Subdivision of Edges and Matching
Size

D. BAUER !
E. SCHMEICHEL 2

T. SUROWIEC !
1 Department of Mathematical Sciences
Stevens Institute of Technology
Hoboken, NJ 07030, U.S.A.

2 Department of Mathematics
San Jose State University
San Jose, CA 95192, U.S.A.

February 28, 2007

Abstract

The well-known formula of Tutte and Berge expresses the size
of a maximum matching in a graph G in terms of the deficiency
maxxcv(c){wo(G—X)—|X|} of G, where wo( H) denotes the number
of odd components of H. Let G be the graph formed from G by
subdividing (possibly repeatedly) a number of its edges. In this note
we study the effect such subdivisions have on the difference between
the size of a maximum matching in G and the size of a maximum
matching in G .
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1 Introduction and Preliminary Results

In this note we consider only simple graphs. Our terminology will be stan-
dard. A good reference for any undefined terms is (7].

Given a graph G, let w(G) (resp., wo(G)) denote the number of components
(resp., odd components) of G. An important result in matching theory is
due to Tutte [6].

Theorem 1.1 (Tutte’s Theorem) A graph G has a perfect matching if and
only if wo(G — X) < | X| for all X C V(G).

In 1958, Berge [3] extended Tutte’s Theorem to give the exact size of a
maximum matching in a graph G. Define the deficiency of G, denoted
def(G), by maxxgv(g){wo(G - X) - IXl}

It can be shown that def(G) is the number of vertices unmatched by a
maximum matching in G, and thus we have the following.

Theorem 1.2 (Berge-Tutte formula) The mazimum size of a matching in
[V(G)| - def(G)

a graph G is 5

Since 1958, matching theory has received considerable attention. Much of
this work is described in [4].

Motivated by the formula in Theorem 1.2, we define a Tutte set in G as a
set X C V(G) such that wo(G— X) —|X| = def(G). These sets are referred
to as barriers in [4]. We denote by T the set of all Tutte sets in a graph
G. A theoretical and a computational study of maximal Tutte sets appears
in [1, 2).

We seek to gain some insight into the following question. Suppose G is a
graph with a maximum matching M. Let G’ be the graph formed from G
by subdividing (possibly repeatedly) a number of its edges. How does the
size of a maximum matching M’ in G compare to the size of M?

Let Q be the set of degree two vertices that are added to V(G) by subdi-
viding the edges of G We say that these vertices are mserted into the
edges of G to form G'. Let ¢ = |Q|, m = |M|, and m" = |[M'|. Of course,
m' > m. However, what can be said about m’ — m? Indeed, how large
must g be to insure that m > m? This leads to the following.

Let G be a graph with maximum matching of size m. We define f(G) to
be the maximum number of degree two vertices that can be inserted into
the edges of G to form a graph G withm=m.
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In Section 2 we investigate these questions for regular gra.phs If Gis
k-regular with edge-connectivity A = k — 1, we determine m’ — m, and
show that our result is best possible. For regular graphs with smaller
edge-connectivity, we find f(G). In Section 3 we consider general graphs,
i.e., graphs that are not necessarily regular, and show that f(G) is closely
related to the maximum number of edges in a Tutte set of G. We conclude
in Section 4 with some open questions.

2 Regular Graphs

We begin by studying regular graphs. The following result of Petersen is
well-known [5).

Theorem 2.1 Let G be a 3-regular, 2-edge-connected graph on n vertices.
Then G has a perfect matching.

This can easily be generalized to k-regular graphs, for k > 3.

Theorem 2.2 Let G be a k-regular, (k — 1)-edge-connected graph on n
vertices, where n is even. Then G has a perfect matching.

Note that if G is a 3-regular, 2-edge-connected graph on n vertices, it is
possxble to form G* by inserting g > 6 vertices into the edges of G without
G’ having a perfect matching. Simply let G = K4 and insert a vertex into
each edge. However if four degree 2 vertices are inserted into any 3-regular,
2-edge-connected graph, the resulting graph will have a perfect matching.
This is a special case of the following result.

We define
2, neven,qg=1

g(ns q,k)= n q
LEJ + % otherwise.

Theorem 2.3 Let k > 3, and G be a k-regular, (k — 1)-edge-connected
graph on n > 4 vertices. Form G' by inserting q vertzces of degree two into
the edges of G. Then G’ has a matching M’ with m’ > g(n, q, k).

PROOF: Let S’ be a smallest Tutte set for G' with deficiency d = def(G')
=wy(G' - §')—|S'|. Welet ' =n+qandt =wo(G - 5).
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Case 1: 8" = 0.

If ' =, then
d = 0, ifn iseven
- 1, ifn isodd

and by Berge’s Theorem,

' n’—d’ n+
m = = 124) > g(nq. k).
2 2
Case 2. S’ # 0.
We first show that m' > g+ %
Suppose otherwise. Then
, "t —d ,
m =1 d=n+q <ﬁ+g,andthusd'=t—|5"|>q—%.
2 2 2k k
Hence
: 2
<t —q+ 3 (1)

Now let H;,1 < i < t/, be the odd components °,f G' -8, and let Q be
th,e set'of q inserted vertices of degree two. The ¢ odd components H; of
G — S can be partitioned into three categories:

1. |H;| > |H;n Q| and |H; N Q| odd;
2. |H;| > |H; N Q| and |H; N Q| even;
3. |Hi| =|H:nQ|.

Let Hy,...,Hp be the odd components of the first type, Hpt1,... , Hpiy
be the odd components of the second type, and Hpyyt1,...,Hy be the
odd components of the third type. Of course, p and/or y may be zero.

We will henceforth assume that n is even and k is odd; The other cases are
proved similarly.

We begin by noting that S’,ﬂ Q = 0. Otherwise, if u € s'n Q, then S —u
is a smaller Tutte set for G .

We next establish the following. Let E(A, B) denote the set of edges that
join a vertex of A to a vertex of B, and e(A, B) = |E(A, B)|; E({(A)) and
e({A)) are analogously defined.
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Claim:

k1, if1<i<p+y
. 4 ' - - ’
e(H”S)Z{ 9, ifpty+l<i<t.

PROOF OF CLAIM: Suppose 1 < i < p + vy and consider H;. Since S NQ =
@, let S = S’ and note that H; — Q induces a component of G — S. Since
G is (k — 1)-edge-connected, e(H;,$) 2 k—1in G. If | € E¢(H;,S)
was not subdivided in G to form G, thenl e Eq (H;, S). Otherwise, if
| = r;s;, where r; € H;,s; € S, was subdlwded by a vertex g; € Q, then
gisi € Eg/(H;, S). Hence e (Hi, S') = eg(Hi, S) > k —1.

Finally, since G is 2-edge-connected, e(H;, S’ y>2ifp+y+1<i< t.
This proves the claim.O

Hence e(H;,S’) > k—1 for 1 <i< p+y. However if e(H;,5’) = k-1 for
p+1<i<p+y, then 3o, py degn,(v:) is odd, a contradiction. Hence
e(H;, S') >kfor p+1 <i<p+y. Thus, since G is k-regular, we conclude

KIS'| > e(G' — 8,8 2 (k= L)p+ ky +2(t' —y - p), (2)
and from (1) and (2) we get
(k—=2)(p+y+g) < (k-2 +p. (3)
Now let Q = Uf:p+y+1 (@NH;) = U$l=p+y+1Hi and |Q| =G <gq
Also, let £ =t — p —y. Then by (3),
(k—2)(g-1) <p. 4)

However k > 3, and since each H;,1 < i < p, contains at least one vertex
in Q, ¢ —t > q—q > p, contradicting (4).

Hence . n
m 2> —
-2

bl B

It is now easy to show that
n 4
5 + E Z g(na qak)’

completing the proof. O
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Theore;n 2.3 is easily seen to be best possible. For n > 4, let G = K, and

form G’ by inserting a single vertex of degree two into each edge of G. Since

n(n —1)
2

m =n,andsincek=n—1and g= , we have m' = [g(n, g, k)].

The Corollary below follows easily.

Corollary 2.4 Let k > 3, and G be a k-regular, (k — 1)-edge-connected
graph on n > 4 vertices. Then

_ 1, ifn is even
f(G)—{ 0, ifnisodd.

We next consider regular graphs with smaller edge-connectivity. As noted
in Theorem 2.2, if G is a k-regular, (k — 1)-edge-connected graph on n
vertices, where n is even, then G has a perfect matching. If G is a k-
regular graph with edge connectivity A < k —2, however, there is no simple
formula to determine the size of 2 maximum matching in G.

Suppose we have a k-regular graph G with A < k — 2, and.we again form
G’ from G by subdividing (possibly repeatedly) a number of its edges by
inserting g vertices of degree two. How does the size of a maximum match-
ing m in G’ compare to the size of m as a function of g? Indeed, what is
f(G)? We have an answer to the latter question..

Let
(
Z k 3 , k odd, A even
(k=Xx- 1)
) k+2 ), k even, A odd
(k=X- 1)
T = 7
k odd, X odd
)
;—kT-z— k even, ) even.
L =

Theorem 2.5 Let k > 3, and G be a k-regular, A-edge-connected graph on
n > 4 vertices, where A <k — 2. Then f(G) ==z.
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PRrOOF: We first show that f(G) < z.

We will assume that k and A are both odd; analogous arguments can be
used in the other three cases. Let @ be a set of degree two vertices inserted
into the edges of G to form G, where |Q| = g. We show that if ¢ > z, then
m >m.

Suppose otherwise, i.e., that ¢ > z and m = m.

Let S bea smallest Tutte set for G’ with deficiency d' =t — |S’|, where
t = wo(G' S )

We partition the t odd components of @ — S’ into three categories. Let
t =p+y+7 and

1. P; be those odd components with |P;| > |P; N Q| and |P; N Q| odd,
1<j<p

2. Y; be those odd components with |Y;| > |Y; N Q| and |Y; N Q] even,
1<j<y.

3. TJ be those odd components with |T,-| = |T'j nNQl, 1<j<t.

Note that §’ N Q = 0. Otherwise, if u € S’ N Q, then S’ — u is a smaller
Tutte set for G.

Now let S = S’ and consider G — §. Clearly d > y — |S|, where d denotes
the deficiency of G. By Theorem 1.2,

m,_n+q—d' _n—d
o2 T 2

Letd = e4+y—|S|. Thenm' > m & ¢ >d —d = p+i—e. However each P,
component, 1 < i < p, and each T} component, 1 < i <1, contain at least
one vertex in Q. Hence g > p +1£. Since m’ = m, it follows that e = 0 and
= p+t. Thus each component P;, 1 <i <p, and T},1 < i <, contains
exactly one vertex in Q. In addition, e =0 and d > 0 imply y > |S |-

We now let

e py; be the number of components of G — S containing 2i vertices,
1<i< (k—1)/2;

® Pi41 be the number of components of G — S containing at least k + 1
vertices; :

® 12i41 be the number of components of G—S containing 2i+1 vertices,
0<i<(k-1)/2%
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e yr42 be the number of components of G — S containing at least k +2

vertices.
(k+1)/2 (k+1)/2
Note that p = Z p2i and y = Z Y2it1
i=1 i=0
We now consider E(G’ — §,85). Since each vertex in S has degree k,
(k-1)/2
kS| > oG -5,8)> Y 2i(k-(2—1)py
j=1
(k—-1)/2
+ ) 27+ 1)k = 20)yzi1 + A+ 1Pier1 + M2 + 26 (5)
3=0

Since G is A-edge-connected, the coefficient of yi42 is A. The coefficient of
Pr+1 is A + 1 due to a simple parity argument.

Since y > |S|, ky > k|S|, and thus

(k=1)/2 (k=1)/2
(k=Nyesz = > 20(k— (25— )pzs + ) 25(k = (25 + 1w
i=1 =0
+ A+ Dpryr + 28 (6)
(k+1)/2
Clearly n > | > 2jp2j | + (k + 2)yr42 + |S|. Using (6) and (5) we
j=1

obtain lower bounds for yx42 and |S|, respectively. Hence

(k=1)/2

n2 Z niP2; + Mk +1Pk+1 + ek
j=1

where

o 1y = 254 (20500 - (2 - 1)+ k= 23— 1)+ gy 20k -

(27-1))
.nH4=k+1+(%§§xA+1y+A:1+2gj&;

C2(k+2) 2, 2A
= TETRE-N
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Note that 2j(k — (2§ —1)) >4>2for3<k, 1<j < k—;—-l- Hence

C2(k+2) 2 2A
B - > ;.
2(k + 3)

Also, A > 1 implies 741 = 7;. Since 7; = , it follows that

k-2

2(k+3) (“(HZW ) 2(k+3)
7 x'

Thus ¢ < z, a contradiction. Hence f(G) < z.

We now construct examples to show that f(G) > z. For each & and ),
1 < A < k-2, we describe a k-regular, A-edge-connected graph Gk, in the
table below. In each case, V(Gi,) = V(S) UV(Y), where S is a complete
graph on |S]| vertices and Y is the disjoint union of |S| identical graphs,
each having the prescribed degree sequence in the table.

E,2 0 | ]S] Degree seq. of each Y component
odd , even k—2A ER=Ar(g — 1)AT
odd ,odd [k—X+1 k=22 — 1)
even,even | k— A +1 EF=A+ (k- 1)
even , odd k—X K=k — 1)A1

It is clear from the degree sequence of each component in Y that a graph
Gi,» exists with a perfect matching. If G is formed from G, by inserting
a single degree two vertex into each edge of (S), it is easy to see that
m' =n/2, and thus f(G) > z. O

3 Characterizing f(G) via Tutte sets

We next consider the problem of characterizing f(G) in general graphs, i.e.,
graphs that are not necessarily regular. Recall that a Tutte set in a graph
G is a set X C V(G) such that wo(G — X) — | X| = def(G), and that Tg
denotes the set of all Tutte sets in G. Let Z(G) denote the maximum size
of any Tutte set in a graph G, i.e., Z(G) = mazser,e((S)).

Theorem 3.1 Let G be a graph on n vertices. Then f(G) = Z(G) unless
all of the following hold;
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1. n is even
2. 0T
3. Z(G)=0,
in which case f(G) =1=Z(G) +1.

PROOF: Let S € Tg. If G is obtained from G by inserting a degree two
vertex into each edge of (S), m = m. Hence f(G) > Z(G). Thus, it
suffices to show that f(G) < Z(G).

Let k = Z(G) > 0, and suppose that f(G) > k+1. Form G’ by inserting a
set @ = {q1,92, ... ,gk+1} of degree two vertices into k + 1 different edges
of G in such a way that m = m. Hence,

nt(k+1)—-d n-d
2 T2

and
d =d+(k+1). (7)

Now let S’ € Tgr. We may assume S’ has been chosen such that

1. SnQ=0.
Otherwise, iteratively replace S’ by S’ —u, for any u € S' N Q. Each
time we again obtain a Tutte set for G .

2. 5 #0.
By (7),d =d+ (k+1), and so d > 2 and hence ¢ ¢ Ty unless
d=0and k=0, ie.,

(a) n is even,

(b) 0 €T, and
Claim: S’ € Tg

PROOF OF CLAIM: Note that G— 8’ contains at least wo(G' —S') — (k+1)
odd components. Thus

d = d—(k+1)
= w(G -8)-|5|-(k+1)
< w(G-S)-1|5
< d,
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and so d = wo(G — S') — |S’|. This proves the claim. O

Now consider the components of G — S Suppose G — S has p even
components and t odd components. Since d =¢ |S by (7) we have d =
t+(k+1)—|S’|. Also, since §” is a Tutte set for G, d = wo(G' - 8")-|5').

Now let y denote the number singelton components of G - §, ie., the
number of vertices of Q inserted into the edges of (S'). Clearly

e((S) 2 v. (8)
Also,
t+(k+1)-|8| = d
= w(G' -5)-IS
< (t+p+y) -5,
and thus

pty>k+1. (9)

Finally, since S’ # 0, we can form a new Tutte set S" by removing one
vertex from each of the p even components of G — S and placing them into
S’. Now by (8) and 9),

e((S)) > e((S)+p2y+p>k+1,

contradicting Z(G) = k. Thus f(G) = Z(G).
Finally, suppose each of the following hold:

1. n is even
2. 0eTs
3. Z(G) =

Since 7 is even and G has a perfect matching, inserting a single degree two
vertex into an edge of G will not result in a graph with a larger matching.
Hence f(G) > 1.

Suppose f(G) > 2. Then we can add two degree two vertices to distinct
edges of G to form G’ with m = m’. Thus by (6),d =d+2=2 We
again have $' # 0, and similar arguments lead to a contradiction. Thus
f(G) =1, completing the proof. O
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4 Further results and open questions

We begin with two simple results concerning the structure of Tutte sets in
k-regular, (k — 1)-edge-connected graphs. Let G be such a graphonn >3
vertices. If n is even, Theorem 3.1 and Corollary 2.4 imply that a Tutte
set can have at most one edge. We can strengthen this as follows.

Theorem 4.1 Let G be a k-regular, (k — 1)-edge-connected graph on n
vertices, with n even. Then every Tutte set of G is independent, i.e.,
Z(G) =0.

PROOF: Suppose otherwise, i.e., let S be a Tutte set for G with e({(S)) > 0.
Then e(S,G — S) < k|S|. Since G — S has exactly |S| + def(G) > |S| odd
components, at least one of them, say H, must satisfy e(H,S) < k — 1.

Since G is (k — 1)-edge-connected, e(H,S) = k — 1. Thus Z degy(v) =

veEH
Y degg(v) — e(H, S) = k|H| — (k —1). Since |H| is odd, Y degu vis
veH veEH

odd regardless of the parity of &, a contradiction. O

If n is odd, Theorem 3.1 and Corollary 2.4 already yield that f(G) =
Z(G) =0, and thus all Tutte sets in G are independent. But once again,
this can be strengthened. We call a graph G factor-critical if G — v has
a perfect matching for every v € G. It is known (cf. (7, Ex. 3.1.10]) that
G is factor-critical if and only if the only Tutte set in G is 0.

Theorem 4.2 Let G be a k-regular, (k — 1)-edge-connected graph on n
vertices, with n odd. Then G is factor-critical.

Proor: It suffices to show that the only Tutte set of G is §. Suppose
otherwise, and let S be a nonempty Tutte set of G. Since n is odd, def(G) >
1, and thus wo(G — S) > |S| > 1. We conclude, as above, that G — S has
an odd component H satisfying e(H, S) = k — 1, a contradiction. O

The converse of Theorem 4.1 is easily seen to be false by just examining
diametrically opposite vertices in a 6-cycle. This suggests an interesting
open problem. If G is a k-regular, (k — 1)-edge-connected graph on n
vertices, with n even, which independent sets in G are Tutte sets?

Another interesting question concerns k-regular graphs with edge-connectivity
A <k —2. In Theorem 2.5 we determined f(G) for such graphs. Thus we
know that if we insert g > f(G) degree two vertices into the edges of G,
m —m > 0. However, can we precisely determine m —m as a function of

q?
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