On the Three Color Ramsey Numbers $R(C_m, C_4, C_4)$ *

Sun Yongqi, Yang Yuansheng, Lin Xiaohui, Zheng Wenping Department of Computer Science, Dalian University of Technology Dalian, 116024, P. R. China

e-mail: yangys@dlut.edu.cn

Abstract

Let G_i be the subgraph of G whose edges are in the i-th color in an r-coloring of the edges of G. If there exists an r-coloring of the edges of G such that $H_i \not\subseteq G_i$ for all $1 \leq i \leq r$, then G is said to be r-colorable to (H_1, H_2, \ldots, H_r) . The multicolor Ramsey number $R(H_1, H_2, \ldots, H_r)$ is the smallest integer n such that K_n is not r-colorable to (H_1, H_2, \ldots, H_r) . It is well known that $R(C_m, C_4, C_4) = m + 2$ for sufficiently large m. In this paper, we determine the values of $R(C_m, C_4, C_4)$ for $m \geq 5$, which show that $R(C_m, C_4, C_4) = m + 2$ for $m \geq 11$.

Keywords: multicolor Ramsey number, forbidden subgraph, critical graph, cycle

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. For a graph G with vertex set V(G) and edge set E(G), we denote the order and the size of G by p(G) = |V(G)| and q(G) = |E(G)|, respectively.

Let G_i be the subgraph of G whose edges are in the *i*-th color in an r-coloring of the edges of G. If there exists an r-coloring of the edges of G such that $H_i \not\subseteq G_i$ for all $1 \leq i \leq r$, then G is said to be r-colorable

^{*}This research is supported by NSFC (60373096,60573022) and SRFDP (20030141003).

to (H_1, H_2, \ldots, H_r) . The multicolor Ramsey number $R(H_1, H_2, \ldots, H_r)$ is the smallest integer n such that K_n is not r-colorable to (H_1, H_2, \ldots, H_r) . In case of $H_1 \cong H_2 \cong \ldots \cong H_r \cong H$, we simply write the multicolor Ramsey number $R(H_1, H_2, \ldots, H_r)$ as $R_r(H)$. Let C_m be a cycle of length m. P_m denotes a path of m vertices. S_m is a star with m-1 leaves. Let \overline{G} denote the complement of G.

The only known value of a multicolor classical Ramsey number $R_3(K_3) = R_3(C_3) = 17$, was given by Greenwood and Gleason^[6]. Bialostocki and Schönheim proved that $R_3(C_4) = 11^{[1]}$. Using a computer, Yang Yuansheng and Rowlinson determined that $R_3(C_5) = 17$ and $R_3(C_6) = 12^{[10, 11]}$. Faudree, Schelten and Schiermeyer showed that $R_3(C_7) = 25^{[5]}$. Exoo and Reynolds proved that $R(C_4, C_3, C_3) = 17^{[4]}$. Schulte gave $R(C_3, C_4, C_4) = 12$ in his Ph.D. thesis^[8]. For $m \geq 5$, it has been shown that $R(C_m, C_3, C_3) = 5m - 4^{[12]}$.

Erdös, Faudree, Rousseau and Schelp proved the following theorem:

Theorem 1.1.^[3] If m is sufficiently large, $R(C_m, C_4, C_4) = m + 2$. In their proof, the lower bounds of $R(C_m, C_4, C_4)$ are obtained by coloring the edges of K_{m+1} with three colors, as follows. Let

$$V(K_{m+1}) = \{v_1, v_2, \dots, v_{m+1}\},\$$

then

$$\begin{split} E(G_1) &= \{v_m v_{m+1} \cup v_i v_j; \ 1 \leq i < j \leq m-1\}, \\ E(G_2) &= \{v_m v_i; \ 1 \leq i \leq m-1\}, \\ E(G_3) &= \{v_{m+1} v_i; \ 1 \leq i \leq m-1\}. \end{split}$$

Since $G_1 \cong K_{m-1} \cup K_2$ and $G_2 \cong G_3 \cong S_m \cup K_1$, it follows $C_m \not\subseteq G_1$ and $C_4 \not\subseteq G_i (i = 2, 3)$. Hence we have,

Corollary 1.2. $R(C_m, C_4, C_4) \ge m + 2$.

For the literature on small Ramsey number we refer to [7] and the relevant references given in it.

In this paper, we prove that

$$R(C_m, C_4, C_4) = m+2, \qquad m \ge 11,$$

and determine the values of $R(C_m, C_4, C_4)$ for $5 \le m \le 10$, as shown in Table 1.1.

Table 1.1. The values of $R(C_m, C_4, C_4)$

m	3	4	5	6	7	8	9	10	≥ 11
$R(C_m, C_4, C_4)$	12[8]	$11^{[1]}$	12	12	12	12	13	13	m+2

For the sake of argument, let f(m) be the values of $R(C_m, C_4, C_4)$ in Table 1.1 in the following sections.

2. The lower bounds of $R(C_m, C_4, C_4)$ for $m \geq 5$

A cutpoint of a graph is a vertex whose removal increases the number of components. A nonseparable graph is connected, nontrivial, and has no cutpoint. A block of a graph is a maximal nonseparable subgraph.

If $m \ge 11$, by Corollary 1.2, we have $R(C_m, C_4, C_4) \ge f(m)$. If $5 \le m \le 10$, the lower bounds of $R(C_m, C_4, C_4)$ in Corollary 1.2 can be improved as follows.

Lemma 2.1. $R(C_5, C_4, C_4) \geq f(5)$.

Proof. We show a 3-coloring of the edges of K_{11} in Figure 2.1, where all the edges of G_i are in the *i*-th color. We can find that $G_1 - v_3v_5$ (or $G_1 - v_4v_6$) consists of three blocks. One is isomorphic to $K_{3,4}$ and each of the others has at most 4 vertices, so $C_5 \nsubseteq G_1 - v_3v_5$ (or $C_5 \nsubseteq G_1 - v_4v_6$). The cycles that contain edges v_3v_5 and v_4v_6 have length at least 6 in G_1 . So, $C_5 \nsubseteq G_1$. Since G_2 contains cycles of length at least 5 except the three triangles, we have $C_4 \nsubseteq G_2$. Similarly, since G_3 contains cycles of length at least 5 except the four triangles, we have $C_4 \nsubseteq G_3$. Hence, $R(C_5, C_4, C_4) \ge 12$.

Figure 2.1. A 3-coloring of K_{11} for (C_5, C_4, C_4)

Lemma 2.2. If $m \in \{6,7,8\}$, then $R(C_m, C_4, C_4) \ge f(m)$. **Proof.** We show a 3-coloring of the edges of K_{11} in Figure 2.2, where all the edges of G_i are in the *i*-th color. Since G_1 consists of three blocks, and there are at most 5 vertices in every block, it is forced that $C_m \nsubseteq G_1$ for $6 \le m \le 8$; G_2 contains cycles of length at least 5 except the four triangles, we have $C_4 \nsubseteq G_2$. Since $G_3 \cong G_2$, then $C_4 \nsubseteq G_3$. Hence, $R(C_m, C_4, C_4) \ge 12$ for $6 \le m \le 8$.

Figure 2.2. A 3-coloring of K_{11} for (C_m, C_4, C_4) for $6 \le m \le 8$

Lemma 2.3. If $m \in \{9, 10\}$, then $R(C_m, C_4, C_4) \ge f(m)$.

Proof. We show a 3-coloring of the edges of K_{12} in Figure 2.3, where all the edges of G_i are in the *i*-th color. Since G_1 consists of three blocks, and there are at most 8 vertices in every block, then $C_m \not\subseteq G_1$ for $9 \le m \le 10$; G_2 contains cycles of length at least 5 except the two triangles, we have $C_4 \not\subseteq G_2$. Also G_3 contains cycles of length at least 5 except the two triangles, it follows $C_4 \not\subseteq G_3$ too. Hence, $R(C_m, C_4, C_4) \ge 13$ for $9 \le m \le 10$.

Figure 2.3. A 3-coloring of K_{12} for (C_m, C_4, C_4) for $9 \le m \le 10$

3. The values of $R(C_m, C_4, C_4)$ for $m \ge 5$

Lemma 3.1. $K_{3,7}$ is not 2-colorable to (C_4, C_4) .

Proof. By contradiction, suppose that $K_{3,7}$ is 2-colorable to (C_4, C_4) . Let

 $G_i(i=1,2)$ be the subgraphs of $K_{3,7}$ whose edges are in the *i*-th color in a 2-coloring of the edges of $K_{3,7}$ such that $C_4 \not\subseteq G_i$. Let $d_{G_i}(v)$ be the degree of a vertex v in subgraph G_i , and

$$E(K_{3,7}) = \{u_i v_j; 1 \le i \le 3, 1 \le j \le 7\}.$$

Then one of $d_{G_1}(u_1)$ and $d_{G_2}(u_1)$, say $d_{G_1}(u_1)$ is at least 4. Without loss of generality, we may assume that $u_1v_i \in E(G_1)$ for $1 \le i \le 4$. Since $C_4 \nsubseteq G_1$, there are at least three vertices of $\{v_1, v_2, v_3, v_4\}$, say v_2, v_3 and v_4 adjacent to u_2 in G_2 . Therefore since $C_4 \nsubseteq G_2$, there are at least two vertices of $\{v_2, v_3, v_4\}$, say v_3 and v_4 adjacent to u_3 in G_1 . Thus u_1, u_3, v_3 and v_4 would form a C_4 in G_1 , a contradiction with $C_4 \nsubseteq G_1$. Hence, the lemma follows.

To obtain the upper bounds of $R(C_m, C_4, C_4)$, we first define three graph sets $S_m(n)$, $S_m^*(n)$ and $S_m^{**}(n)$. Let $S_m(n)$ denote the set of the graphs of order n and not containing C_m . For a graph G, if $C_m \not\subseteq G$ and $C_m \subseteq G + e$ for any $e \in E(\overline{G})$, then G is said to be a *critical graph*. Let $S_m^*(n)$ be the set of the critical graphs of order n. Let $S_m^{**}(n)$ be the set of the graphs G such that $G \in S_m^*(n)$, $C_{m-1} \subseteq G$, $K_6 \not\subseteq \overline{G}$ and $K_{3,7} \not\subseteq \overline{G}$, that is,

$$\begin{array}{lll} S_m(n) & = & \{G; C_m \not\subseteq G \land p(G) = n\}, \\ S_m^*(n) & = & \{G; G \in S_m(n) \land C_m \subseteq G + e \text{ for any } e \in E(\overline{G})\}, \\ S_m^{**}(n) & = & \{G; G \in S_m^*(n) \land C_{m-1} \subseteq G \land K_6 \not\subseteq \overline{G} \land K_{3,7} \not\subseteq \overline{G}\}. \end{array}$$

Lemma 3.2. If $R(C_{m-1}, C_4, C_4) \leq f(m-1) \leq f(m)$ and \overline{G} is not 2-colorable to (C_4, C_4) for every $G \in S_m^{**}(f(m))$, then $R(C_m, C_4, C_4) \leq f(m)$. **Proof.** By contradiction, suppose that $R(C_m, C_4, C_4) > f(m) = n$. Let

 $G_i(i=1,2,3)$ be the subgraphs of K_n whose edges are in the i-th color in a 3-coloring of the edges of K_n such that $G_1 \in S_m(n)$, $G_2 \in S_4(n)$ and $G_3 \in S_4(n)$. Then $\overline{G_1}$ is 2-colorable to (C_4, C_4) . Since $R(C_{m-1}, C_4, C_4) \leq n$, K_n is not 3-colorable to (C_{m-1}, C_4, C_4) . Therefore since $C_4 \not\subseteq G_2$ and $C_4 \not\subseteq G_3$, it is forced that $C_{m-1} \subseteq G_1$. While there exists an edge $e \in E(\overline{G_1})$ such that $C_m \not\subseteq G_1 + e$, it will be transformed to G_1 . We continue on this way until $G_1 \in S_m^*(n)$. Since $\overline{G_1}$ is 2-colorable to (C_4, C_4) , by $R_2(C_4) = 6^{[2]}$ and Lemma 3.1, we have $K_6 \not\subseteq \overline{G_1}$ and $K_{3,7} \not\subseteq \overline{G_1}$. Now, we still have $C_{m-1} \subseteq G_1$. By the definition of $S_m^{**}(n)$, it follows $G_1 \in S_m^{**}(n)$. However now $\overline{G_1}$ is 2-colorable to (C_4, C_4) , a contradiction with the hypothesis. \square

We employ an algorithm CCG(Construct Critical Graphs) to construct all graphs in $S_m^{**}(n)$ by adding some edges to $(n-m+1)K_1 \cup C_{m-1}$, where n=f(m) and the isomorph program is same as the one used in [9, 10, 11, 12].

```
Algorithm CCG:
S_m^{**}(n) = \emptyset; S_1 = \{ (n-m+1)K_1 \cup C_{m-1} \};
while S_1 \neq \emptyset do
    S_0 = S_1; \ S_1 = \emptyset;
    for every G \in S_0 do
        if K_{3,7} \nsubseteq \overline{G}, K_6 \nsubseteq \overline{G} and G is a critical graph
            if G is not isomorphic to any graphs in S_m^{**}(n)
                S_m^{**}(n) = S_m^{**}(n) \cup \{G\};
             endif
         else
             if K_{3,7} \subseteq \overline{G} or K_6 \subseteq \overline{G}
                 Let H be the forbidden subgraph K_{3,7} (or K_6) in \overline{G};
             else Let H = \overline{G};
             endif
             for every edge e \in E(H) do
                 if C_m \nsubseteq G + e and G + e is not isomorphic to any
                    graphs in S_1
                      S_1 = S_1 \cup \{G + e\};
                 endif
             endfor
         endif
     endfor
endwhile
```

First, We construct all graphs in $S_5^{**}(12)$ using algorithm CCG. The value of $|S_5^{**}(12)|$ is shown in Table 3.1. Then, in order to determine whether \overline{G} is 2-colorable to (C_4, C_4) , we color the edges of \overline{G} with two colors using a standard backtrack search algorithm. With the help of computer, we show that \overline{G} is not 2-colorable to (C_4, C_4) for every graph $G \in S_5^{**}(12)$. Since $R(C_4, C_4, C_4) = 11 < f(5)$, by Lemma 3.2, $R(C_5, C_4, C_4) \le f(5) = 12$.

Consider the Ramsey number $R(C_6, C_4, C_4)$ similarly. We construct all graphs in $S_6^{**}(12)$ using algorithm CCG. Then we show that \overline{G} is not 2-colorable to (C_4, C_4) for every graph $G \in S_6^{**}(12)$. Since $R(C_5, C_4, C_4) \leq 12 \leq f(6)$, by Lemma 3.2, $R(C_6, C_4, C_4) \leq f(6)$.

We can construct all graphs in $S_m^{**}(f(m))$ for $7 \le m \le 19$. The values of $|S_m^{**}(f(m))|$ are shown in Table 3.1. Using the standard backtrack search algorithm, we show that \overline{G} is not 2-colorable to (C_4, C_4) for every graph $G \in S_m^{**}(f(m))$. Since $f(m-1) \le f(m)$, by Lemma 3.2, we can prove $R(C_m, C_4, C_4) \le f(m)$ sequentially, for $m = 7, \ldots, 19$. Hence, we have,

Lemma 3.3. For
$$5 \le m \le 19$$
, $R(C_m, C_4, C_4) \le f(m)$.

Table 3.1. The values of $|S_m^{**}(f(m))|$

	1-m (J (1-7))										
m	5	6	7	8	9	10	11	12			
f(m)	12	12	12	12	13	13	13	14			
$ S_m^{**}(f(m)) $	100	60	70	79	0	5	26	1			
m	13	14	15	16	17	18	19				
f(m)	15	16	17	18	19	20	21				
$ S_m^{**}(f(m)) $	0	0	0	0	0	0	0				

In [3], the following lemma is also established:

Lemma 3.4. Let G be a graph that contains a cycle C_m , but no C_{m+1} . If $K_r \not\subseteq \overline{G}$, then each vertex in $V(G) - V(C_m)$ is adjacent to at most r-2 vertices of $V(C_m)$ in G.

Lemma 3.5. If $m \geq 20$, then $R(C_m, C_4, C_4) \leq f(m)$. **Proof.** We will prove that $R(C_m, C_4, C_4) \leq f(m)$ for $m \geq 19$ by induction.

- (1) For m = 19, by Lemma 3.3, we have $R(C_{19}, C_4, C_4) \le f(m) = 21$.
- (2) Suppose that $R(C_k, C_4, C_4) \le k + 2$ for $k \ge 19$. We will show that $R(C_{k+1}, C_4, C_4) \le k + 3$, as follows.

Assume that $R(C_{k+1}, C_4, C_4) > k+3$, then K_{k+3} is 3-colorable to (C_{k+1}, C_4, C_4) . Let $G_i(i=1,2,3)$ be the subgraphs of K_{k+3} whose edges are in the i-th color in a 3-coloring of the edges of K_{k+3} such that $C_{k+1} \nsubseteq G_1$, $C_4 \nsubseteq G_2$ and $C_4 \nsubseteq G_3$. Then $\overline{G_1}$ is 2-colorable to (C_4, C_4) . By the induction hypothesis, $R(C_k, C_4, C_4) \le k+2$, there exists a cycle of length k in G_1 , denoted by C_k . Let $v_i \in (V(G_1) - V(C_k))$ for $1 \le i \le 3$. Since $R_2(C_4) = 6$, we have $K_6 \nsubseteq \overline{G_1}$. By Lemma 3.4, each v_i is adjacent to at most 4 vertices of $V(C_k)$ in G_1 . So, there are at least $k-12 \ge 7$ vertices of $V(C_k)$ that are nonadjacent to any vertices of $\{v_1, v_2, v_3\}$ in G_1 . Hence $K_{3,7} \subseteq \overline{G_1}$. By Lemma 3.1, $\overline{G_1}$ is not 2-colorable to (C_4, C_4) , a contradiction. Hence, the assumption that $R(C_{k+1}, C_4, C_4) > k+3$ does not hold. So, $R(C_{k+1}, C_4, C_4) \le k+3$. This completes the induction step, and the proof is finished.

By results in [1] and [8], Corollary 1.2, Lemmas 2.1-2.3, Lemma 3.3 and Lemma 3.5, we obtain the values of $R(C_m, C_4, C_4)$ for $m \ge 3$, as given in Table 1.1. So, we have

Theorem 3.6.

$$R(C_m, C_4, C_4) = \begin{cases} 11, & m = 4, \\ 12, & m = 3, 5, 6, 7, 8, \\ 13, & m = 9, 10, \\ m + 2, & m \ge 11. \end{cases}$$

Acknowledgements

We would like to thank the referees for their helpful comments and suggestions which led to the improvement of the present version.

References

- A. Bialostocki and J. Schönheim, On some Turán and Ramsey numbers for C₄, Graph Theory and Combinatorics (ed. B. Bollobás), Academic Press, London, (1984) 29-33.
- [2] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, II. Small diagonal numbers, Proceedings of the American Mathematical Society, 32 (1972) 389-394.
- [3] P. Erdös, R. J. Faudree, C. C. Rousseau and R. H. Schelp, Generalized Ramsey theory for multiple colors, *Journal of Combinatorial Theory*, series B, 20 (1976) 250-264.
- [4] G. Exoo and D. F. Reynolds, Ramsey numbers based on C₅-decompositions, Discrete Mathematics, 71 (1988) 119-127.
- [5] R. J. Faudree, A. Schelten and I. Schiermeyer, The Ramsey number $R(C_7, C_7, C_7)$, Discussiones Mathematicea Graph Theory, 23 (2003) 141-158.
- [6] R. E. Greenwood and A. M. Gleason, Combinatorial relations and chromatic graphs, Canadian Journal of Mathematics, 7 (1955) 1-7.
- [7] S. P. Radziszowski, Small Ramsey numbers, Electronic Journal of Combinatorics, http://www.combinatorics.org/, #R10, (2004) 48 pages.
- [8] C. U. Schulte, Ramsey-Zahlen für Bäume und Kreise, Ph.D. thesis, Heinrich-Heine-Universität Düsseldorf, (1992).

- [9] Yang Yuansheng and P. Rowlinson, On extremal graphs without four-cycles, *Utilitas Mathematica*, 41 (1992) 204-210.
- [10] Yang Yuansheng and P. Rowlinson, On the third Ramsey numbers of graphs with five edges, *Journal of Combinatorial Mathematics and Combinatorial Computing*, 11 (1992) 213-222.
- [11] Yang Yuansheng and P. Rowlinson, On graphs without 6-cycles and related Ramsey numbers, *Utilitas Mathematica*, 44 (1993) 192-196.
- [12] Sun Yongqi, Yang Yuansheng, Wang Wei, Li Bingxi and Xu Feng, On the three color Ramsey numbers $R(C_{m_1}, C_{m_2}, C_{m_3})$, preprint.