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Abstract

Let G; be the subgraph of G whose edges are in the i-th color in
an r-coloring of the edges of G. If there exists an r-coloring of
the edges of G such that H; € G; for all 1 < i < r, then G is
said to be r-colorable to (Hi, Ha,...,H;). The multicolor Ram-
sey number R(H,, Ha,...,H,) is the smallest integer n such that
K. is not r-colorable to (Hi,H2,...,H;). It is well known that
R(Cn,Ci1,Cs) = m + 2 for sufficiently large m. In this paper, we
determine the values of R(Cm,Cs,Cs) for m > 5, which show that
R(Cm,C4,Ca) =m+2 for m > 11.

Keywords: multicolor Ramsey number, forbidden subgraph, critical
graph, cycle

1. Introduction

We consider only finite undirected graphs without loops or multiple
edges. For a graph G with vertex set V(G) and edge set E(G), we de-
note the order and the size of G by p(G) = |V(G)| and ¢(G) = |E(G)|,
respectively.

Let G; be the subgraph of G whose edges are in the i-th color in an
r-coloring of the edges of G. If there exists an r-coloring of the edges of
G such that H; € G; for all 1 < i < r, then G is said to be r-colorable
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to (Hy, Ha,...,H;). The multicolor Ramsey number R(Hi, H, ..., H,)is
the smallest integer n such that K, is not r-colorable to (Hy, Hs, ..., Hy).
In case of Hy & Hy = ... = H, = H, we simply write the multicolor
Ramsey number R(Hy, Ha,..., H,) as R.(H). Let Cr, be a cycle of length
m. P,, denotes a path of m vertices. Sy, is a star with m — 1 leaves. Let
G denote the complement of G.

The only known value of a multicolor classical Ramsey number R3(K3) =
R3(C3) = 17, was given by Greenwood and Gleason!fl. Bialostocki and
Schoénheim proved that R3(C4) = 111, Using a computer, Yang Yuansheng
and Rowlinson determined that R3(Cs) = 17 and R3(Ce) = 1210, 11y,
Faudree, Schelten and Schiermeyer showed that R3(C7) = 2509, Exoo and
Reynolds proved that R(Cy,C3,C3) = 1741, Schulte gave R(C3,C4,Cy) =
12 in his Ph.D. thesis!®l. Form > 5, it has been shown that R(Cp,, C3,C3) =
5m — 412),

Erdés, Faudree, Rousseau and Schelp proved the following theorem:

Theorem 1.1.81 If m is sufficiently large, R(Cpm,C4,Cy) = m + 2.
In their proof, the lower bounds of R(Cp,,C4, Cy) are obtained by coloring
the edges of K41 with three colors, as follows. Let

V(Km+1) = {v1,v2,- -, Um+1},

then
E(G1) = {vmUm#1Uviv;; 1<i<ji<m—1},
E(G2) = {vmw; 1<i<m-1},
E(G3) = {vmpvi; 1<i<m-—1}

Since Gy & Kypm—1 U Ko and G2 2 G3 = S, U Ky, it follows Cy,, € G and
Cs € Gi(i = 2,3). Hence we have,

Corollary 1.2. R(Cp,,C4,C4) 2 m + 2.

For the literature on small Ramsey number we refer to [7] and the
relevant references given in it.

In this paper, we prove that
R(Cm,C4,C4) = m+2s m 2> 11)

and determine the values of R(Cy,,Cy,Cy) for 5 < m < 10, as shown in
Table 1.1.



Table 1.1. The values of R(C,,,Cy, Cy)

m 3 4 [5]6]7]8]0]10]>11
R(Cm,Ca, Cy) [ 120 | 1l [ 12 [ 12 [ 12 [ 12 [ 13|13 | m+2

For the sake of argument, let f(m) be the values of R(Cyn, Cs, C4) in Table
1.1 in the following sections.

2. The lower bounds of R(C,,,Cy,Cy) for m > 5

A cutpoint of a graph is a vertex whose removal increases the number
of components. A nonseparable graph is connected, nontrivial, and has no
cutpoint. A block of a graph is a maximal nonseparable subgraph.

If m > 11, by Corollary 1.2, we have R(Cp,, C4,Cq) 2 f(m). If5<m <
10, the lower bounds of R(Cy,, Cy, Cy) in Corollary 1.2 can be improved as
follows.

Lemma 2.1. R(Cs, C4, C4) > f(5)
Proof. We show a 3-coloring of the edges of K 11 in Figure 2.1, where

all the edges of G; are in the i-th color. We can find that G — v3us (or
G — v4v6) consists of three blocks. One is isomorphic to K34 and each of
the others has at most 4 vertices, so Cjs € Gy — vaus (or Cs € Gy — vqug).
The cycles that contain edges vsvs and v4vg have length at least 6 in G.
So, Cs € G). Since G, contains cycles of length at least 5 except the three
triangles, we have Cy ¢ G5. Similarly, since G3 contains cycles of length at
least 5 except the four triangles, we have C, € Gs. Hence, R(Cs,Cy4,Cy) >
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Figure 2.1. A 3-coloring of K1, for (Cs, Cy, Cy)

Lemma 2.2. If m € {6,7,8}, then R(Cy,Cy,Cy) > f(m).
Proof. We show a 3-coloring of the edges of K 11 in Figure 2.2, where

all the edges of G; are in the i-th color. Since G consists of three blocks,



and there are at most 5 vertices in every block, it is forced that C, € Gy
for 6 < m < 8; G2 contains cycles of length at least 5 except the four
triangles, we have Cy ¢ G,. Since G3 = Ga, then Cy; € G3. Hence,

R(CpyCy,Cy) > 12for 6 <m < 8. ]
V2 Ve
v3 o U7
V4 g
Vs Vg
Y10 Vn
Gy

Figure 2.2. A 3-coloring of K for (Crn,C4,Cy4) for 6 <m < 8

Lemma 2.3. If m € {9,10}, then R(Cp,Cs,Cy) > f(m).
Proof. We show a 3-coloring of the edges of Kj2 in Figure 2.3, where

all the edges of G; are in the i-th color. Since G; consists of three blocks,
and there are at most 8 vertices in every block, then Cp, € Gy for 9 <
m < 10; G, contains cycles of length at least 5 except the two triangles,
we have Cy € Ga. Also G3 contains cycles of length at least 5 except
the two triangles, it follows Cy € G3 too. Hence, R(Cp,C4,Cy4) > 13 for
9<m<10. m]

ol12 U119 oV12 vi10

V3 Vg U
Gs
Figure 2.3. A 3-coloring of K2 for (Cp,,C4,Cy) for 9 <m < 10

3. The values of R(C,,,Cy,Cy) for m > 5

Lemma 3.1. K37 is not 2-colorable to (Cy, Cy).
Proof. By contradiction, suppose that K3 7 is 2-colorable to (Cy4, Cy). Let



Gi(i = 1,2) be the subgraphs of K3 7 whose edges are in the i-th color in a
2-coloring of the edges of K3 7 such that Cy € G;. Let dg, (v) be the degree
of a vertex v in subgraph G;, and

E(K37) = {uv; 1<i<8,1<5<7}).

Then one of dg, (u;) and dg, (u1), say dg, (u1) is at least 4. Without loss of
generality, we may assume that uv; € E(G,) for 1 < i < 4. Since Cy ¢ Gy,
there are at least three vertices of {v1,v2,vs,v4}, say vz, v3 and v4 adjacent
to uz in Ga. Therefore since Cy € Ga, there are at least two vertices of
{v2,vs,v4}, say vs and vy adjacent to uz in G;. Thus uy,us,vs and vy
would form a Cy in Gy, a contradiction with Cy ¢ G:. Hence, the lemma
follows. m]

To obtain the upper bounds of R(Cp,, C4, Cy), we first define three graph
sets S;(n), Sy (n) and S} (n). Let Sm(n) denote the set of the graphs of
order n and not containing Cy,. For a graph G, if C, € Gand C, CG+e
for any e € E(G), then G is said to be a critical graph. Let S;.(n) be the
set of the critical graphs of order n. Let S}*(n) be the set of the graphs G
such that G € S}, (n), Cm—1 C G, K¢ € G and K37 ¢ G, that is,

Sm(n) = {G;Cm & GAp(G)=n}, _
Sy (n) {G;G € Sm(n) ACrn € G + e for any e € E(G)},
S (n) {GiGeS(n)ACn-1 CGAKs L GAKsyr g G).

Lemma 3.2. If R(Cin-1,Cy,Cy) < f(m —1) < f(m) and G is not 2-
colorable to (Cy, Cy) for every G € S;7(f(m)), then R(Cin,Cy,Cy) < f(m).
Proof. By contradiction, suppose that R(Cp,,Cy,Cy) > f(m) = n. Let

Gi(i = 1,2,3) be the subgraphs of K,, whose edges are in the i-th color in a,
3-coloring of the edges of K, such that G; € Sm(n), G2 € S4(n) and Gz €
S4(n). Then G, is 2-colorable to (Cy, Cy). Since R(Cm_1,Ca,Ca) < 1, Kn
is not 3-colorable to (Cr,—1, Cy, Cy). Thereforesince Cy € G2 and Cy € Gs,
it is forced that Cp,—y C G;. While there exists an edge e € E(G;) such
that C,, € G; + e, it will be transformed to G;. We continue on this way
until G; € S;,(n). Since G is 2-colorable to (Cy, Cy), by Ry (Cy) = 612!
and Lemma 3.1, we have K¢ ¢ G; and K37 € G;. Now, we still have
Cm-1 C G1. By the definition of Sk*(n), it follows G € S:*(n). However
now G| is 2-colorable to (C4, Cy), a contradiction with the hypothesis. DO

We employ an algorithm CCG(Construct Critical Graphs) to construct
all graphs in S;*(n) by adding some edges to (n — m + 1)K; U Cp,—y,
where n = f(m) and the isomorph program is same as the one used in
[9, 10, 11, 12).



Algorithm CCG:
S2*n)=0;81={(n-m+1)K1UCn_1 };
while S; # 0 do
So=51; S1=0;
for every G € Sy do
if K37 ¢ G, Ks € G and G is a critical graph
if G is not isomorphic to any graphs in S}, (n)
S (n) = S5 (n) U{G};
endif
else
1fK37CG’orK6CG
Let H be the forbidden subgraph K3 7(or Kg) in G;
else Let H =G
endif
for every edge e € E(H) do
if Cy € G+ e and G + e is not isomorphic to any
graphs in S
S =51U{G+e};
endif
endfor
endif
endfor
endwhile

First, We construct all graphs in S$¢*(12) using algorithm CCG. The
value of |S3*(12)| is shown in Table 3.1. Then, in order to determine
whether G is 2-colorable to (Cy, Cy), we color the edges of G with two colors
using a standard backtrack search algorithm. With the help of computer,
we show that G is not 2-colorable to (Cy, Cy) for every graph G € S5*(12).
Since R(Cy,C4,Cy) = 11 < f(5), by Lemma 3.2, R(Cs,C4,C4) < f(5) =
12.

Consider the Ramsey number R(Cs, Cy, Cy) similarly. We construct all
graphs in S;*(12) using algorithm CCG. Then we show that G is not 2-
colorable to (Cy,Cy) for every graph G € Sg*(12). Since R(Cs,C4,Cy) <
12 < f(6), by Lemma 3.2, R(Cg, Cy,Cy) < f(6).

We can construct all graphs in S}’ (f(m)) for 7 < m < 19. The values
of |S%*(f(m))| are shown in Table 3.1. Using the standard backtrack search
algorithm, we show that G is not 2-colorable to (Cy, C4) for every graph
G € S (f(m)). Since f(m — 1) < f(m), by Lemma 3.2, we can prove
R(Cpm,C4,C4) < f(m) sequentially, for m = 7,...,19. Hence, we have,

Lemma 3.3. For 5 < m < 19, R(Cm,Csy,Cy4) < f(m). o



Table 3.1. The values of |Sk¥(f(m))]|
6718

m 5 9 [10[11]12
f(m) 12 (1212121313 [ 13| 14
[Sxx(f(m)] [ 100 [60 [70 [ 79| 0 | 5 | 26 | 1
m 13 [14]15]16[17] 18] 19
f(m) 15 [16 17181920 [ 21
[S(fm)]| 0 0[O0 |00 |O0]oO

In (3], the following lemma is also established:

Lemma L 3.4. Let G be a graph that contains a cycle C,,, but no Crt1.
If K, € G, then each vertex in V(G) — V(C,,) is adjacent to at most  — 2
vertices of V(C,,,) in G.

Lemma 3.5. If m > 20, then R(Cy,,Cy4,Cy) < f(m).
Proof. We will prove that R(Ci,, Cs,Cs) < f(m) for m > 19 by induction.

(1) For m = 19, by Lemma 3.3, we have R(Cig,C4, Cy) < f(m) = 21.

(2) Suppose that R(Ci,Cy,Cq) < k+ 2 for k > 19. We will show that
R(Cr41,C4,C4) < k + 3, as follows.

Assume that R(Ciy1,C4,Cq) > k + 3, then Kj,3 is 3-colorable to
(Ck+1,C4, Cy). Let G;(i = 1,2,3) be the subgraphs of K43 whose edges
are in the i-th color in a 3-coloring of the edges of K3 such that Ciy, ¢
G1, C4 € G2 and Cy ¢ G3. Then G is 2-colorable to (C4,C4). By the
induction hypothesis, R(Cy, Ca, Cy) < k + 2, there exists a cycle of length
k in Gy, denoted by Ci. Let v; € (V(Gy) — V(Cy)) for 1 < i < 3. Since
Ry(Cy4) = 6, we have K¢ ¢ G:. By Lemma 3.4, each v; is adjacent to at
most 4 vertices of V(Ci) in G;. So, there are at least k£ — 12 > 7 vertices
of V(Cy) that are nonadjacent to any vertices of {v1,v2,v3} in G;. Hence
K37 C G1. By Lemma 3.1, G, is not 2-colorable to (C4, Cy), a contradic-
tion. Hence, the assumption that R(Ck+1,C4,Cs) > k + 3 does not hold.
So, R(Ck+1,C4,C4) £ k + 3. This completes the induction step, and the
proof is finished. m]

By results in [1] and [8], Corollary 1.2, Lemmas 2.1-2.3, Lemma 3.3 and
Lemma 3.5, we obtain the values of R(Cp,, Cy, C4) for m > 3, as given in
Table 1.1. So, we have



Theorem 3.6.

11, m =4,
), m =3,5,6,7,8,
R(Cm,CaiCa) = 4 13, m =9,10,
m+ 2, m > 11.
(]
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