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Abstract

In this paper, we give some necessary conditions for a prime graph. We
also present some new families of prime graphs such as K, © K, is prime if
andonly if n <7, K, O K, is prime if and only if 7 <16 and K, US, is
prime if and only if #(m +n —1)=>m . We also show that a prime graph of

order greater than or equal to 20 has a nonprime complement.

1. Introduction

All graphs in this paper are finite, simple and undirected. We follow the

basic notations and terminology of graph theory as in [1] and [4].

A graph G of order » is said to have a prime labeling (or simply G is

called prime) if there is an injection

fVGy->{1,2,.,n}

such that for each edge xy €E(G) , f(x) and f(y) are

relatively prime.

The notion of a prime labeling originated by Entringer and was
introduced in a paper by Tout, Dabboucy and Howalla [9] (see also [4], [5]) .
Entringer conjectured that all trees have a prime labelings. Among the classes of

trees known to have prime labelings are: paths, stars, caterpillars, complete binary
trees, spiders and all trees of order less than 35 (see[4]). Other graphs with

prime labelings include all cycles and the disjoint union of C,, and C,, [3]
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The complete graph K, does not have a prime labeling for n 24 and W, is

prime if and only if 1 is even (see[5]).

Seoud, Diab and Elsakhawi [7] have shown the following graphs are

prime: fans, helms, flowers, stars, K, , and K, unless # =3 or 7. They also

shown that P, + K_m (m =3) is not prime. Seoud and Youssef [8] proved

the following graphs are not prime C, +C, , C ,,2 for n>4 , P} for

n =6 and for n > 8. They also give an exact formula for the maximum number
of edges in a prime graph of order » and give an upper bound for the chromatic

number of a prime graph. For more details of known results of prime graphs,

see[4].

Recall that the union G U H of two disjoint graphs G and H is the
graph having vertex set ¥ (G)UV (H) while the corona G © H of G and
H is the graph obtained by taking one copy of G (which has n, vertices) and
n, copies of G,, and then joining the i th vertex of G, to every vertex in
thei th copyof G, .

The chromatic number ¥(G) of a graph G is the least number of colours
needed to colour the vertices of G so that no two adjacent vertices receive the

same colour.

The clique number »(G) of a graph G is the maximum order among the
complete subgraphs of G. If K, ¢ G, for some n, then x(G) 2 n, so in general (G)
> ©(G). The maximum (resp. minimum) of the vertex degrees of a graph G is
called the maximum (resp. minimum) degree of G and is denoted by A(G) (resp.
5(G)).

In section 2, we give some necessary conditions for a prime graph and
we show that a prime graph of order greater than or equal 20 has a non-prime

complement. In section3, we give some new familes of prime disconnected

graphs.
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2. Some properties of prime graphs

In this section, we follow the basic notation and terminology of number
theory as in [6). In particular, we let p, be the 7 th prime number, where

Py =2 , m(n) is the number of primes less than or equal to 7 and Euler’s
@ — function, @(n) , defined as the number of positive integers less than or
equal to # that are relatively prime to 7 .
We denote by (a,b) the greatest common divisor of the integers a and b.
Asin [8],agraph G of order n is prime if and only if G is
isomorphic to a spanning subgraph of the graph R, of order n with vertex set

V(R,= {v,,v 2reeesV "} and whose edge set is defined as
ER,)={y, :(.j)=1}.

is the

A graph R, is called the maximal prime graph and ,E (R,)
maximum number of edges in a prime graph of order #, Seoud and Youssef [8]

showed that if G is a prime graph of order 7, then
0 [E@|s90) -1,
(i) ¥(G)<n(n)+1 ,
(iii) ﬁ(G)z[% J . where B(G) is the vertex independence

number of G .

In the following theorem, we study some basic propetties of the maximal

prime graph R, .

Theorem 2.1
(@) o(Ry)=n(n) + 1
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i s n
®8R)=n+D.(-) D, |——

s=1 1jr<..<issm | Pjy -+Pig
where p; <p; <... <Py is the list of all prime numbers < nand m = max
{t<k<a(m):pi...px<n}
(c) A(R,)=n-1and

n
[ {v € V(R,) : deg(v) = A(Rq)} | = m(n) - RQED +1
Proof
(@) Let py <. .. < pyn) be the list of all prime numbers <n, then the
induced subgraph of R, generated by
U={v; e V(R,) :i=1ori=p;for some | <j<n(n)} is the graph Ksu) , hence

o(R,) = n(n) + 1. Conversely, for 1 < i < m(n) define,

Vi ={v;e V(R,):pilj},then

n(n)
VR = {v}v UV,
i=1
n(n)
={vi}jv U(\/I \Uvj)
i=1 j<i

is a partition of V(R,) into independent sets and let Ko ) be a maximal complete

subgraph of R, , then for I <i<a(n), [V(Kuwry) N (Vi UVj) | <1, hence
j<i

V(Ko ) < n(n) + 1, that is, o(R,) < w(n) + 1.
(b)For 1 £j<m(n), let Bj={1<ks<n:p;jk}.Wehave

8(Ry) = Eiﬂ, [{1<jsn:(,j)=1}]

=pn - max |UBj|

i<i<n .
< pjli
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3
=n - max {|UBjs | Pj, - PS M, 15j:<92< ... <je<m(n), k 2 1} .
=1

We show that ifpjl - pi S F<ji<ja<...<jy<m(n), k21, then

k k
| UB,, 1<1 UB;I-
s=1 j=1

For this purpose, we may assume that j,>k and choose i e {l1,2,..

I\ {iniz .-k}, then the function
k-1 k-1
g:B,\ UB;, — B:\ UB,,
s=1 s=1
defined by

e@)=p
ik

is injective and hence
k k-1 k-1
| UB; 1=1 UB;, v, \ UBj)|
s=1 s=1 s=1

k-1 k-1
<) UB;, 1+1®:\ UB;, |
s=1 s=1

k-1 k-1
=1 UB;, v\ UB;,)|
s=1 s=1

k-1
= l UB]s ) Bi |
s=1

-’jk

and our assertion follows by induction on j,. Then we get &(R,)=n-—

m
UBj |, where

i=1
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m=max {1 <k<na(n):p;...px<n}
and the desired formula follows from the inclusion-exclusion principle 2, p. 177].
(c) Since, for every vi € V(R,), 1 <k <n, deg(vy) = n—1 if and only ifk

n
=1 or k is prime such that {EJ <k<n.
Then A(R,) =n-1 and

[ {v e V(R,):deg(v) = A(R,) } |=7t(n)-1t(l%J)+ 1.0

The following corollary gives some necessary conditions for a prime

graph.
Corollary 2.2

If G is a prime graph of order n, then,

(a) o(G) < n(n) + |

(b) 8(G) < 8(R,) and

n
{v € V(G) : deg(v) =n~1}| < n(n) - n(lEJ Y+ 1.

Proof.

If G is a prime graph of order n, then G is a spanning subgraph of R,.
(a) Since G c R, , then o(G) < w(Ry) =n(n) + 1.
(b) Since G c R, , then 8(G) < &(R,) and

{v € V(G) : deg(v) = n-1}| < [{v € V(R,) : deg(v) =n-1}|

= 1t(n)—‘n:(lE )y+1.0
5 .

By using the necessary conditions for a prime graph, mentioned in

Corollary 2.2, we prove the following results.
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Theorem 2.3
Ky © K, is prime ifand only if n < 7.

Proof.
Ifn28, then n(2n) <n-2 and since o (K, © K,)=n, then (K,
O K,)>n(2n) + 1, hence by Corollary 2.2, K, O K, is not prime.

Conversely, ifn <7, then K, O K, =P, and K, © K, =P, are trivially
prime and K; O K, is simply prime. For4 <n<7, let

VK, © K))={uj,uy,...,u} U {vy, vy..., v,} where

EK, O K)={ujy:1<i<j<n}u{yv:1<i<n}, then (K, O K)),
4<n<7, are prime with the following prime labeling functions :
f: VK, © K)—> {1,2,...,8}
flu)=2i-1,1<i<4
f(v)) =2i ,1<i<4

f:V(Ks © K)—> {1,2,...,10}
flw)=1, flu)=2, flu;) =3, flus) =5, flus) =7,
f(v) =10, f(v;) =9, f(v;) =4, f(v4) = 6 and f(vs) = 8
f:V(Ks O K))—> {1,2,...,12}
f(ul) =1 ’ f(u2)=2 ) ﬂlh) =3 s f(“‘) =5 ) f(U5) = 7’
flug) =11, f{vi)=10,f(v;)=9,f(v;)=4 ,
flvs)=6 , f(vs)=8 and flvg) =12

f:VK; O K)—> {1,2,...,14}
flu)=1, fu)=2 ,f(u) =3, () =5, flus) =7,
flug) =11, f(ug) = 13, f(v)) = 10, f(v;) = 9, f(v;) = 4,
flvy)=6 , flvs)=8,f(vg)=12and f(v))=14.0
In the following theorem we show that every prime graph of order 16 or

18 or 20 or greater than or equal to 21, has a non prime complement.
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Theorem 2.4

K, OK, isprimeifand onlyif n <16.

Proof
If n 217 ,then #(3n) <n—2 andsince o (K, OK_Z)=n , then
oK, OK_2)>72’(3n)+1,hence by Corollary 2-2, K, QITZ is not

prime. Conversely, if # <16, let
V(K,0K,)={u, :1<i <n}U{v, v, :1<i <n} where

E(K"OK_Z):{u,uj (1<i < Sn}U{u,v,, :1<i <njUfuy,,
1<i <n}
Simply, we may write the vertices of K, (DK_2 in triples
(u, VsV ) , 1<i <n and their labelings written also in triples. For

1<n <11, let us define a labeling function as follows:

1,2,3),(5,4,6),(7,8,9),(11,10,12),(13,14,15),
(17,16,18),(19,20,21),(23,22,24),(27,26,25),(29, 30, 28),
(31.32.33)

It is clear that this labeling gives the prime labeling for all 1 <n <11
by removing each time the vertices of greater labeling. For 7 =12. The

following is a prime labeling:

(1,4,6),(2,9,15),(3,8,10),(5,12,14),(7,16,18),(11,20,21),
(13,22,24),(17,25,26),(19,27,28),(23,30,32)
(29,33,34),(31,35,36) '

For 13<n <16, we add for KnOK_2 the following triples
(37,38,39),(41,40,42),(43,44,45),(47,46,48) . This completes the

proof. 0
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Theorem 2.5

If G is a prime graph of order n, then G isnot prime if

nz2lorneven>16.

Proof.

n .
Let G be a prime graph of order n, then B(G) > [EJ . If n = 21, then

— n n ) —_
o(G):2 [EJ > ’75" =2 > n(n)+1 that is, o( G ) > n(n)+1 . If n even > 16, then

m(g) > [EJ > ’Vg] - 1 2 w(n)+1 that is, o( G ) > mn(n)+1 . Hence by Corollary

2.2, G is not prime. O

Note that we may find graphs such that neither these graphs nor its
complement is prime. For example, K, , n > 3. Also we may find graphs in which

these graphs are not prime but its complement are. For example, K, ,n >4 .
Corollary 2.6

.n
If G is a prime graph of order n, n 2 4, such that B(G) > [E_IH, then

G is not prime.
Proof.

n = n
Since B(G) > [E-’H, then (G ) > [E] +1 2 n(n)+1 for everyn2>4 .

Hence G is not prime by Corollary 2.2 .0
3. Families of prime disconnected graphs.

The following results concern with the prime labelings of some

disconnected graphs.

137



Theorem 3.1

(@) Cn v S, is prime forallm2>3andn2 1

(b) S U S, is prime forallm,n2>1.

Proof.

(a) If m is even, then label the vertices of the cycle C, consecutively with
the labels 2, 3, .. ., m+1, and then label the vertices of the star S, with the labels
1, m+2, m+3, ..., m+n+1, where 1 is the label of the center of the star. If n is odd,
then label the vertices of the cycle C,, consecutively with the labels 2, 3,...,m,
m+2, and then label the vertices of the star S, with the labels 1, m+1, m+3, m+4, .

.., m+n+1, where 1 is the label of the center of the star.

(b) Let V(Sp) = {ug, uy, - . ., U} and V(S,) = {vg, vy, . . ., va} where uo
and v, are the centers of the stars S,, and S, respectively. Suppose that | <m <n

and define a labeling function ,

f: V(Smu Sp)— {1,2,..., m+n+2}

as follows
flup) =2, f(vo) = 1
f(u)) = 2i+1 , 1<i<m
2+, I<jsm
E _{m+2+j , m<j<n

then f is bijection and the graph is prime. O
Theorem 3.2

Ku U P, is prime if and only if (1 Sm<3andn>1)or(m=4 and nis odd 2 1).
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Proof.

n In
,thatis [ = [+]1 >
J [2]

m+n L .
[ 5 JandthlsmphesthatlSms3andn2l,orm=4andnlsodd21.

, m +
If Kin U P, is prime, then, B( K, W P,) 2 [

Conversely, if 1 <m <3 and n 2 1, then label K, with 1, 2, . . ., m and label the
vertices of the path P, consecutively with the labels m+1, m+2, . . ., m+n, and if m
=4 and n is odd 2 I, then label the vertices of K, with the labels 1, 2, 3, 5 and

then label the vertices of P, consecutively with the labels 6, 7, . . ., n+4, 4.0
Theorem 3.3

Form,nz 1, K, U S, is prime if and only if x(m+n+1) > m

Proof.

= Let G = K, U S, is prime, then G is a spanning subgraph of Ry
and by Corollary 2.2, we have m < 0(G) € @(Rpens)) = m(m+n+1) + 1, so that
n(m+n+1) 2 m-1. We show that r(m+n+1) # m-1. Suppose that n(m+n+1) =
m-1, then ®(G) = ®(Rmn+1) = m and we may assume that the vertices of K,
receive the labels 1, py, pa, . . ., Pm-1 , Where py, py, . . ., P are the first (m—1)
prime numbers less than or equal to m+n+1, hence the center vertex of S, receive
a composite vertex label and we may assume that p; be the smallest prime divisor
of the vertex label of the center vertex of S, , for some 1 <i < m-1, then we have

2p; or 3p; is a vertex label of a pendent vertex of S, , which is a contradiction.

< Let i(m+n+1) 2 m and p, <p; . . . < py be the first m prime numbers
less than or equal to m+n+1, then label the vertices of K,, with the labels p,, P2 - -
-» Pm and label the vertices of S, with the labels {1, 2, ..., m+n+1}\ {p,, Py

Pw} Where 1 is the label of the center vertex of S, , hence K., U S, is prime. O
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