SUMS OF GENERALIZED FIBONACCI NUMBERS BY
MATRIX METHODS
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ABSTRACT. In this paper, we consider a certain second order linear
recurrence and then give generating matrices for the sums of posi-
tively and negatively subscripted terms of this recurrence. Further,
we use matrix methods and derive explicit formulas for these sums.

1. INTRODUCTION

The Fibonacci sequence is defined by the following equation for n > 1
Fop1 =Fo 4+ Fa,

where Fy = 0 and Fy = 1. The Fibonacci numbers have many interesting
properties. For example, the sums of the Fibonacci numbers subscripted
from 1 to n can be expressed by a formula including Fibonacci numbers.
The sums formula is given by

n
Y Fi=Fnpo— F.
i=1
Matrix methods many times have played an important role stemming from
the number theory [1-5]. For instance, let B be an 2 x 2 companion matrix

as follows
11
B= [ 10 ] :
Then it is well known that
F, F,
n __ n+1 n
B = [ Fn Fn—-l ]

Now we consider a generalization of the Fibonacci numbers. Let A be
nonzero integer satisfying A% + 4 # 0. The generalized Fibonacci sequence
{un} is defined by the recurrence relation for n > 1

Up41 = Au, + Un-1, (11)
where ug = 0 and u; = 1. For later use, note that us = A4, uz = A2 +1
and ug = A% + 2A. When A = 2, then u, = P, (nth Pell number).
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Let  and B be the roots of the equation 22 — Az — 1 = 0, then the Binet

formula of the sequence {u,} has the form
n _ n
v, = 828"
a-p

Using the recurrence relation of sequence {u, }, we can obtain the negatively
subscripted terms and these terms satisfy

ot — g
Since aff = —1, then we have

e = (=1 u, and u—n = Au_(np1) + U—(nt2)- (1.2)
Thus for later use u_; = 1, u_s = —A, u_3 = A2+ 1 and u_y =

- (A% +24).
Furthermore, by the inductive argument, one can easily verify that the
generating matrix for the sequence {u, } is given by

wn=[i1 (1)] =[“n+1 Un ] (1.3)

Un Un-1

In this paper, we construct certain matrices, then we compute the nth
powers of these matrices which are the generating matrices for the sums of
the positively and negatively subscripted terms of the sequence {u,} from
1 to n.

2. GENERATING MATRIX FOR THE SUMS OF THE POSITIVELY
SUBSCRIPTED TERMS OF THE SEQUENCE {uy}

In this section we consider the positively subscripted terms of the se-
quence {u, } and then define a 3 x 3 matrix C. Further, we compute the
nth power of the matrix C and use matrix methods for the explicit formula
for the sums of the terms of the sequence {u,}.

Define the 3 x 3 matrix C as follows

100
c=[141 (2.1)
010

and define the 3 x 3 matrix E,, as follows

1 0 0
E,= S: Un41 Un » (2.2)
STy tun upo
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where S;' denote the sums of the positively subscripted terms of the se-
quence {u,} from 1 to n, that is

1

Then we have the following Lemma.

Lemma 1. Let the matrices C and E, have the forms (2.1) and (2.2),
respectively. Then forn, n >0

E,=C". (2.4)

Proof. We will use the induction method for the proof of Lemma. If n = 1,
then, by ug = A, u; =1 and ug = 0, we obtain

1 0 0 1 0 0
C] = 1 A1 = Silh Uy Uy = El.
010 S¢ w wo
If n = 2, then
1 0 0
C?’=| A+1 A’+1 A
1 A 1

Since S = A+1 and u3 = A% + 1, E = C?. Suppose that the claim is
true for n. Then we will show that the equation holds for n + 1. Thus, by
our assumption, we write

C™t! = C"C=E.C

1 0 0 1 00
= S upy un 1 A1
St un un— 0 10
which, by a matrix multiplication, satisfies
1 0 0
cntl = S,-: + Un41 Aun+] +Un Up4 = En+l-

St i +u, Auptu_;  u,

By the recurrence relation of the sequence {u,} and since S} + up4 =
S+

~+1» we have the conclusion. O

Consequently, we obtain a generating matrix for the sums of the terms
of the sequence {u,} from 1 to n.
Also we write the Eq. (2.4) as shown

En41 = E,E| = E\E,. (2.5)

In other words, the matrix E; is commutative under matrix muitiplication.
Then we have the Corollary.
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Corollary 1. Let the sum S} have the form (2.3). Then the sum S}
satisfies the following nonhomogeneous recurrence relation forn > 0

S:—I-l =AS;:. +S: 1+1.

Proof. From (2.5) and since an element of E,,,; is the product of a row E;
and a column of E,, :

Siy1 = AS+87 1 +1,

which is desired. O

Now we are going to derive an explicit formula for the sum S7. Let
K¢ ()) be the characteristic polynomial of the matrix C. Thus,

1-2 0 0
KcW)=| 1 A=) 1 |=Q=-1)(=-N+4Ax+1).
0

Also it is easily seen that the characteristic polynomial of the matrix W
given by (1.3) is —A2 + AX + 1. Therefore the eigenvalues of the matrix C

are
A+ VAZ+4 A— VA2 +4
M=—F =g —

Since A # 0 and A% + 4 # 0, we have that the eigenvalues of the matrix C
are distinct.
Let V be the 3 x 3 matrix defined as follows:

and A3 = 1.

1 0 0
v=| 3 M x|, (2.6)
2 11

where A\; and Ag are the eigenvalues of C. Note that detV = A — X2 # 0.
Then we have the following Theorem.

Theorem 1. Let S} denote the sums of the terms of the sequence {u,} .

Then
Upsl +Un — 1

+ _
Sn - A
Proof. One can easily verify that

CV =VD,,

where C and V are as before, and D, is the diagonal matrix such that
D, = diag (X3, A1, A2) . Since det V # 0, the matrix V is invertible. So we
write that V-1CV = D,. Hence, the matrix C is similar to the diagonal
matrix D;. Thus we obtain C*V = V D%.Since C" = E,,

E,V = VD}.
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So by a matrix multiplication, we have the conclusion. a

For example, if we take A = 2, then the sequence {u,} is reduced to the
usual Pell numbers and by Theorem 1, we have

ZP n+1+P_1

which is well known from [10].
Now we give a formula for the sum S; by using a matrix method with
the following Corollary.

Corollary 2. Let S}t denote the sums of the terms u; from 1 to n. Then
for all positive integers n and m

St im = Un41SH +unSE_ + S
where u,, given by (1.1).
Proof. From (2.4), we can write, for all positive integers n and m
Eptm = EpnEq.
Clearly

+l 0 0 1 0 0 1 0 0
ﬁn+m Ungm+] Ungm = S,t Uy Uy S,-:., Um4) U .

n+m—1 Untm Ungin—-1 S:_ ] Uy Up—| S,T. -1 Wy U1
By a matrix multiplication, the proof is easily seen. ]

Note that taking by n = 1 in Corollary 2, we can obtain the result of
Corollary 1.

3. GENERATING MATRIX FOR THE SUMS OF THE NEGATIVELY
SUBSCRIPTED TERMS u_,

In this section, we consider the negatively subscripted terms of the se-
quence {u,}. First, we give a generating matrix for the negatively sub-
scripted terms. Second, we give a generating matrix for the sums of these
terms.

Let the 2 x 2 matrix T be as follows:

-A 1
e[ 4] -
and the 2 x 2 matrix H,, be as follows:
_ u—(n+1) U_p
H, = [ o e ] (3.2)

where u_,, is the nth negatively subscripted term of the sequence {u,} .
We start with the following Lemma.
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Lemma 2. Let the matrices T and H, have the form (3.1) and (3.2),
respectiwely. Then forn >0

H,=T".

Proof. (Induction on n) If n = 1, then, by the identity (1.2), we have
-A 1 U_g U
1 _ — 2 U
SR I el

A24+1 -A

2 _

= [ “A 1 ] '

Since by (1.2), we have u_3 = ug3 = A2+1, u_p = —up = —Aand u_, =1,
we have

If n =2, then

A24+1 -A
2 —
T_[ h ]—Hz-

We suppose that the equation holds for n. Then we show that the equation
holds for n + 1. Thus, by our assumption,

Tn+l — TnTl
U_(n41) Uy -A 1
U_g U_(n-1) 1 0|
Since the negatively subscripted terms of the sequence {u,} satisfy the re-

currence relation u_, = At_(n41)+U_(n42), Wehave u_(n49) = —AuU_(ny)+
U_p, and T"! = H,,,,. So the proof is complete.

Let S; denote the sums of the negatively subscripted terms of the se-
quence {u,}, that is

S,: = iu_i. (33)
1

Now we give a matrix method to generate the sum S;;. Define the 3 x 3
matrices R and @, as shown

1 0 0 1 0 0
R=|1 -A 1| and @, = So U_(ng1) U_p . (3.4)
0 1 0 S;—l Up U_ (n—1)

Then we have the following Theorem.

Theorem 2. Let the matrices R and @, have the form (8.4). Then for
n>0

R" =Q,. (3.5)

28



Proof. (Induction on n) If n = 1, then we know that ST =u_; =1, §; =0
forn < 1, u_y = —up = —A, ug = 0. Thus we obtain R = Q;. If n = 2,

then we have S5 = u_; +u_p = ~A+ 1, u_3 = u3 and by a matrix
multiplication
‘ 1 0 0
T?’=|1-A4 A’+1 -A | =H,.
1 —A 1

Suppose that the equation holds for n. Then we show that the equation
holds for n + 1. Thus, by our assumption, we write

Rn+1 = R'R= QnR

1 0 0 1 0 O
= S,: U_(n+1) U_y, 1 -A 1
n-1  U-n  U—(n-1) 0 1 0

Since S;,; = S +u_(n41) and by Lemma 2, we obtain T"*! = Q4. So
we have the Theorem. (]

In the following Theorem, we give a nonhomogeneous recurrence relation
for the sum S .

Theorem 3. Let S;; denote the sums of the terms u_; for 1 <i < n. Then
forn>0
Sip1=—AS; + S +1.

Proof. Considering (3.5), we write Qny1 = QnQi = Q1Q, and say that
the matrix @; is commutative under matrix multiplication. By a matrix
multiplication, the proof is easy. O

Generalizing R" = Q,,, for all positive integers n and m, we can write
that Qpym = QnQm = Qm@rn. Thus we obtain the following Corollary
without proof as a generalization of the result of Theorem 3.

Corollary 3. Let S;; denote the sums of the terms u_; for 1 < i < n.
Then for alln,m > 0

mm = Sn FU_(n41)Sm +Uu_nS, ;-

Now we derive an explicit formula for the sums of the negatively sub-
scripted terms u_; for 1 < i < n. For this purpose, we give some results.
First, we consider the characteristic polynomial of the matrix 7. The char-
acteristic equation of T is K- (A) = —(A-1) (/\2 + AX=1). Thus the
eigenvalues of matrix T are

-A+VA? +4 VA? +

= ﬂz—_——alldﬂa—l
Note that A # 0 and A2 + 4 # 0, the eigenvalues of T are distinct.
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Let A be a matrix as follows

1 0 0
A= % B Ko

1

7 1 1

Then we have the following Theorem.

Theorem 4. Let S;; denote the sums of the negatively subscripted terms
u_; for1<i<n. Then forn>1

1- u_(n+1) — Un
A .

Proof. By the characteristic equation of the negatively subscripted terms
u_;, we can readily verify that

RA = AD,,

where Dj is the 3 x3 diagonal matrix such that D, = diag (u3, py, pt3) - Since
det A = p, — pp # 0, the matrix A is invertible. Thus we write A'RA =
D, and so the matrix is similar to the matrix D,. Therefore, we write
A~1R"™A = D} or R"A = AD3. Since R® = Qy, we have QnA = ADZ . Then
we have the conclusion from Q,A = AD3 by a matrix multiplication. 0O

S, =

Considering the identity (1.2), we have the following Corollary without
proof.

Corollary 4. Let S;; denote the sums of the negatively subscripted terms
u_; for1 <i<mn. Then forn>1

S- = (un — uny1 +1) /A if n is even,
T ) (Ung1 —Un+1) /A if nds odd.

For example, if take A = 1, then the sequence {u,} is reduced to the
usual Fibonacci sequence and by Corollary 4, we have the sums of the
negatively subscripted terms of the Fibonacci sequence for n is even number

S Fi=F-FB+F—..+F-F=1-Fu,
1
and for n is odd number

S Fi=FR-F+FB—...—Fa+F=F_i+1
1
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