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Abstract

Let G be a simple graph and f : V(G) — {1,3,5,...} an odd integer valued
function defined on V(G). A spanning subgraph F of G is called a (1, f)-
odd factor if dp(v) € {1,3,..., f(v)} for all v € V(G), where dr(v) is the
degree of v in F. For an odd integer k, if f(v) = k for all v, then a (1, f)-
odd factor is called a [1, k]-odd factor. In this paper, the structure and
properties of a graph with a unique (1, f)-odd factor is investigated, and
the maximum number of edges in a graph of the given order which has a
unique [1, k}-odd factor is determined.
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1 Introduction

Let G = (V(G), E(G)) be a finite simple graph with the vertex-set V(G)
and the edge-set E(G), and f: V(G) — {1,3,5,...} an odd integer valued
function defined on V(G). The neighborhood Ng(v) of a vertex v is the
set of all vertices adjacent to v. The degree of v is dg(v) = [Ng(v)|. A
subgraph H of G is called a (1, f)-odd subgraph if dy(v) € {1,3,..., f(v)}
for all v € V(H) and a spanning (1, f)-odd subgraph is called a (1, f)-odd
factor. An odd factor is a spanning subgraph with all degrees odd. For an
odd integer k, if f(v) = k for all v € V(G), a (1, f)-odd factor is refereed
to as a [1,k]-odd factor. In particular, (1,1)-odd factors are precisely the
usual 1-factors. Note that a graph with a (1, f)-odd factor must be of even
order.

In [5], Cui and Kano presented a Tutte-like characterization of graphs
with a (1, f)-odd factor by showing that G has a (1, f)-odd factor if and
only if

o(G-S5)< Y flz) forall SCV(G),

z€S

where o(G — S) is the number of odd components of G — S. This result
is a natural extension of the well-known Tutte’s 1-Factor Theorem, and
generalizes the characterization of the existence of [1,k]-odd factors by
Amahashi [2]. In [6], Kano and Katona showed that the size of a maximum
(1, f)-odd subgraph H of G is

|H| =G| - _max {o(G~S)-}_ f(=)},

SEV(©) ze$

which resembles Berge's Formula for the size of a maximum 1-factor. Some
other properties of (1, f)-odd subgraphs were studied in [2, 4, 5, 6, 7, 8, 11].
Many of these properties are very similar to those of 1-factors. In view of
these similarities, one would expect that some other results on 1-factors
can be generalized to those on (1, f)-odd factors.

The task of extending the fundamental properties of 1-factors to those
for (1, f)-odd factors have been on-going study contributed by several re-
searchers, notably many good results by Kano. The extensions are both
mathematically meaningful and techniquely challenge. Often, some new
concepts or techniques have to be deployed to handle the more compli-
cated structures posed by (1, f)-odd factors than its counterpart - 1-factors.
One of recent significant progress in this aspect is the discovery of Gallai-
Edmonds type structure theorem for (1, f)-odd factors in [7].

In this paper, we are interested in the structure of a graph with a unique
(1, f)-odd factor. It was proved by Topp and Vestergaard [11] that in a
2-edge-connected graph G which has a unique (1, f)-odd factor F', there
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exists a vertex v which is saturated in G, ie., dp(v) = dg(v). We shall
show in Section 2 that with an additional condition on f, a graph G with
a unique (1, f)-odd factor always has a leaf vertex v, i.e., dr(v) = dg(v) =
1. As a corollary, such graphs have the minimum degree 1. Some other
structural results are also discussed in Section 2, including a necessary and
sufficient condition for G having a unique (1, f)-odd factor. In Section 3,
we determine the maximum number of edges in a graph with the given
order which has a unique [1, k]-odd factor, and characterize all extremal
graphs.
The undefined terminologies will follow [1] and [3].

2 Properties of graphs with a unique (1, f)-
odd factor

In this section, we always assume that G is a graph with a unique (1, f)-
odd factor F unless otherwise stated. If F' is the unique (1, f)-odd factor
of G, then each component of F must be a tree. Otherwise, if F' contains
a cycle C, then we have dr_g(c)(v) = 1 (mod 2) for any v € V(G) since
dr(v) = 1 (mod 2). In other words, F — E(C) will be another (1, f)-
odd factor of G. So the unique (1, f)-odd factor F consists of trees with
odd degrees. Without loss of generality, we assume f(v) < dg(v) for all
v € V(G). Write Ep(v) for the set of edges of F incident with the vertex
v. Let W be a walk in G. A vertex v is said to be of type i with respect to
F and W, if |Ep(v) N E(W)| = i (see Figure 1). For simplicity, F and/or
W are omitted if there is no confusion occurred. The same omission are
applied to other terminologies as well.

Figure 1. F is the subgraph induced by the bold edges and W =
(vov1v2vs). v; is of type i for i = 0,1,2, and v, is of type 1 with
respect to W.

Suppose C is a cycle in G. Let F’ be the subgraph of G induced by
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E(F)AE(C), where A denotes the symmetric difference. Then,

dr(v), v € V(C) or v is of type 1;
dr(v) = ¢ dr(v) —2, wvisoftype?2;
dr(v) +2, wvisof typeO.

Since both f(v) and dr(v) are odd and F is a spanning subgraph, we see
that

(i) dp(v) 2 1 for all v € V(G), and

(ii) if dr(v) < f(v), then dp(v) +2 < f(v).

So, if dr(v) < f(v) holds for every vertex v of type 0, then F' is another
(1, f)-odd factor. Since we assume that G has a unique (1, f)-odd factor
F, every cycle of G has a vertex v with dr(v) = f(v). This leads to the
following definitions. A vertex v € V(G) is called saturated with respect to
F,if dp(v) = f(v). A saturated vertex of type 0 with respect to a cycle C
is a blocking vertex on C. A cycle C is blocked with respect to F, if there is
at least one blocking vertex on C.

Theorem 1. F is the unique (1, f)-odd factor of G if and only if every
cycle in G is blocked with respect to F.

Proof. The necessity follows from the previous arguments.

To show the sufficiency, suppose G has two distinct (1, f)-odd factors
Fi and F5. We will choose a sequence of vertices W = ugu;... such that

(i) ujuj+1 € E(R)AE(F) (5 =0,1,...), and

(ii) every vertex of type O with respect to F; and W (i = 1,2) is unsat-
urated,
in the following way. Suppose ug,uy,...,%; have been chosen and u;_,u; €
E(F) \ E(F,), say. Since dr, (u:) and dr,(u;) are both odd, it is always
possible to choose a vertex u;;1 with wu;4y € E(F)AE(F;). Further-
more, if Er,(u;) ¢ EF, (u:), choose u;4; such that uusy) € E(F2)\ E(Fy).
In this case, u; is of type 1 with respect to both Fj and F;. When
Er,(u;) C Er,(u;), since Ef, (u;) has at least two more edges u;_ju; and
usu;41 than Ep,(u;), we see that u; is of type 2 with respect to F), and
is unsaturated with respect to Fy. Since G is finite, this sequence must be
back to itself, creating an unblocked cycle with respect to both Fy and Fj.
A contradiction. ’ (]

As a consequence of Theorem 1, we have the following
Corollary 1. Every component of F' is an induced tree in G.

Proof. Suppose uv is an edge in E(G) \ E(F) with u,v € V(F). Then uv
together with the unique path on F from u to v form an un-blocked cycle
in G with respect to F, A contradiction to Theorem 1. ]
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It is well-known (see [10]) that a connected graph has an odd factor if
and only if its order is even. Obviously, G has a unique odd factor if and
only if it has a unique (1, f)-odd factor, where f(v) € {dg(v),dc(v) — 1}
is an odd integer for all v € V(G). In this case, no cycle in G is blocked.
Thus we obtained a simple characterization of uniqueness of odd factors.

Theorem 2. A connected graph G has a unique odd factor if and only if
G is a tree of even order.

Next we continue our investigation to the structure belonging to the
graphs with a unique (1, f)-odd factor. At first, we prove the following
lemma.

Lemma 1. There exists a component H of F such that every vertex in H
8 saturated.

Proof. Firstly one notes that every unsaturated vertex u is adjacent to at
least two vertices outside of the component of F which it belongs to. This
can be seen from the observation that dp(u) < f(u) — 2 < dg(u) — 2 and
Corollary 1.

If F has only one component, then by Corollary 1, G = F, and thus
every vertex is saturated. In the following discussion we assume that F has
at least two components.

Suppose, to the contrary, that every component of F has an unsaturated
vertex. Let Ho be a component of F, and ug an unsaturated vertex in
Hp. Suppose v, is a vertex in G \ Hp adjacent to up in G, and H, is the
component of F containing v;; u; is an unsaturated vertex in H, and P,
is the unique path in H) connecting v; and u;. Proceeding in this fashion,
we can find a sequence of components Ho, Hy, Hs, ..., a sequence of vertices
UQU U1 V2U2..., and a sequence of paths P, P,, ..., such that

(i) »; is an unsaturated vertex in H;;

(ii) vi41 is a vertex in G \ H; adjacent to u; in G, and Hi,, is the
component of F' containing vi4);

(iii) P; is the unique path in H; connecting v; and u;. Note that u; may
coincide with v;, in which case |P;| = 0.

Since the number of components of F is finite, there exist two indices
t < s, such that H,,, = H,. Write the path in H, from v, to u, as P.y,.
Set C = (ucvz+1Pt+1‘ut+1Uz+2Pt+2 “c+2---‘UsPsuavs+1Pa+1uc)- If |Ps| >0,
then every vertex v € V(H;) N V(C) is of type 1 or type 2. If |P;| = 0,
then v; = u; is the unique vertex in V(H;) N V(C) which is unsaturated.
It follows that C is an unblocked cycle with respect to F, a contradiction
to Theorem 1. O

Suppose H is a component of F. Then F — H is the unique (1, f)-
odd factor of G — H. So, by recursively applying Lemma 1, we have the
following
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Hp Hy Hy=Hyp Hy H,

3 Vg1 (Uet1)

Figure 2. The path on H; with bold edges is P.. The path with
wave lines is P, 4.

Theorem 3. Let G be a graph with o unique (1, f)-odd factor F. Then
every vertez in G 1is saturated with respect to F'.

Denote by L(H) the set of leaves in a component H of F.

Theorem 4. Let f be a function from V(G) to {1,3,5,...} such that f(v) >
3 for any vertez v with dg(v) > 3. Suppose G has a unique (1, f)-odd factor
F. Then there exists a component H of F such that at least |L(H)| - 1
leaves of H have degree 1 in G.

Proof. Suppose, as a contrary, that each component H of F has at least
2 leaves of degree greater than 1 in G. Similar to the proof of Lemma 1,
except that u; is now taken as a leaf of H; with dg(u;) > 1, we obtain a
cycle C = (uvery Por1ues1---Ust1 Psy1ue). By our hypothesis, it can be
managed that u; # v; for i = t + 1,...,s. Hence, every vertex v € V(C)
with u # u, is of type 1 or type 2. Note that u, may be of type 0 when
vgy1 is the same as u,. In this case, dg{u;) > 3. By the assumption,
f(ue) > 3 > 1 =dp(u.), that is, u; is unsaturated. So, C is an unblocked
cycle, a contradiction. 0O

Remark 1. The restriction on f is necessary, which can be seen from the
example in Figure 3.

From Theorem 4, a graph with a unique (1, f)-odd factor has many
vertices of degree 1. In other words, the existence of leaves is a necessary
condition for the uniqueness of (1, f)-odd factor. We state this result in a
contrapositive version.

Corollary 2. Let G be a graph with the minimum degree at least 2, and f
a function as in Theorem 4. Then the number of (1, f)-odd factors in G is
either 0 or at least 2.
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Figure 3. f(u) =3 and f(v) =1 for v # u. The graph G has a
unique (1, f)-odd factor indicated by the bold edges. But no vertex
of G is of degree 1.

3 Extremal graphs with a unique [1,k]-odd
factor

Based on the properties and the structure developed in the last section,
now we are able to characterize the class of extremal graphs with unique
(1, f)-odd factor. For simplicity, we only consider the extremal graphs
with unique [1, k]-odd factors but the class of extremal graphs with unique
(1, f)-odd factors can be discussed similarly.

Given an even integer n, let €x(n) be the maximum number of edges in
a graph of order n which has a unique [1, k}-odd factor and Ex(n) the set of
extremal graphs. For k = 1, it was proved by Hetyei (see [9]) that €(n) =
n?/4, and the unique extremal graph G(n) is inductively constructed by
setting G(2) = K3 and G(n) = K + (K1 U G(n — 2)), where ‘U’ and ‘+’
are the union and the join of two graphs, respectively. In this section, we
will determine ex(n) by characterizing all graphs in Ey(n).

In the following, we always assume that k > 3 is an odd integer, and G
is an extremal graph with a unique [1, k]-odd factor F.

Remark 2. If n < k + 1, then we can prove that G is a tree. The proof of
Lemma 1 implies that this is true when F has only one component. Sup-
pose the number of components of F is more than one. Then dg(v) < k
for every vertex v. Since dr(v) and k are both odd, we have dp(v) < k—2.
Hence, if G has a cycle C, then E(F)AE(C) induces another [1,k]-odd
factor. So, G is acyclic. Because K ,,— has a unique [1, k}-odd factor with
n — 1 edges, the claim follows from the maximality of G.

Note that k may be greater than dg(v) for some vertex v. So, results
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in Section 2 can not be applied directly here. Nevertheless, the ideas are
similar.

A vertex v is called k-saturated with respect to F, if dp(v) = k holds
for all v having dg(v) 2 k, and dr(v) € {dc(v) - 1,dc(v)} (depending on
the parity of dg(v)) holds for all v having dg(v) < k. Let C be a cycle. A
k-saturated vertex v is a k-blocking vertex on C, if dg(v) = k and v is of
type 0 with respect to C. If there is at least one k-blocking vertex on C,
then C is called k-blocked with respect to F. Note that a k-saturated vertex
v with dg(v) < k can not be of type 0 with respect to any cycle. What
prevents us from using symmetric difference to create another (1, k]-odd
factor is the presence of saturated vertices with degree at least k and type
0. As in Section 2, we can prove

Theorem 5. F is the unique [1,k]-odd factor of G if and only if any cycle
in G is k-blocked with respect to F. Moreover, each component of F' is an
tnduced tree in G.

Note that Theorem 3 can not be extended to that of [1,k]-odd factors.
For [1, k}-odd factors, we have the following

Lemma 2. Suppose G € Ex(n) and |V(G)| 2 k + 3. Then there exists a
component H of F, such that

(i) H= K,

(i) every leaf of H has degree 1 in G, and

(#ii) the center of H is adjacent to every vertez in G — H.

Proof. We start with two claims.

Claim 1. There exists a component H of F), all of whose internal vertices
are k-saturated, and all but at most one of whose leaves have degree 1 in
G.

Suppose this is not true. Then every component of F has either a k-
unsaturated vertex or at least two leaves of degree greater than 1 in G.
Similar to the proofs of Lemma 1 and Theorem 4, except that u; is taken
to be either a k-unsaturated vertex of H;, or a leaf of H; with dg(u;) > 1
and u; # v;, we obtain a cycle C. By Theorem 5, C is k-blocked. Let v
be a k-blocking vertex on C. Since v is of type 0, we have v = v; = u; for
some i (if v € H, then v = v,41 = u,). But then, by the choice of u;, v is
k-unsaturated, contradicting the definition of k-blocking vertex.

Claim 2. For each component R of F' — H, there exists at most one
vertex up € V(H), which may have neighbors in R.

Suppose there are two vertices vy,v; € V(H) with Ng(w) N V(R) #
@ (: = 1,2). To avoid a k-unblocked cycle, we see that Ng(v1) N V(R) =
Ng(v2) N V(R) = {w}, where dp(w) = k. Add a new edge wz to G,
where z is a leaf of H with dg(z) = 1 (such a vertex « exists). Let the
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resulting graph be G'. Clearly, F is also a [1, k]-odd factor of G’. Suppose
G’ has another [1, k]-odd factor. Then there is a k-unblocked cycle C’ with
respect to F' in G'. Obviously, zw € E(C’). Since dp(w) = k, w must be
of type 1 with respect to F and C'. So, there exits a vertex y € V(R) such
that wy € E(R) N E(C). Starting from w, going along C’ in accordance
with the direction from w to y, let pg be the first edge on C’ leaving
G — H, where p € V(G — H) and q € V(H). Write P the section on C’
between w and p, Q., the unique path on H from q to v; (i=12). If
g # v, let C = vywPpqQy,v1; otherwise let C = vpwPpqQy,v2. Then
C is a k-unblocked cycle in G, a contradiction. So, G’ is a graph with a
unique [1, k]-odd factor and one more edge than G, which contradicts the
maximality of G. The claim follows.

By Claim 2 and Corollary 1, there are at most (|V(H)| — 1) + e(n —
[V(H)|)+(n—|V(H)|) = n—1+¢(n—|V(H)|) edges in G. Then, H has the
required structure by the maximality of G and by observing the following:

(1) €(n) is an increasing function on n;

(2) all internal vertices of H are k-saturated;

(3) a k-saturated vertex v with dg(v) < k provides at most one edge
between H and G - H;

(4) to avoid a k-unblocked cycle, a leaf v of H has degreedg(v) < 2. O

Remark 3. As a consequence of Lemma 2, every graph G in Ey(n) has
the following structure: let n = r(k+ 1) +¢ (0 < ¢t < k) (note that since
both n and k + 1 are even, ¢ is also even), and Gy a tree of order ¢ with a
unique (1, k]-odd factor (for example, Go = K,—). Fori =0,1,...,r — 1,
Gi41 is the graph obtained from G; by adding a k-star H;, and joining the
center of H; to every vertex of G;. Then, G = G,.

Based on Lemma 2, we can determine ex(n) by a simple counting argu-
ment.

Theorem 6. Let k > 3 be an odd integer. The mazimum number of edges
in a graph G of order n with a unique [1, k]-odd factor is
k+1 , k—

wheren=r(k+ 1)+t (0 <t <k), and

T={0’ t=0;

l)r+T,

t-1, 2<t<k
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