A square-covering problem

Yuqin Zhang¹ * Yonghui Fan²

¹Department of Mathematics Beijing Institute of Technology, 100081, Beijing, China email: yuqinzhang@126.com ² College of Mathematics and Information Science Hebei Normal University, 050016, Shijiazhuang, China

Abstract

Erdős and Soifer [3] and later Campbell and Staton [1] considered a problem which was a favorite of Erdős [2]: Let S be a unit square. Inscribe n squares with no common interior point. Denote by e_1, e_2, \dots, e_n the side lengths of these squares. Put f(n) = $\max \sum_{i=1}^{n} e_i$. And they discussed the bounds for f(n). In this paper, we consider its dual problem- covering a unit square with squares. keywords: packing, minimal covering

(2000) Mathematics Subject Classification. 52C15

1. Introduction

Erdős and Soifer [3] and later Campbell and Staton [1] considered a problem which was a favorite of Erdős [2]: Let S be a unit square. Inscribe n squares with no common interior point. Denote by e_1, e_2, \cdots, e_n the side length of these squares. Put $f(n) = max \sum_{i=1}^{n} e_i$. They discussed the bounds for f(n). Inspired by [3], we discuss a problem on square-covering and give corresponding functions $q_i(n)(i=1,2)$.

First, we give the definition of a minimal square-covering.

Definition 1.1. Let S be a unit square. If n squares S_1, S_2, \dots, S_n cover S, in such a way which satisfies:

- (1) Each S_i has side of length $s_i(0 < s_i < 1)$ and is placed so that its sides are parallel to those of S;
- (2)Each S_i can not be smaller; that is, there does not exist any $S_{i1} \subset S_i$ such that $\{S_j, j=1,2,\cdots,i-1,i+1,\cdots,n\} \bigcup \{S_{i1}\}$ can cover S admitting translation.

^{*}Foundation items: This work is supported by the Doctoral Funds of Hebei Province in china(B2004114).

We call this kind of covering a minimal square-covering. With this definition of minimal square covering, define:

$$g_1(n) = \min \sum_{i=1}^n s_i, g_2(n) = \max \sum_{i=1}^n s_i.$$

When $n \leq 3$, since $0 < s_i < 1$, each $S_i (i = 1, 2, \dots, n)$ can only cover one corner of a unit square, but it has four corners, so S_1, S_2, \dots, S_n can not cover S. That is, when $n \leq 3$, $g_i(n)(i = 1, 2)$ has no meaning. So in the following, let $n \geq 4$.

2. The bounds of $g_1(n)$

Proposition 2.2. $g_1(n) \geq 2$.

Proof. Obviously, if n squares cover the unit square, they must cover its two opposite sides. Since $0 < s_i < 1$, no square can cover the points of two opposite sides in the same time, so $g_1(n) \ge 2$ must hold.

Theorem 2.3. When n is even, $g_1(n) \leq 3 - \frac{4}{n}$.

Proof. Consider a minimal square-covering of a unit square S with n-2 squares $S_2, S_3, \cdots, S_{n-1}$ each of which has side of length x, a square S_1 with side of length 1-x, and a square S_n with side of length $1-(\frac{n}{2}-1)x$. Since $s_1+s_n\geq 1$, we have $x\leq \frac{2}{n}$. When n=6, see Figure 1 for the placement. It's easy to see this is a minimal-square covering. So by the definition of $g_1(n), g_1(n) \leq (1-x)+(n-2)x+[1-(\frac{n}{2}-1)x]=2+(\frac{n}{2}-2)x\leq 3-\frac{4}{n}$.

Figure 1: A unit square covered by six squares

Corollary 2.4. $g_1(4) = 2$.

Theorem 2.5. When n is odd, $g_1(n) < \frac{5}{2} - \frac{1}{2(2n-7)}$.

Proof. Consider a minimal square-covering of a unit square S with n-3 squares $S_2, S_3, \cdots, S_{n-2}$ each of which has side of length x, a square S_1 with side of length 1-x, a square S_n with side of length 1-(n-3)x and a square with side of length (n-3)x. Since $s_1+s_n\geq 1$ and $s_{n-1}< s_{n-2}+s_n$, we have $x<\frac{1}{2n-7}$. When n=7, see Figure 2 for the placement. It's easy to see this is a minimal-square covering. So by the definition of $g_1(n)$, $g_1(n)\leq (1-x)+(n-3)x+1-(n-3)x+(n-3)x=2+(n-4)x<2+\frac{n-4}{2n-7}=\frac{5}{2}-\frac{1}{2(2n-7)}$.

Figure 2: A unit square covered by seven squares

3. The bounds of $g_2(n)$

Proposition 4.6. $g_2(k^2) \geq k$.

Proof. It is obvious that all the $S_i (i=1,2,\cdots,n)$ must be equal, whence $ne_i=1$. That is, for each $i, e_i=\frac{1}{\sqrt{n}}$. So n is a perfect square, say, $n=k^2$, and the optimal covering is the standard n-covering, that is, a $k\times k$ grid of squares each of which has side of length $\frac{1}{k}$. Obviously, k^2-1 such squares can not cover the unit square. By the definition of $g_2(n), g_2(k^2) \geq k$. \square

Proposition 4.7. $g_2(k^2 + 1) > k$.

Proof. From a standard k^2 -covering, remove a 2×2 grid and replace it with five squares $S_{i1}, S_{i2}, \cdots, S_{i5}$ covering the same area, and which are placed as in Figure 3 such that S_{i1} is the largest square of $\{S_{ij}\mid j=1,2,\cdots,5\}$ and $s_{i2}=s_{i3}=\frac{2}{k}-s_{i1},\,s_{i4}=\frac{2}{k}-2(\frac{2}{k}-s_{i1})=2s_{i1}-\frac{2}{k},\,s_{i5}=2(\frac{2}{k}-s_{i1})=\frac{4}{k}-2s_{i1},\,0< s_{ij}<\frac{2}{k}(j=1,2,\cdots,5),\,s_{i4}+s_{i1}\geq\frac{2}{k},\,s_{i5}< s_{i4}+s_{i3}.$ The result is a covering with k^2+1 squares, the sum of whose lengths is $s=k-\frac{4}{k}+s_{i1}+2(\frac{2}{k}-s_{i1})+(2s_{i1}-\frac{2}{k})+(\frac{4}{k}-2s_{i1})=k+\frac{2}{k}-s_{i1}.$ The inequalities above imply that $\frac{3}{2k}< s_{i1}<\frac{2}{k},\,$ so $s>k+\frac{2}{k}-\frac{2}{k}=k$.

Obviously, this covering is a minimal covering, so we have $g_2(k^2+1) > k$.

Figure 3: A 2×2 grid covered by five squares

Proposition 4.8. $g_2(k^2-1) \ge k - \frac{3}{5}$.

Proof. From a standard k^2 -covering, remove a 3×3 grid and replace it with eight squares $S_{i1}, S_{i2}, \cdots, S_{i8}$ covering the same area, and which are placed as in Figure 4 such that S_{i1} is the largest square of $\{S_{ij} \mid j=1,2,\cdots,8\}$ and $s_{i2}=s_{i3}=s_{i4}=s_{i5}=s_{i6}=s_{i7}=\frac{3}{k}-s_{i1}, s_{i8}=\frac{3}{k}-3(\frac{3}{k}-s_{i1})=3s_{i1}-\frac{6}{k},\ 0< s_{ij}<\frac{3}{k}(j=1,2,\cdots,8),\ s_{i8}+s_{i1}\geq\frac{3}{k}.$ The result is a covering with $k^2-9+8=k^2-1$ squares, the sum of whose lengths is $s=k-\frac{9}{k}+s_{i1}+6(\frac{3}{k}-s_{i1})+(3s_{i1}-\frac{6}{k})=k+\frac{3}{k}-2s_{i1}.$ The inequalities above imply that $\frac{9}{4k}\leq s_{i1}<\frac{2}{k}$, so $s\geq k+\frac{3}{k}-2\frac{2}{k}=k-\frac{3}{k}.$

Obviously, this covering is a minimal covering, so we have $g_2(k^2-1) \ge k - \frac{3}{k}$.

Figure 4: A 3 × 3 grid covered by eight squares

When neither n-1 nor n+1 is a perfect square, we have the following result:

Theorem 4.9. If neither n-1 nor n+1 is a perfect square, then $g_2(n) > \sqrt{n-1}$.

In the proof of Theorem 4.9, we borrow the main idea of [1].

Proof. When $n=k^2$, by Theorem 4.6, $g_2(n) \ge \sqrt{n} > \sqrt{n-1}$.

When $n \neq k^2$, k must lie between two perfect squares of different parity. That is, there is an integer k such that $k^2 < n < (k+1)^2$, $n-k^2$ and $(k+1)^2 - n$ have different parity. Consider the values of n where $k^2 + 1 < n$ $n < (k+1)^2 - 1$. There are two cases which provide upper bounds for all n on the interval $[k^2 + 2, (k+1)^2 - 2]$:

Case 1. $(k+1)^2 - n$ is odd. Say, $(k+1)^2 - n = 2a + 1(a \ge 1)$, $k^2 < n \le (k+1)^2 - 3$. From a standard $(k+1)^2$ -covering of S, remove an $(a+1) \times (a+1)$ grid and replace it with an $a \times a$ grid covering the same area. The result is a covering with $(k+1)^2 - (a+1)^2 + a^2 = n$ squares, the sum of whose lengths is

$$[(k+1)^2 - (a+1)^2] \frac{1}{k+1} + a^2(\frac{a+1}{a})(\frac{1}{k+1}) = k+1 - \frac{a+1}{k+1}.$$
 Obviously, no one of these n squares can be smaller. So

$$g_2(n) \ge k + 1 - \frac{a+1}{k+1}, g_2^2(n) \ge (k+1 - \frac{a+1}{k+1})^2 > n-1.$$

That is, $g_2(n) > \sqrt{n-1}$.

Case 2. $n-k^2$ is odd. Say, $n-k^2=2a-1$ $(a \ge 2)$, $k^2+3 \le n < (k+1)^2$. From a standard k^2 -covering of S, remove an $(a-1) \times (a-1)$ grid and replace it with an $a \times a$ grid covering the same area. The result is a covering with $k^2 - (a-1)^2 + a^2 = k^2 + 2a - 1 = n$ squares of the unit square S. The sum of the lengths of sides is

$$[k^2 - (a-1)^2] \frac{1}{k} + a^2 \left(\frac{a-1}{a}\right) \left(\frac{1}{k}\right) = k + \frac{a-1}{k}.$$

 $[k^2-(a-1)^2]\frac{1}{k}+a^2(\frac{a-1}{a})(\frac{1}{k})=k+\frac{a-1}{k}.$ Obviously, no n-1 squares of these n squares can cover S. So $g_2(n)\geq k+\frac{a-1}{k}, g_2^2(n)\geq (k+\frac{a-1}{k})^2=k^2+2a-1+(\frac{a-1}{k})^2-1>n-1.$ That is, $g_2(n)>\sqrt{n-1}.$

The following lemma is a well-known result [4]:

Lemma 4.10. Finitely many squares whose total area is equal to 3 can cover a unit square.

Theorem 4.11. $g_2(n) \leq 3\sqrt{n}$.

Proof. Let $\{S_i\}_{i=1}^n$ be a minimal covering of the unit square S, and s_i denote the length of the side of S_i ($i = 1, 2, \dots, n$). We first prove that $\sum_{i=1}^{n} s_i^2 \leq 3$. Otherwise, if $\sum_{i=1}^{n} s_i^2 > 3$, there exists a $S_{i1} \subset S_i$, such that

 $s_{i1} < s_i$ and $s_{i1}^2 + \sum_{j=1}^{i-1} s_j^2 + \sum_{j=i+1}^n s_j^2 \ge 3$. By Lemma 4.10, it is obvious that $S_1, S_2, \dots, S_{i-1}, S_{i1}, S_{i+1}, \dots, S_n$ can cover the unit square S, which contradicts the definition of a minimal covering. So $\sum_{i=1}^{n} s_i^2 \leq 3$.

Let s be the vector (s_1, s_2, \dots, s_n) , and let v be the vector $(1, 1, \dots, 1)$. Now $\sum_{i=1}^{n} s_i \le ||s_i|| ||\mathbf{v}|| \le \sum_{i=1}^{n} s_i^2 n^{\frac{1}{2}} = n^{\frac{1}{2}} \sum_{i=1}^{n} s_i^2 \le 3\sqrt{n}$, so $g_2(n) \le 3\sqrt{n}$.

Acknowledgement

We are grateful to the referee for a careful, thorough reading of this paper and for many valuable corrections.

References

- [1] Connie Campbell and William Staton, A Square-packing problem of Erdös, The American Mathematical Monthly, Vol.112(2005), 165-167.
- [2] P. Erdős, Some of my favorite problems in number theory, Combinatorics and Geometry, Resenhas 2(1995), 165-186.
- [3] P. Erdős and Soifer, Squares in a square, Geombinatorics IV(1995), 110-114.
- [4] Zun Shan, Combinatorical Geometry (in Chinese), Shanghai Educational Press, 1995.