~! : D — C. Note that
the notation C = D does not just mean that there exist weight-preserving
bijections from C to D; it means that we have chosen and described a spe-

cific such bijection f. We may write C LDto emphasize this choice. Note
that C = D implies that 4(C) = (D), but the converse is not true unless
we can construct a suitable map f.

3.4 Bijective Algebra

We can now write down algebraic expressions that encode bijective ma-
nipulations of various weighted sets. Many rules of algebra extend to the

present setting. For instance, A LBadBLcC clearly imply A %2/ ¢. We
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have AB + AC & A(B + C) via a canonical bijection A that is essentially
the identity map on pairs (a,b) and (a,c¢). Similarly, A+ B = B + A and
(A+B)+C = A+ (B +C) via identity maps. The following lemma is easy
but useful.

Lemma 1 (Combinatorial Addition, Multiplication, and Scaling).

Let A,B,C,D be sets of weighted objects such that A £ C and B £ D.
Then there are canonical bijections

A+B’¥ c+D, (1)
ABY? ¢p. @)
gatgc 3)

Proof. For (1), define f+g9: A+ B —- C+Dtobe f on A and g on B. For
(2), let (f,9) : AB — CD map (a,b) to (f(a),g(b)). For (3), just note that
f is still weight-preserving if we add s to all weights in both A and C. O

Note that we can convert bijective proofs given in this notation to alge-
braic proofs of the same results by applying the v operator.

Notation Set of Objects Weight
R(c,d) paths in ¢ x d rectangle a (area below)
R'(c,d) paths in ¢ x d rectangle inv (area above)

| M(c, d) paths in ¢ x d rectangle maj

F(n,k) | Dyck paths of order n starting area — bounce
with exactly k north steps +(n? +n)/2 — nk
G(n,k) | Dyck paths of order n ending maj+ 2k —2n
with exactly k east steps

H(m,n) | Dyck paths of order n ending maj
with at least n — m east steps
S(n) all Dyck paths of order n (%) + area — bounce
T(n) all Dyck paths of order n maj

Table 1: Notation used for sets of weighted lattice paths.

3.5 Some Sets of Weighted Lattice Paths

Table 1 defines the notation we will use for certain sets of weighted lattice
paths.
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There are a number of simple relations between some entries of the
table. For instance, R(c,d) finfed) pr (¢,d) where flip(c, d) rotat.es a path
180° about the center of the ¢ x d rectangle. Similarly, R(c,d) = 'R (d,c) by

reflecting a path inside a ¢ x d rectangle through the line y = z to produce
a path in a d x c rectangle.

Our main goal is to construct a bijection .S'(n) = T'(n) for each n. This

will be a byproduct of the stronger result F(n, k) Mok G(n, k). To see why,
note that we have S(n) = F(n+1,1) via a map that adds a north step and
an east step to the beginning of a Dyck path of order n (which increases
bounce by n). We also have T'(n) = G(n + 1,1) via a map that adds a
north step and an east step to the end of a Dyck path of order n (which
increases maj by 2n). Both maps preserve the weights listed in Table 1.
Thus, we can construct h(n) by composing these maps with h(n +1,1).

4 The Combinatorial Subtraction Principle

If z,y,z are numbers such that z + y = z + 2, then y = z. The com-
binatorial subtraction principle stated next is a bijective version of this
manipulation. It is one of the simplest instances of the general method of
“sieve-equivalence.” See [1, 7, 8, 9, 12, 13, 14, 15] for more examples and
applications of this technique.

Theorem 2 (Combinatorial Subtraction). Suppose that A+B L A+c

and A is a finite set. Then B £ C via a map g : B — C that can be
canonically constructed from f.

Proof. We define a weight-preserving bijection g : B — C as follows. Given
an element b € B, compute a sequence of elements

z1 = f(b), 22 = F(F(b)), =3 = fF(F(f(B))), za = F(SF(S(£(B)))),

until an element z; belonging to C is reached for the first time; define
g(b) = z;. To see that this makes sense, note that each z; (for j > 0) is in
either A or C. In the former case, zj4+1 = f(z;) can be computed. In the
latter case, the sequence stops. It is easy to check by induction that the
elements z; are all distinct, since f is an injective map. Since A is finite,
the sequence must terminate with an element of C after finitely many steps.
See Figure 1. Finally, the inverse map g~! : C — B acts on elements of C
by repeatedly applying f~! until an element of B is reached. a

This bijection is motivated by the same idea underlying the Garsia-
Milne Involution Principle [7]: if the given bijection f doesn’t map into the
set you want, just keep iterating f until you get there.
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Figure 1: Bijective subtraction.

5 Five Easy Bijections

This section reviews five well-known bijections on lattice paths from the
literature.

1. Pascal’s begin/end maps. For ¢ > 1 and d > 1, we have bijections
R(c—1,d) + ¢°R(c,d — 1) "FZD (¢, a);

q?R(c — 1,d) + R(c,d — 1) *" 9 R(c, d).

Also, R(0,d) =1 = R(c,0) for all ¢ and d. The map begin(c, d) adds
a horizontal step to the beginning of a path in R(c—1,d) and adds a
vertical step to the beginning of a path in g°R(c,d — 1). The inverse
map simply deletes the first step of a path in R(c,d). Similarly,
the map end(c,d) adds a horizontal step to the end of a path in
¢?R(c—1,d) and adds a vertical step to the end of a path in R(c, d—1).
The inverse map simply deletes the last step of a path in R(c,d). See
Figure 2. It is clear from the figure that the maps preserve weights.

2. Chu-Vandermonde’s splitting map. For ¢,d,e > 0, we have bi-
jections
A c
R(c,d+ 1+ ¢) P 3" R(r,d)R(c— r,e)g"=+D).
r=0

Given a path P € R(c,d+1+e), the map split(c, d, €) produces a triple
(r,Py, P;) where 0 <r < ¢, P, € R(r,d), and P; € R(c — r,e)q"(e+D),
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begin(c,d) end(c,d)

e d P ] s
/
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A

begin(c,d) end(c,d)

- - P T

Figure 2: The begin and end maps.

Here, P, consists of the portion of P before the (e+1)’th north step of
P, P; consists of the portion of P after the (e+1)’th north step, and r
is the total number of east steps after this north step. The inverse of
split(c, d, e) forms P by concatentating P», a north step, and P;. See
Figure 3. It is clear from the figure that a(P) = a(Py)+a(P)+r(e+1),
so that the splitting map preserves weights.

. Haglund’s bounce dissection map [10]. We have F(n,n) =1 for
n > 0 and F(n,0) = 0 for n > 0. Moreover, for 0 < k < n we have
maps

1 n—k
F(n, k) ™€ S R(k - 1,r)g" P DF(n — k7).
r=0

The map dis(n, k) “removes the first bounce” from a given path in
F(n, k). More explicitly, if P € F(n, k), we can write the word of P in
the form w = 0¥1z1y, where the two displayed ones encode the first
two blocking east steps in P. Note that = has k—1 ones and r zeroes
for some r between 0 and n — k. Here, r is the length of the second
vertical move made by the bouncing ball. We map P to the triple
(r, Py, P;), where P, € R(k — 1,7)¢m®)(r=1) is the path encoded by
the word z, and P, € F(n — k,r) is the Dyck path encoded by the
word 071y. This process is best understood pictorially; see Figure 4.

It is easy to see from the figure that

area(P) = k(k — 1)/2 + a(P,) + area(P,),
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d+l1+e

Figure 3: The splitting map.

distnl) X1

I
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Figure 4: The bounce dissection map.
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bounce(P) = n — k + bounce(P,).

A simple calculation now confirms that

wt(P) = area(P) — bounce(P) + (n® +n)/2 —nk
= a(P)+(n—Fk)(r—1)
(n—k?+n—k

+area(Pz) — bounce(Pz) + 5

= wt((r, P, P,)).

—(n—k)r

So the map dis(n, k) is weight-preserving. For consistency with the
above formula, it is convenient to define dis(n,n) to send the unique
element of F(n,n) to the unique element of R(n — 1,0)F(0,0).

4. Fiirlinger and Hofbauer’s tipping map [4]. For all m < n, we
have maps

gM(m -1,n+1) + H(m,n) tplmm) ar (m,n).

If P € H(m,n), then tip(m,n) deletes the last n—m steps of P (which
are horizontal steps) to produce an element of M (m, n) with the same
major index. If P € gM(m — 1,n + 1), scan the lattice points (z,y)
on P (starting from the origin) and choose the last such point Q for
which z — y is maximized. For this @, it is easy to see that z —y > 0
and (therefore) that @ must be immediately followed by two north
steps. Furthermore, Q either is the origin or is preceded by an east
step. To compute P’ = tip(m,n)(P), tip the first north step following
Q@ downwards, changing it to an east step, and shift the rest of the
path after this step southeast accordingly. This gives a path ending at
(m,n). See Figure 5. Since the word of P changes from ---100--- to
-+-110--- (or from 00--- to 10---), we have maj(P’) = maj(P) + 1.
This implies that tip(m, n) is weight-preserving.

The inverse of tip(m,n) uses two cases. If a path P € M(m,n)
never goes strictly below the line y = z, then enlarge P to a Dyck
path in H(m,n) by adding n — m horizontal steps at the end. If P
does go below y = z, find the first point R = (z,y) on P (starting
from the origin) such that z — y is maximized. Change the east step
that precedes R to a north step, shifting the rest of the path after
R northwest accordingly. It is easy to check that this reverses the
procedure above.

5. Foata’s maj-to-inv map (2, 3]. For all ¢,d > 0, we have maps

M(c,d) ™2 R (c, d).

154



n+1

..............

Figure 5: The tipping map.

These maps are defined by induction on ¢ + d. They have the addi-
tional property of preserving the direction of the last step in the path.
If ¢ + d < 1, then Foata(c, d) is the identity map. Now consider the
case c+d > 1. Let P € M(c,d) be encoded by the word w. We will
specify the image of P under Foata(c,d) by giving its encoding word
w’. There are three cases.

Case 1: w = vl. Let v' = Foata(c — 1,d)(v), and define w’ = v'1.
We have maj(w) = maj(v) = inv(v') = inv(w'’).

Case 2: w = v00. Applying Foata(c,d—1) to the word v0 gives some
word v that also ends in zero. Write ¢’ uniquely as

v =1%101920...1%0 (a; > 0),

and set
w’ = 01%101%2...01%Q.

In other words, we simultaneously move each zero in v’ to the left of
the block of ones immediately preceding it (if any), and then append
a zero. We have

maj(w) = maj(v0) = inv(v')
= v(w)-a1—--—ar+ar+--+ax
= inv(w').
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Case 3: w = v10. Applying Foata(c,d—1) to the word v1 gives some
word v’ that also ends in one. Write v’ uniquely as

v’ =0°10%1..-0%1 (a; >0),

and set
w' = 10%110%2...10%0.

In other words, we simultaneously move each one in v’ to the left of
the block of zeroes immediately preceding it (if any), and then append
a zero. We have

maj(w) = maj(vl)+c+d-1=inv(v')+(d—-1)+c
= inv(v')+ a1+ +ax +c=inv(w’).

Foata’s original bijection is even more general; see [2].
Since we have M(c,d) a{ed) R'(c,d) flipfe.) R(c,d) for all ¢ and d,
it is easy to construct bijections

gR(m —1,n+ 1) + H(m,n) () R(m,n)

from the maps tip(m, n) and combinatorial addition.

6 Assembling the Bijections

We are now ready to construct bijections F(n, k) Mark) G(n, k) for all n and

k. The algebraic version of this proof consists of showing that v(F(n, k))
and ¥(G(n, k)) are both given by the same formula, and hence are equal to
each other. Accordingly, we divide our construction into three stages.

6.1 Stage 1: Maps Involving F(n, k)

The bijections in this subsection will show that:

[2m—k=-1] [2n—k-1]
7(F(n’k))_[n-k,n—l]q 1 [n—k—l,n]q’

(F(n, k) = ¢+ [

2n-k-1]1 4 a[2n—-k-1
n—hn—lq

n—k—an

We will simultaneously construct, by induction on n > 1, two bijections

¢*R(n — k —1,n) + F(n, k) “@ R(n — k,n— 1) and (4)
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¢ "R(n— k—1,n) + F(n, k) "2 ¢*"Rin—k,n—1).  (5)

Base cases occur when k = 0 or k = n (which includes the case n = 1).
The case k = n is easy to handle, since the sets on each side of (4) and (5)
have exactly one element. When k& = 0, F(n, k) is empty, and we can take
a(n,0) = b(n,0) = ref o flip(n — 1,n).

For the induction step, assume that bijections a(n’, k) and b(n’, k) have
already been constructed for all ' < n and 0 < k&’ < n’. We must now
construct the maps a(n, k) and b(n, k), where 0 < k < n. We have a chain
of bijections

F(n,k)+¢*™R(n—k —1,n)

-k
dis(n,k)-+split(n—k—1k-1,n—F) "z: R(k —1,7)g™ B0 Fn — k, )

r=0
n—k
+ Y R(r,k—1)g P-4+ Rn—k —r —1,n—k)
r=0
n—k
=Y R(r,k-1)¢" 8D (F(n— k,r) + ¢ R(n—k -1 — 1,n — k)
r=0

X n—k
E-(4elr=h) S Rir, b~ 1)g"HC DR~ k—r,n— k1)
r=0
S ke 1k 1y=1
split(n—k,k ___3.‘“ k-1) qk-uR(n —k,n— 1).

(Here id denotes an identity map, and the unlabelled bijection in this chain
uses R(k—1,7) refofip R(r,k — 1) and the distributive law.) Composing all
the bijections gives us the map b(n, k).

Introduce temporary notation:

A=g*"R(n - k,n); B=g¢*"R(n—k-1,n);
C=¢""Rn—k,n-1); D=q¢*R(n—k-1,n);
E=R(n—k,n-1) F = F(n,k).

b('_l_.

We have just shown that F + B . Also, the Pascal begin-end maps

=R, i — Ry -t . .
show that C + D end(nzbm) 4 begin(n_km)™" p + E. By combinatorial
addition, we get a bijection (B+C)+D+F = (B+C)+ E. The subtraction
principle now gives a map D+ F = E, i.e.,, a map

" R(n — k —1,n) + F(n, k) “Z® R(n — k,n - 1).

This completes the inductive definition of a(n, k) and b(n, k).
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Remark: If we apply v everywhere, we get an algebraic proof of the
formulas at the beginning of this subsection for y(F(n,k)). This proof is
shorter and simpler than Haglund’s original proof.

6.2 Stage 2: Maps Involving G(n, k)

The maps in this subsection will show that

2n—k—l] _ k_n[2n—k—1]
q

— k—n
¥(G(n,k)) = ¢q [n—k,n—l n—k—-1,n q.

We will construct bijections

" R(n -k —1,n) + ¢ 2%*G(n, k) "2 " *R(n - k,n—-1).  (6)

The bijection is trivial if £ = 0 or k = n, so assume k < n. Introduce the
following temporary notation:

A= H(n— k,n); B=H(n-k-1,n);

C = R(n — k,n); D=qR(n—k-1,n+1);
E=R(n-k-1,n); F=qR(n-k-2,n+1);
G =¢>*2*G(n, k); U=q¢""*R(n—k,n-1)

V=¢g""¥%Rn-k—1,n).

Then we have bijections

B+G = A (via the identity map)
A+D = C (use tip’(n — k,n))

E = B+F (usetip’(n—k-—1,n)"1)

C = E+U (usebegin(n— k,n)"1)
F+V = D (use begin(n — k —1,n+1)).

By combinatorial addition (and commutativity), we obtain a bijection
(A+B+C+D+E+F)+G+V=(A+B+C+D+E+F)+U.
The subtraction principle applies to give the map G+ V =U, i.e,,

" *R(n —k —1,n) + ¢*%G(n,k) sk " *R(n - k,n—1).

2k—2n

Multiplying by ¢ , we have bijections

¢ "R(n — k — 1,n) + G(n, k) “=" ¢*-"R(n — k,n - 1).
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6.3 Stage 3: Maps Showing that F(n,k) = G(n, k)

We have now constructed maps
b(n,k) : ¢* "R(n — k — 1,n) + F(n, k) — ¢* "R(n — k,n — 1),
d(n,k) : ¢* "R(n — k —1,n) + G(n,k) - ¢* "R(n — k,n — 1),

Thus we have

-1
g™ R(n — k — 1,n) + F(n, k) ™9 =008 gk-npn _ & _1,n) + G(n, k).

The combinatorial subtraction principle applies at once to give bijections

F(n,k) Mah) G(n,k) for all n and k.

We remark that there is another derivation of the weaker result S(n) =
T'(n) that avoids the complicated maps from stage 2. Just note that there
are obvious maps S(n) = F(n + 1,1) and T(n) = H(n,n), and we have
constructed maps

gR(n—-1,n+ 1)+ F(n+1,1) alniLl) R(n,n),

gR(n—1,n+ 1) + H(n,n) tip’ {nm) R(n,n).

Composing these maps gives gR(n—1,n+1)+S(n) = gR(n—1,n+1)+T(n).
Applying the subtraction principle one last time, we get a map S(n) i)
T(n).

All the bijections we have produced are quite complicated to compute
by hand, although they are built up in a natural way from very simple
component maps. Generally, the more times the subtraction principle is
used, the more computations are required to execute the final bijection on
a given input. Of course, these bijections are straightforward to program
on a computer.

Since the construction of j(n) avoided the use of the subtraction prin-
ciple in stage 2, it is a bit simpler to compute than the maps h(n,k).
However, j(n) need not have the additional property of sending the num-
ber of initial north steps to the number of final east steps. For exam-
ple, j(8) sends the path D with word 0010010011101101 to the path with
word 0011010100100111, while h(8,2) sends D to the path with word
0001010011011011.

A notorious unsolved problem is to give a bijection on Dyck paths of
order n interchanging area and bounce. It is likely that any such bijection
will have complexity comparable to that of the maps constructed above.
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