A square-covering problem
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Abstract

Erdés and Soifer (3] and later Campbell and Staton [1] consid-
ered a problem which was a favorite of Erdds [2]: Let S be a unit
square. Inscribe n squares with no common interior point. De-
note by ej, ez, -+ e, the side lengths of these squares. Put f(n) =
maz Y e;. And they discussed the bounds for f(n). In this paper,

i=1
we consider its dual problem- covering a unit square with squares.
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1. Introduction

Erdds and Soifer [3] and later Campbell and Staton [1] considered a,
problem which was a favorite of Erdés [2]: Let S be a unit square. Inscribe
n squares with no common interior point. Denote by ej,es,--- , e, the side

length of these squares. Put f(n) = maz E e;. They discussed the bounds

for f(n). Inspired by [3], we discuss a problem on square-covering and give
corresponding functions g;(n)(i = 1,2).
First, we give the definition of a minimal square-covering.

Definition 1.1. Let S be a unit square. If n squares S;,S5s,--- , S, cover
S, in such a way which satisfies:

(1)Each S; has side of length s;(0 < s; < 1) and is placed so that its
sides are parallel to those of S;

(2)Each S; can not be smaller; that is, there does not exist any S;; C S;
such that {S;,7=1,2,---,i—1,i+1,--- ,n} U{Si1} can cover S admitting
translation.
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We call this kind of covering a minimal square-covering.
With this definition of minimal square covering, define:
n n
gi1(n) =min Y s;, g2(n) = maz ) s:.
i=1 i=1
When n < 3, since 0 < s; < 1, each S;(i = 1,2,---,n) can only cover
one corner of a unit square, but it has four corners, so 51,82, -+, S, can
not cover S. That is, when n < 3, g;(n)(¢ = 1,2) has no meaning. So in
the following, let n > 4.

2. The bounds of g;(n)
Proposition 2.2. g;(n) > 2.

Proof. Obviously, if n squares cover the unit square, they must cover its
two opposite sides. Since 0 < s; < 1, no square can cover the points of two
opposite sides in the same time, so g;(n) > 2 must hold. O

Theorem 2.3. When n is even, ¢g1(n) < 3 — -f;.

Proof. Consider a minimal square-covering of a unit square $ with n — 2
squares Sp,S3,--- ,Sn—1 each of which has side of length z , a square S;
with side of length 1 — z, and a square S, with side of length 1 — (5 —1)z.
Since s; + s, > 1, we have z < % When n = 6, see Figure 1 for the
placement. It’s easy to see this is a minimal-square covering. So by the
deﬁriition of g1(n), g1(n) < (1—z)+(n-2)z+[1- (3 -1)z] = 2+(5-2)z <
3 bt ;c
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Figure 1: A unit square covered by six squares

Corollary 2.4. g:(4) = 2.

Theorem 2.5. When n is odd, g1(n) < -g- - 532—7::.75
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Proof. Consider a minimal square-covering of a unit square S with n — 3
squares S2,S53, -, Sp—2 each of which has side of length z, a square S
with side of length 1 ~ z, a square S, with side of length 1 — (n — 3)z and a
square with Slde of length (n—3)z. Since s;+s, > 1land s,_; < sp_g9+3n,
we have r < 5=—. When n = 7, see Figure 2 for the placement. It’s easy
to see this 1s a rmmmal—square covering. So by the definition of g,(n),
gi(n) < (l—z)+(n—3)z+1-—(n—3)x+(n— Nz =2+(n-4)z <

-4 _ 5
2+ 5 =3~ Ty
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Figure 2: A unit square covered by seven squares

3. The bounds of g3(n)
Proposition 4.6. go(k?) > k.

Proof. 1t is obvious that all the S;(¢ = 1,2,--- ,n) must be equal, whence
ne; = 1. That is, for each i, e; = 71; So n is a perfect square, say, n = k2,
and the optimal covering is the standard n-covering, that is, a k x k grid of
squares each of which has side of length % Obviously, k2 — 1 such squares
can not cover the unit square. By the definition of ga(n), go(k%) > k. O

Proposition 4.7. ga(k? + 1) > k.

Proof. From a standard k2-covering, remove a 2 x 2 grid and replace it with
five squares S;;, Si2,- - - , Si5 covering the same area, and which are plax:ed
as in Figure 3 such that S;; is the largest square of {S;; | 7 =1,2,---,5}
and s;p = s;3 = 2 —; —-—2( —si1) =28 — 2 =2(f—-sa)=
Si2 = 8i3 = ¢ 11, Siq il il — %» Si5 Si1
_"'231.110<31_7 (.7 =12, ), Siqa + 8i1 2 ia Sis < Siq + Si3-
The result is a covermg with k% + 1 squares, the sum of whose lengths is
s=k—%+sa +2(——s,1)+(2s,1— )+( - 2s;1) -k+ £ — si1. The
3 2 =
inequalities above 1mp1y that oy <sn < f,s0s>k+ E - ; =k.
Obviously, this covering is a minimal covering, so we have go(k2+1) > k.
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Figure 3: A 2 x 2 grid covered by five squares

Proposition 4.8. ga(k? —1) > k — 3.

Proof. From a standard k2-covering, remove a 3 x 3 grid and replace it with
eight squares S;;, Si2, - - - , Sig covering the same area, and which are placed
as in Figure 4 such that S;; is the largest square of {S;; | j = 1,2,---,8}
and sip = 813 = Si4 = si5 = Sig = 57 = 2 — s, 88 = § -3(% —sa) =
3si1 — 2, 0 < 855 < k(] =1,2,---,8), sis + si1 = %. The result is a
covermg w1th k2 -9+48 = K2~ l squares, the sum of whose lengths is
s=k— ‘E + 51 + G(E —si1) + (3si1 — ) = k + 5 — 2s;1. The inequalities
above imply that - 1 Ssa < k,sos>k+ =k- %

(%bvnously, this covering is a minimal covermg, so we have go(k? — 1) >
k-3
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Figure 4: A 3 x 3 grid covered by eight squares
O

When neither n — 1 nor n+ 1 is a perfect square, we have the following
result:

Theorem 4.9. If neither n — 1 nor n+ 1 is a perfect square, then ga(n) >

vn—T1.

In the proof of Theorem 4.9, we borrow the main idea of [1].
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Proof. When n = k2, by Theorem 4.6, g2(n) > /n > v/n— 1.

When n # k2, k must lie between two perfect squares of different parity.
That is, there is an integer k such that ¥2 < n < (k+ 1)%, n — k? and
(k + 1)? — n have different parity. Consider the values of n where k2 + 1 <
n < (k+1)2 ~ 1. There are two cases which provide upper bounds for all
n on the interval [k% + 2, (k + 1)% - 2]:

Case 1. (k+1)2-nis odd Say, (k+1)2 - n = 2a + 1(a > 1),
k? < n < (k+1)%2 — 3. From a standard (k + 1)2-cover1ng of S, remove an
(a4 1) x (@ + 1) grid and replace it with an a x a grld coverlng the same
area. The result is a covering with (k+ 1)? — (a + 1)? + a® = n squares, the
sum of whose lengths is

[(k+1)? - (e + 1)y + @?() () =k +1 - &,

Obviously, no one of these n squares can be smaller. So

go(n) > k+1—atl k+l, )2 (k+1-E4)¥2>n- 1L

That is, ga(n) > vn —

Case 2. n—k? is odd. Say, n—k*=2a—1(a>2),k>+3<n < (k+1)2
From a standard k2-covering of S, remove an (@ — 1) x (a — 1) grid and
replace it with an a x a grid covering the same area. The result is a covering
with &2 — (a — 1)2 4 a2 = k? + 2a — 1 = n squares of the unit square S. The
sum of the lengths of sides is

K ~ (o~ 121} +a(252)(}) = k+ 552,
Obviously, no n — 1 squares of these n squares can cover S. So
92(n) > k+ 92, g3(n) > (k+%22)? = k2 +2a—1+(52)2 -1 > n-1.
That is, ga(n) > vn — 1.
O

The following lemma is a well-known result [4):

Lemma 4.10. Finitely many squares whose total area is equal to 3 can
cover a unit square.

Theorem 4.11. go(n) < 3/n.

Proof. Let {S;}1 be a minimal covering of the unit square S, and s;
denote the length of the 51de of S;(i = 1,2,---,n). We first prove that

Z s? < 3. Otherwise, if Z s; > 3, there exists a S;; C S;, such that

i=1 i=1

si1 < s; and s + i s+ i s2 > 3. By Lemma 4.10, it is obvious
that $7, 5, -- z—1,415'i1, S,-:l_,zfl- , Snp can cover the unit square S, which
contradicts the deﬁmtnon of a minimal covering. So zn: s?<3.

Let s be the vector (s1,82,--- ,8n), and let v be ti:alvector (1,1,---,1).

n n i
Now Y si < lsillllvl] < 3 s2n = n% 3 s? < 3/7, 50 ga(n) < 3v/n.
=1 =1 =1
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