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Abstract

Let G bhe a graph with n vertices and suppose that for each ver-
tex v in G, there exists a list of k colors, L(v), such that there is
a unique proper coloring for G from this collection of lists, then G
is called a uniquely k-list colorable graph. We say that a graph G
has the property M (k) if and only if it is not uniquely k-list col-
orable. M. Ghebleh and E. S. Mahmoodian characterized uniquely
3-list colorable complete multipartite graphs except for the graphs
Krea5, K145,4, K1ea,a, K234, and K22, 4 < r < 8. In this paper
we prove that the graphs K1.4,5, K1.5,4, K1.4,4, and K23,4 have the
property M(3).
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1 Introduction

We consider simple graphs which are finite and undirected. We will use
standard notations such as K, for the complete graph on n vertices,
K,y ms....,m, for the complete n-partite graph in which the ith part is
of size m;, and K,,, for a complete r-partite graph in which each part is
of size s. Notations such as K., etc. are used similarly. A c-coloring
(proper c-coloring) of a graph G is an assignment of ¢ different colors to
the vertices of G, such that adjacent vertices have different colors. For the
necessary definitions and notations we refer the reader to standard texts,
such as [8]. Let G be a graph and let L(v) denote a list of colors available
for a vertex v of G. A list coloring from the given collection of lists is a
proper coloring ¢ such that the color of vertex v, c¢(v), is in L(v). We will
refer to such a coloring as an L-coloring. The idea of list colorings of graphs
was introduced in Vizing (7] and in Erdds, Rubin and Taylor (1]. We note
that a list coloring of IS, is just a system of distinct representatives (SDR)
for the collection £ = {L(v) | v € V(K,)}. Suppose that for each vertex v
in G, there exists a list of & colors, L(v), such that there is a unique proper
coloring for G from this collection of lists, then G is called a uniquely k-list
colorable graph or a UkLC graph for short. We say that a graph G has the
property M (k) (M for Marshal Hall) if and only if it is not uniquely k-list
colorable. So G has the property M{k) if for any collection of lists assigned
to its vertices, each of size at least k, (without loss of generality we can as-
sume that the size of list is k) either there is no list coloring for G or there
exist at least two list colorings. The concept of UKLC graphs also arise in
finding defining sets for colorings of graphs (see [6]). A minimal defining set
of an n- coloring of K,, x K, is just a critical set of a Latin square of order
n (see [4]). Uniquely 2-list colorable graphs have been studied in [2, 5].
In particular, Mahdian and Mahmoodian [5] characterize U2LC graphs as
follows:

Theorem A A connected graph G has the property M(2) if and only if
every block of G is either a cycle, a complete graph or a complete bipartite
graph.

Ghebleh and Mahmoodian [3] extensively study the unique colorability
for complete multipartite graphs. In particular, they characterize U3LC
complete multipartite graphs except for the graphs Ks2,, 4 < 7 < 8,
I<1*4'5, K1,5'4, I{l *4,4» and 1{2,3,4. They prove:

Theorem B If G is a complete multipartite graph which has an induced
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UKLC subgraph, then G is UkLC.

Corollary C  If G is a complete multipartite graph which has the property
M(3), then ecach induced subgraph of G has the property M(3).

The following problem is stated in [3].

Problem  Verify the property M(3) for the graphs K3, 4 <1 < 8,
Ki.45, K454, K1xa,4, and Ko 3 4.

In this paper we will show that the graphs Ki.45, K1.54, K144, and
K3 3,4, have the property M(3). Note that, without loss of generality, we
can assume the size of each list of colors is precisely 3. In order to show that
a graph G has the property M(3), it is sufficient to show that G admits at
least two different L-colorings. Finally, |[m]| denotes the number of vertices
of G with color m in an L-coloring ¢ for G.

We make use of the following crucial results in the next sections.

Lemma 1 Let G be a graph and L be a 3-list assignment to the vertices
of G such that G admits an L-coloring c. Assume for a vertez v € V(G)
there exists a color r € L(v) which is not used in c. Then there exists a
new L-coloring ¢ # ¢ for G.

Proof. Define a new L-coloring ¢’ # c as follows: c/(z) = c¢(z) if z €
VIG)\{v}and d(v)=7. m

Lemma 2 Suppose that G is o complete multipartite graph, L is a 3-list
assignment to the vertices of G, and that G admits an L-coloring c. Let
s # t be two colors and let X = c™(s) and Y = ¢ '(t). Ift € ,cx L(z)
and s € (,cy L(y) then a new L-coloring ¢’ # c exists for G.

Proof. Define a new L-coloring ¢’ # ¢ as follows: ¢/'(v) = t if v € X,
dw)y=sifveY and d(v)=c(v)ifve V(G)\(XUY). =

Lemma 3 Let {z.},---,{zm}, and {v1,v2,..,v,} be the partite sets of
the graph G = Kium,n and let L be a 3-list assignment to the vertices of G
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such that an L-coloring ¢ exists for G. If for some J C {1,2,...,m} we have
|L{z:)NA| <1 for alli & J, where A = {c(v1), c(v2), ..., c(vn)}U{c(z:)| i €
J}, then G admits an L-coloring ¢’ # c.

Proof. Suppose that S = {z;| ¢ € J}. Then G|S], the subgraph induced
by S, is a complete graph and has the property M(2) by Theorem A. If we
put L'(z;) = L(z;) \ A then |L'(z;)| > 2 for ¢ € J. So there exists a new
L'-coloring for the subgraph G[S] which is extendible to Ky . ®

2 The graphs Kj.45 and K4

In this section we show that the graphs /(.4,5 and Kj.4,4 have the property
M (3). Throughout this section we assume {z},---, {z4}, and {v1,...,v5}
are the partite sets of the graph G = K.4,5. Moreover, we assume L is a
3-list assignment to the vertices of G such that an L-coloring c exists for
G. The goal is to find an L-coloring ¢’ # ¢ for G.

In Lemmas 4 and 5 we assume the following properties hold.

1. ¢(z;) =ifori=1,2,3,4 and if A = {c¢(v1),...,c(vs)} then |A| > 2.
2. If c(v;) # c(v;) for some 1 < ,5 <5, then c(v;) ¢ L(v;).

3. Each color in {J,ey gy L(v) is used in the L-coloring c.

Lemma 4 There exists a 2-subset E of {1,2,3,4}, such that L(v;)NE #0
for1<i<5.

Proof. Let c(v;) = a for some i. Obviously a & {1,2,3,4}. Let b € L(v;)
and b # a. If b ¢ {1,2,3,4} then by Property 3 we must have c(v;) = b
for some j. Now c(v;) # c(v;) and c¢(v;) € L(v;) contradict with Property
2. So b € {1,2,3,4}. This forces to have |L(v;) N {1,2,3,4}| = 2 for
i=1,2,---,5. So there is a color ¢ € {1,2,3,4} which appears in at least
three of L(v;), L(v2), L(va), L(v4), and L(vs). Without loss of generality we
may assume the color 1 appears in L(vy), L(vz) and L(vs). If 1 € L(v4) or
1 € L(vs) then it is easy to find E with the required property. Otherwise
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L{va) N L(vs) N {2,3,4} # 0. Let a € L{vg) N L(wg) N {2,3,4}. Then
E = {1,a} is the required set. m

The following lemma shows that /.45 has the property M(3) under
certain conditions.

Lemma 5 If |[L(z;) N A| = 2 for some 1 < i < 4, then there erists a new
L-coloring ¢’ # ¢ for G = K1.45.

Proof. By Lemma 4, there exists a 2-subset E of {1,2,3,4} such that
L(v;)NE # @ for 1 <4 < 5. We can assume that E = {1,2}. If 1 € L(z»)
and 2 € L(x;), the result follows by Lemma 2. Now assume that 1 ¢ L(z2)
or 2 ¢ L(z;). Note that if 1 € L(z2) or 2 € L(z;) then |L(z2) N A| <1 or
|L(z1) N A] < 1, respectively. Now we consider three cases.

Case 1. |L(z1)NA|=2.

Let L(z,) N A = {5,6}. If L(z5) N A # 0, then G admits a new L-coloring
¢’ # c defined by: ¢'(z2) € L(z2) N A, (21) € {5,6} \ {¢'(22)}, ¢'(z3) = 3,
d(z4) =4 and /(v;) € {1,2} for 1 <i <5.

If L(z2) N A = @ then L(z3) N {3,4} # §. Without loss of generality we
may assume 3 € L(zs). If a € L(z3) N A, we introduce a new L-coloring
¢’ # c as follows: ¢(z3) = a, ¢/(z1) € {5,6}\ {a}, ¢(z2) = 3, ¢'(z4) = 4
and ¢/(v;) € {1,2} for 1 <¢ <5.

If L(z3) N A = 0, then L(z3) N {2,4} # 0. Now if 2 € L(x3), the result
follows by Lemma 2. If 4 € L(z3) we proceed as follows. If L(z4) N A # 0,
we define a new L-coloring ¢’ # ¢ by: ¢/(z4) € L(z4) N A, ¢/(z1) € {5,6} \
{c(=4)}, ¢ (x2) =3, ¢(x3) =4 and '(v;) € {1,2} for 1 <i < 5.

If L(x4) N A =0, we apply Lemma 3 with J = {1}.

Case 2. [L(z2)N Al =2.
An argument similar to that described in Case 1 settles this case.

Case 3. |L(z;)NA|<lfori=1,2.

By the assumptions |L{z3) N A| = 2 or |L{z4) N A] = 2. So without loss
of generality we may assume L(z4) = {4,s,t}, where {s,#} C A. Now we
consider two subcases.

Subcase 3.1. AN (L(z1)U L(z2)) = 0.

Since 1 ¢ L(z2) or 2 ¢ L(z,) we can assume 3 € L(z;) and 4 € L(zp). If
L(z3)N A # 0, we define a new L-coloring ¢’ # ¢ by: c'(z1) = 3, ¢/(z2) = 4,
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d(z3) € L(z3)NA,c (z4) € {s,t}\{c'(z3)} and ¢/ (v;) € {1,2} for 1 <i < 5.
If L{z3) N A = 0, we apply Lemma 3 with J = {4}.

Subcase 3.2. AN (L(z;)U L{z,)) # 0.

This implies that one of the color lists L(z;) or L{z2) has a color from set
A and other list has one of the colors 3 or 4. Without loss of generality we
assume that 5 € L(z;) and 3 € L(z3), where 5 € A. If (L(z3)NA)\ {5} # 0,
we define a new L-coloring ¢’ # ¢ by: c/(x;) = 5, c/(z2) = 3, ¢/(z3) €
(L(z3) N A)\ {5},¢(z4) =4 and ¢(v;) € {1,2} for 1 <i < 5.

So let (L(z3)N A)\ {5} = 0. If 4 ¢ L(z,) U L(z3), we apply Lemma 3 with
J = {4}. Now let 4 € L(z;) U L(z3). If 4 € L(z3), then we define a new
L-coloring ¢’ # ¢ by: ¢'(z;) = 5, ¢/(z2) = 3, ¢(z3) =4, ¢/(z4) € {s,t}\ {5}
and ¢/(v;) € {1,2} for 1 <% < 5.

If 4 ¢ L(x3) then 4 € L(z;) and L(zs) N {2,5} # 0. If 2 € L(x3), the
result follows by Lemma 2 since 3 € L(z;). If 2 ¢ L(z3) then 5 € L(x3).
Now G admits a new L-coloring ¢’ # ¢ defined by: ¢/(z1) =4, ¢/(z2) =3,
d(z3) =5, ¢(z4) € {s,t} \ {5} and /(v;) € {1,2}. m

Now we are ready to prove the main result of this section.
Theorem 6 The graph Ky.45 has the property M(3).

Proof. Let {z},{z2}, {z3},{z4} and {v1,...,v5} be the partite sets of
the graph G = Kiup5. Let L be/a 3-list assignment to the vertices of G
such that an L-coloring c exists for G. By Lemma 1 we can assume L
has Property 3. Moreover, if c(v;) # c(v;) and c(v;) € L(v;) for some
1 < 4,7 < 5 then we can define a new L-coloring ¢’ # ¢ by: ¢/(u) = c(u) if
u # v; and ¢/(v;) = ¢(v;). Therefore, we can also assume L has Property
2. Now let A = {c(v1), c(v2), c(vs), c(va), c(vs)}. If |L(z;) N A| < 1 for all
1 < i < 4, then the result follows by Lemma 3 with J = (. Finally, if
|L(z;) N A| = 2 for some i € {1,2,3,4}, then the result follows by Lemma
5. This completes the proof. m

The graph Kj.44 is an induced subgraph of Kj.4,5. So by Theorem 6
and Corollary C we have the following result.

Corollary 7 The graph Ki.4,4 has the property M(3).
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3 The graph K1*5,4

In this section we show that the graph G = Ki.5,4 has the property
M(3). Throughout this section we assume {1}, {y2}, {1}, {va}, {ys} and
{w),wa, w3, ws} are the partite sets of the graph G. Moreover, we assume
L is a 3-list assignment to the vertices of G such that an L-coloring ¢ exists
for G. The goal is to find an L-coloring ¢’ # ¢ for G. In Lemmas 8 and 9
we assume the following properties hold.

L e(y:) =4, 1 <4 <5, ¢(wr) = c(wz) = 6 and c(ws) = c(wy) = 7.
2. If e(wi) # c(w;) for some 1 < 4,5 < 4, then c(w;) ¢ L(w;).

3. Each color in | J,¢y () L(v) is used in the L-coloring c.

Lemma 8 If|L(wr)NL(w2)| = 1 and |L(ws)NL(w,)| = 1, then there exists
a 2-subset F of {1,2,3,4,5}, such that L(w;) N F # () fori=1,2,3,4.

Proof. Since |L(w;) N L(wz)| = 1, we can assume L(w,) = {1,2,6} and
L(wz) = {3,4,6}. This implies that L(w))N L(w;) # ® or L(ws) N L(ws) #
0. Without loss of generality, we may assume L(w;) N L(ws) # @ and
3 € L(we) N L(ws). If {4,5} € L(ws), since |L(w3) N L{ws)] = 1, we
must have L(ws) N {1,2} # 0. Let a € L(ws) N {1,2}. Then F = {a,3}
is the required subset. If {4,5} C L(w4) then L(ws) N {1,2} # 0. Let
b€ L(ws) N {1,2}. Then F = {b,4} is the required subset. m

The following lemma shows that Kj.s54 has the property M(3) under
certain conditions.

Lemma 9 If L(y;) = {4,6,7} for some 1 < j < 5, |L(w;) N L(w;)| = 1
and |L(ws) N L(w4)| = 1, then a new L-coloring ¢ # ¢ exists for G.

Proof. By Lemma 8 there exists a 2-subset F of {1,2,3,4,5}, such that
Lw) N F # @ for 1 < i < 4. Without loss of generality we assume
F={1,2}.1f 2 € L(3) and 1 € L(y2), the result follows by Lemma 2. So
2¢ L(y1) or 1 ¢ L(y2). We consider three cases:
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Case 1. L(y) = {1,6,7}.

If a € L(y2) N {6,7} we define a new L-coloring ¢’ # ¢ by: c'(y) €
{6,7}\{a}, ¢'(3y2) = a, ¢ (y3) = 3, ¢/ (va) = 4, ¢(ys) = 5 and ¢'(w;) € {1,2}
for 1<i<4

If L{y2) N {6,7} = @ then L(y2) N {3,4,5} # . Without loss of generality
let 3 € L(y2). If 2 € L(ys), the result follows by Lemma 2. Now let
2 ¢ L(ys). If b € L(y3s) N {6,7} we define a new L-coloring ¢’ # c as follows:
(1) € {6,7}\ {b}, c'(y2) = 3, <(33) = b, (ya) = 4, ¢(y5) = 5 and
d(w;)) € {1,2} for1 <i<4.

If L(y3) N {6,7} = 0 then a € L(y3) N {4,5}. Let 4 € L(ys) (the case
5 € L(yz) is similar). If b € L(ys) N {6, 7} we define a new L-coloring ¢’ # ¢
as follows: ¢/(11) € {6,7}\ {0}, ¢ (32) = 3, ¢'(ys) =4, ¢ (ya) = b, ¢ (y5) = &
and ¢/(w;) € {1,2} for 1 <i < 4.

Now we suppose that L(ys) N {6,7} = 0. If 5 ¢ L(y4), we apply Lemma 3
with J = {1,5}. So let 5 € L(ys). If a € L(ys) N {6,7} we define a new
L-coloring ¢’ # c as follows: c'(y;) € {6,7} \ {a}, ¢(3y2) = 3, ¢'(v3) = 4,
d(ya) =5, ¢ (y5) = a and ¢'(w;) € {1,2} for 1 <i< 4.

Finally, if L(ys) N {6, 7} = §, we apply Lemma 3 with J = {1}.

Case 2. L(y) ={2,6,7}.
An argument similar to that described in Case 1 takes care of this case.

Case 3. |L(y)N{6,7}| <1lfori=1,2.
We consider two subcases:

Subcase 3.1. (L(y1) U L(y2)) N {6,7} #0

Since 1 ¢ L(y2) or 2 ¢ L(y) it follows that one of the color lists L(y)
or L(yz) has a color from set {6,7} and the other list has a color from
set {3,4,5}. We may assume that 6 € L(y) and 3 € L(y2). If 7 € L(ys)
we define a new L-coloring ¢ # ¢ by: (1) =6, /(y2) = 3, (y3) = 7,
() =4, (ys) =5 and /(w;) € {1,2} for 1 <i < 4.

If 7 ¢ L(ys), since L(y;) = {i,6,7} for some 1 < i < 5, we must have
L(yq) = {4,6,7} or L(y5) = {5,6,7}. Without loss of generality we assume
L(ys) = {5,6,7}. If 5 € L(ys) we define a new L-coloring ¢’ # ¢ by:
d(y) =6, d(y2) =3, ¢ (y3) =5, ¢ (ya) =4, (ys) =7 and /(w;) € {1,2}
forl1 <i<4.

Now let 5 ¢ L(ys). Consider the following two subcases.

3.1.1 6 ¢ L(ys) U L(ya)-

Then {2,4} N L(y3) # 0. If 2 € L(ys), the result follows by Lemma 2. If
4 € L(ys) and a € L(y4) N {5,7} we define a new L-coloring ¢’ # ¢ by:
d(p) = 6, () = 3, d(y3) = 4, d(ya) = a, ¢(y5) € {5,7} \ {a} and
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d(w;)e{1,2} for1 <i<4.
If 4 € L(ys) and L(y4) N {5,7} = 0, we apply Lemma 3 with J = {1,5}.

3.1.2 6 € L(ys) U L(yy).

Let 6 € L(ys). (The case 6 € L(ys4) can be settled in a similar fashion.)
If 5 € L(y1) we define a new L-coloring ¢ # ¢ by: ¢(y1) = 5, ¢/(y2) = 3,
c(y3) =6, /(ya) =4, d(ys) = 7 and '(w;) € {1,2} for 1 < i < 4.

If 5 ¢ L(y1) and 4 ¢ L(y1) U L(y3), we apply Lemma 3 with J = {4,5}).
Now let 5 ¢ L(y1) and 4 € L(y;) U L(y3). We only consider the case 4 €
L(y,). The case 4 € L(ys) can be settled in a similar fashion. If a €
{5,7} N L(ys) we define a new L-coloring ¢’ # ¢ by: (1) = 4, ¢'(y2) = 3,
c(y3) = 6, ¢'(ya) = a, c(y5) € {5,7}\ {a} and ¢'(w;) € {1,2} for 1 < i < 4.
If {5,7} N L(y4) = 0, we apply Lemma 3 with J = {5}.

Subcase 3.2. (L(y1) U L(y2)) N {6,7} = 0.
Without loss of generality we assume 3 € L(y) and 4 € L(y). Now
consider two subcases.

3.2.1. |L(y)N{6,7}] < 1.

So L(ys) = {3,6,7} or L(ys) = {4,6,7}. Let L(ys) = {3,6,7}. (The case
L(ya) = {4,6,7} is similar.) If a € L(ys)N{6, 7} we define a new L-coloring
d #cby: d(y1) =3,c(3) =4, (y3) € {6, 7} \ {a}, ¢ (1) = a, ' (y5) =5
and ¢'(w;) € {1,2} for 1 <i < 4.

Now let L(y4) N {6,7} = 0. If 5 € L(y4) and a € L(ys) N {6, 7}, we define
a new L-coloring ¢’ # ¢ by: ¢/(y1) = 3, ¢(32) = 4, d(w3) € {6,7} \ {a},
c'(ys) =5, ¢'(y5) = a and ' (w;) € {1,2}.

If 5 € L(ys) and L(ys) N {6,7} = @, we apply Lemma 3 with J = {3}.
If 5 ¢ L(ya) then L(ys) N {1,2} # 0. Now if 2 € L(ys), the result follows
by Lemma 2. If 2 ¢ L(y4) then 1 € L(ys) and L(ys) = {1,3,4}. Now
if 5 ¢ L(y1), we apply Lemma 3 with J = {3,5}. So let 5 € L(y;). If
a € L(ys) N {6,7}, we define a new L-coloring ¢’ # ¢ by: ¢'(y1) = 5,
(y2) = 4, < (ys) € {6,7}\ {a}, ¢ (va) = 3, ¢(y5) = @ and '(wi) € {1,2}
forl1 <i<4.

Finally, if L(ys) N {6,7} = 0, we apply Lemma 3 with J = {3}.

3.2.2. L(ys) = {5,6,7}.

If (L(ys) U L(y4)) N {6,7} = O, we apply Lemma 3 with J = {5}. Now
let L(ys) N {6,7} # 0. (The case L(ya) N {6,7} # O can be settled in a
similar fashion.) Without loss of generality we may assume 6 € L(ya).
If @ € L(ya) N {5,7}, we define a new L-coloring ¢ # ¢ by: ¢/(y1) = 3,
c(y2) =4, (y3) = 6, '(ya) = a, (ys) € {5,7}\ {a} and ¢'(w;) € {1,2}
forl <i<4.
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Now let L{ys) N {5,7} = 0. If 6 ¢ L(yq) then Lys) N {2,3} # 0. If
2 € L(ys), the result follows by Lemma 2. If 2 ¢ L(ys) then 3 € L(ya).
Now if 5 ¢ L(y1) we apply Lemma 3 with J = {3,5}. If 5 € L(y;), we define
a new L-coloring ¢ # ¢ by: ¢/(y1) =5, ¢(y2) = 4, ¢'(y3) = 6, ¢/ (y4) = 3,
d(ys) =7 and ¢ (w;) € {1,2}.

If 6 € L(y4) and {5,7} N L(y3) = @, we apply Lemma 3 with J = {5}. If
6 € L(yq) and a € {5,7} N L(y3), we define a new L-coloring ¢’ # ¢ by:
d(m) = 3, d(y2) = 4, ¢'(y3) = a, ¢'(ya) = 6, ¢'(ys) € {5,7} \ {a} and
c'(w;) € {1,2} for 1 < i < 4. This completes the proof. m

Now we are ready to prove the main result of this section.
Theorem 10 The graph Ki.54 has the property M(3).

Proof. Let {y;}, 1 < i <5, and {w;,wz, w3, ws} be the partite sets of
the graph G = Kj.5,4. Let L be a 3-list assignment to V(G) such that an
L-coloring ¢ exists for G. By Lemma 1 we can assume L has Property
3. Moreover, if ¢(w;) # ¢(w;) and c(w;) € L(w;) for some 1 < 4,5 < 4
then we can define a new L-coloring ¢ # ¢ by ¢/(u) = c(u) if u # w;
and ¢/(w;) = ¢(w;). Therefore, we can also assume L has Property 2. Let
A = {c(w;)|l < i < 4}. If |A| = 1, we apply Lemma 3 with J = 0. If
|A| = 3 or |A] = 4 we add new edges between the vertices with different
colors in ¢. The resulting graph is Ky \ e or Ky, respectively. These graphs
have the property M(3) (see [4]). So there exists a new L-coloring ¢’ # ¢
for G. Now let |A| =2 and A = {6,7}. We consider two cases:

Case 1. |[6]| =1[7]] = 2.

Without loss of generality we can assume c¢(w;) = c(w2) = 6 and c(ws) =
c(wq) = 7. Let L(w;) N L(ws) = {6} and L(ws) N L(ws) = {7}. If L(y;) =
{4,6,7} for some 1 < j < 5, the result follows by Lemma 9. If |L(y;) N
{6,7}| <1, for all 1 < j < 5, we apply Lemma 3 with J = 0.

Let |L(w,) N L(ws)| > 1. Suppose that S = {y1,¥2,¥3,y4,ys, w1}. Then
G|S), the subgraph induced by S, is a complete graph on six vertices and
has the property M(2) by Theorem A. If we put L'(u) = L(u) \ {7} for
u € S\ {w:1} and L'(w) = L(w1) N L(ws), then |L'(u)| > 2 for u € S.
Therefore, there exists a new L’-coloring for the subgraph G[S] which is
extendible to G.

Case 2. |[6]|=1or|[7]]=1.

Let |[6]] = 1 and c(w;) = 6. (The case |[7]] = 1 is similar to this case.)
Suppose that S = {y1,y2,¥3, Y4, ¥s, w1 }. Then G[S], the subgraph induced
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by S, is a complete graph on six vertices and has the property M (2) by
Theorem A. If we put L'(u) = L(u) \ {7} for u € S then |L'(u)| > 2. So
there exists a new L’-coloring for the subgraph G[S] which is extendible to
G m

4 The graph K2,3,4

In this section we show that the graph G = K5 3 4 has the property M (3).
Throughout this section we assume {a,d}, {d,e, f} and {z,y, 2,t} are the
partite sets of the graph G. Moreover, we assume L is a 3-list assignment
to the vertices of G such that an L-coloring c exists for G. The goal is to
find an L-coloring ¢’ # ¢ for G.

In Lemmas 11-18 we assume the following properties hold.

L Je({a,b})] = |c({d, e, f})| = |c({z,y, 2,t})| = 2. Moreover, c(a) = 1,
c(b) =2, ¢(d) = c(e) =3 and c(f) = 4.

2. If uand v are two vertices in the same part such that c(u) # c(v) then

c(u) ¢ L(v).
3. Each color in J,ey (g) L(v) is used in the L-coloring c.

4. Let 5,6 € {c(2),c(y), c(z),c(t)}. If |[5]| = |[6]] = 2, then we assume
that ¢(z) = c(y) = 5 and ¢(2) = c(t) = 6. If |[5]| = 3 and |[6]| = 1,
then we assume that c(z) = ¢(y) = ¢(z) =5 and c(t) = 6.

We make use of the following lemma which is similar to Lemmas 4 and

8.

Lemma 11 There exists a 2-subset F of {1,2,3,4} such that L(v)NF # ()
for v € {x,y,2,t}. Moreover, if |L{x) N L(y) N L(z) N L(t)| # 2 then there
exist 2-subsets F;, i = 1,2, of {1,2,3,4}, such that L{v) N F; # @ for
v € {=,y,2,t}.

Proof. An argument similar to that described in Lemma 4 shows that there
exists an Fy = {r,s} C {1,2,3,4} such that L(v)NF # 0 for v € {x,y, z,t}.
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In order to find another 2-subset when |L(z) N L(y) N L(2) N L(t)| # 2,
without loss of generality, we may consider two cases. If r € L(z) N L(y) N
L(z) and s € L(t), we define F, = {r,s'}, where s’ € {1,2,3,4} \ {r,s}.
If r € L(z) N L(y) and s € L(z) N L(t), we define F, = {r',s'} where
{r',s'} € {1,2,3,4}\ {r,s}. =

Lemmas 12-18 show that the graphs K> 3 4 has the property M(3) under
certain conditions.

Lemma 12 If 4 € L(a) N L(b), then there exists a new L-coloring ¢’ # ¢
fO'f‘ 1{2,3,4.

Proof. If L(f) N {1,2} # @, the result follows by Lemma 2. Otherwise we
must have L(f) = {4,5,6}. Now if color 4 appears in at least three of the
color lists of {z,y,2,t} then the result follows from Lemma 2. Otherwise,
we can color the vertices z,y, z,t with at most two of the three colors 1, 2
and 3, the vertices a and b with color 4 and the vertices d, e, f with colors
5,6,z, where z € {1,2,3} is an unused color in partite set {x,y,2,t}. ®

Lemma 13 If 3 € L(a) N L(b), then there exists a new L-coloring ¢’ # ¢
fOT‘ K2'3_4.

Proof. If 4 € L(a) N L(b) then the result follows by Lemma 12. So
let 4 ¢ L(a) N L(b). This forces L(a) N {5,6} # ® or L(b) N {5,6} # .
We assume L(a) N {5,6} # @ (the case L(b) N {5,6} # O is similar). If
L(d) N {1,2} # 0 and L(e) N{1,2} # § we obtain a new L-coloring ¢’
as follows: ¢'(a) = ¢'(b) = 3, {¢(d),c(e)} € {1,2} and c'(u) = c(u) for
u € {f,z,v,2,t}.

Otherwise, L{d)N{1,2} = @ or L{e)N{1,2} = 0. Without loss of generality
we assume that L(d)N{1,2} = 0. This forces L(d) = {3, 5,6}. We consider
three cases.

Case 1. |L(f)n{5,6}|=1.
Assume L(f) = {1,4,5} (the cases L(f) = {1,4,6}, L(f) = {2,4,5} and
L(f) = {2,4,6} are similar). Consider the following two subcases.

Subcase 1.1. L(e)N{5,6} # 0.

We define a new L-coloring ¢’ # cby: ¢/(a) = ¢(b) = 3, {c'(d),c/(e),c'(f)} €
{5,6}, and ¢’(v) € {1,2,4}or v € {z,y, 2, t}.
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Subcase 1.2. L(e)N {5,6} = 0.

This forces L(e) = {1,2,3}. If L(a) N L(b) N {5,6} # B, we obtain a new
L-coloring ¢’ # c as follows: ¢'(a) = ¢/(b) € {5,6}, ¢'(d) € {5,6}\ {c'(a)},
d(e) = (f) =1 and ¢(v) € {2,3,4} for v € {z,y,z,t}.

Otherwise, L(a) N L(b) N {5,6} = 0. If |[5]] = 3 (the case |[6]| = 3 is
similar) we define a new L-coloring ¢’ # ¢ by: ¢/(a) = ¢/(b) = 3, ¢'(d) = 6,
d(z) = d(y) = d(2) =5, d(t) € {1,2,4}, ¢(e) € {1,2} \ {¢(t)} and
¢(f) € {141\ {¢(2).

Now let |(5]| = |[6]| = 2 and consider the following three subcases.

1.2.1. 4€ L(z)N L(y). (The case 4 € L(z) N L(t) is similar.)
We obtain a new L-coloring ¢ as follows: ¢'(a) = ¢'(b) = 3, ¢(d) = 5,
d(e)=d(f)=1,d(z) = (y) =4 and ¢(2) = (t) = 6.

1.2.2. 4€ (L(z)U L(y)) \ (L(z) N L(y)).

We can assume 4 € L(z) (the case 4 € L(y) is similar). So L(y)N{1,2} # 0.
Define a new L-coloring ¢’ # ¢ by: ¢(a) = ¢'(b) = 3, ¢'(d) = ¢'(f) = 5,
c'(z) =4, ¢(y) € {1,2}, ¢(2) = ¢(t) = 6 and ¢/(e) € {1,2} \ {¢(3)}.

1.2.3. 4¢ L(z) U L(y).

Then L(z) N L(y) N {1,2,3} # 0. If L(z) N L(y) N {1,2} # 0, we obtain a
new L-coloring ¢’ as follows: ¢'(a) = ¢/(b) = 3, ¢'(d) = ¢'(f) = 5, ¢(z) =
c(y) € {1,2}, () € {1,2} \ {¢(2)} and '(2) = ¢/(t) = 6.

Now let 3 € L(z) N L(y). If 4 € L(z) N L(t) we use an L-coloring similar to
that given in Subcase 1.2.1. Let 4 € L(z) and 4 ¢ L(t) (the case 4 ¢ L(z)
and 4 € L(t) is similar). This forces L(t) N {2,3} # 0. If 2 € L(t), we
obtain a new L-coloring ¢ # c as follows: ¢/(a) = ¢/(b) = 3, ¢(d) = 6,
de)=d(f)=1, ()= (y)=5,c(z) =4 and ¢(t) = 2.

If 3 € L(t), then ¢/(v) € {3,4} for each v € {z,y,2,t}. Define a new
L-coloring ¢’ # ¢ by: c'(a) € {5,6}, ¢(0) = 2, ¢(d) € {5,6} \ {¢(a)},
c'(e) = (f) =1. and ¢ (u) € {3,4} for u € {=,y, 2, t}.

Finally, if 4 ¢ L(z) U L(t) then L{v) N {1,2} # @ for v € {z,y,2,t}. On
the other hand L(b) N {4,5,6} # 0. Now if L{D) N {5,6} # @ then a new
L-coloring ¢ # c is defined by: {c'(a),c'(b)} C {5,6}, ¢'(u) = c(u) for
u € {d,e, f} and ¢/(v) € {1,2} for v € {x,y,2,t}. If 4 € L(D) then a new
L-coloring ¢’ # c is defined by: ¢(a) = 1, ¢'(b) = 4, ¢(d) = ¢(f) = 5,
cd(e)=2,d(z) =c(y) =3 and ¢(z) = ¢'(t) = 6.

Case 2. {5,6} C L(f).

In this case we have L(f) = {4,5,6}. If L(e) N {5,6} # ®, we take the
new L-coloring ¢ # ¢ given in Subcase 1.1. If L(e) N {5,6} = @ then we
have L(e) = {1,2,3}. Now if |[5]] = |[6]] = 2, then new L-colorings can
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be obtained similar to those described in Subcases 1.2.1, 1.2.2 and 1.2.3.
Finally, let |[5])] = 3 (the case |[6]| = 3, is similar). If 4 € L(t) then the result
follows by Lemma 2. If 4 ¢ L(t), then L(t) N {1,2} # 0. Now we obtain
a new L-coloring ¢’ # ¢ as follows: ¢/(a) = ¢(b) = 3, ¢(d) = ¢(f) =6,
d(z) =c'(y) = '(2) = 5, ¢(t) € {1,2} and (e) € {1,2} \ {¢'()}-

Case 3. L(f)n{5,6} =0.
Then L(f) = {1,2,4}. Consider two subcases.

Subcase 3.1. L(e)N{5,6} # 0.

We assume 5 € L(e) (the case 6 € L(e) is similar). If |[5]| = |[6]| = 2, we
obtain a new L-coloring ¢ # c as follows: ¢'(a) = ¢/(b) =3, ¢'(d) = c/(e) =
5,¢(2) = ¢(t) = 6, {'(2),¢'(y)} € {1,2,4} and ¢'(f) € L(H)\{¢(2), ¢ ()}
Now let |[5]| = 3 (the case |[6])| = 3 is similar). If 3 € L(z) N L(y) N L(z), we
obtain a new L-coloring ¢’ as follows: ¢/(a) =1, ¢'(b) = 2, ¢/(d) = ¢'(e) = 5,
d(f) =4, (t)=6and c(z) = (y) = (2) = 3.

If 3 ¢ L(z) N L(y) N L(z), we first color the vertices x, y and z with at
most two of the three colors 1, 2 and 4. Then we color the other vertices
as follows: c¢/(a) = ¢/(b) = 3, ¢(d) = ¢(e) = 5, (t) = 6 and c'(f) €
L)\ {d(z).¢ (). ' (2)}

Subcase 3.2. L(e)N{5,6} = 0.

Then we have L(e) = {1,2,3}. If |[5]] = |[6]| = 2, then new L-colorings are
similar to those described in Subcases 1.2.1, 1.2.2. and 1.2.3. If |[5])| = 3
(the case |[6]| = 3 is similar) we obtain a new L-coloring ¢’ # c as follows:
d(a) =c'(b) =3, c(d) =6, c(z) = (y) =(z) = 5 and c'(t) € {1,2,4},
d(e)=c(f) e {1,2}\{c(t)}. =

Lemma 14 If L(d) N L(e) N L(f) N {1,2} # O, then there exist a new
L-coloring ¢ # ¢ for Ko 3.4.

Proof. Without loss of generality, we may assume that 1 € L(d) N L(e) N
L(f). If L(a) N {3,4} # 0, the result follows by Lemma 2. Otherwise,
L(a) = {1,5,6}. If L(b) N {5,6} # B, we define a new L-coloring ¢’ # ¢ by:
d(a) = c(b) € {5,6}, ¢ (d) = c(e) = (f) =1, ¢(v) € {2,3,4} for each
v € {z,y,2,t}.

Now let L(b) N {5,6} = 0. If color 1 appears in at least three color lists
of the vertices z,¥, z,t then the result follows by Lemma 2. Otherwise, we
can color the vertices x,¥, z,t with at most two of the three colors 2, 3 and
4, and use a remaining color for vertex b. Then we color vertex a with 5
and vertices d, e, f with 1. This completes the proof. m
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Lemma 15 If L{a) N L(b) N {5,6} # 0, then there exists a new L-coloring
c #c for Koz

Proof. Without loss of generality, we may assume that 5 € L(a) N L(b).
If L(a) N L(b) N {3,4} # O, the result follows by Lemmas 12 or 13. If
L(d)nL(e)NL(f)n{1,2} 5 O, the result follows by Lemma 14. If 6 € L(§)
a new L-coloring ¢’ # ¢ can be defined as follows: ¢’(a) = /(b)) = 5,
c(d) =d(e) =3, d(f) =6 and ¢'(v) € {1,2,4} if v € {z,y,2,1}.

Now let 6 ¢ L({f). We consider two cases.

Case 1. 5¢ L(f).

This forces L(f) = {1,2,4}. If [[5]| = |[6]] = 2, we define a new L-coloring
d #chy: d(a) =) =5, d(d) =) =3, d(z) =c(t) =6 and
{¢(2),¢(),¢ (N} C {1,2,4}.

Now let |[5]| = 3 (the case |[6}| = 3 is similar). If 4 € L(a)U L(b), the result
follows by Lemma 2. If 4 ¢ L(a) U L(b), then we have 6 € L(a) U L(b). Let
6 € L(a) (the case 6 € L(b) is similar.) If 1 € L(¢), the result follows by
Lemma 2. If 4 € L(t), a new L-coloring ¢’ # ¢ can be defined by: ¢/(a) = 6,
cd) =2, dd) =) =3,d(f) =1,c(z) =(y) = d(z) =5 and
d(t) =4.

If L(t) N {1,4} = 0 then L(t) = {2 3 6}.If 3 L(w)ﬂL(1)ﬂL(z), we
define a new L-coloring ¢’ # ¢ by: c(a) = ¢'(b) = 5, {c(d),c'(e),c'(f)} C
{1,2,4,6}, and ¢/(v) = 3 if v € {=,y, 2, t}.

Finally, if 3 ¢ L(z) N L(y) N L(z), we color the vertices z, ¥ and z by
at most two of the three colors 1, 2 and 4. Therefore, we can obtain a
new L-coloring ¢’ as follows: ¢/(a) = ¢/(b) =5, ¢'(d) = d'(e) = 3, ¢(t) =
6, {c'(x), c(y), ¢'(2)} € {1,2,4} and ¢'(f) € L(f) \ {¢'(z), ¢ (), ¢ (2)}.

Case 2. 5¢€ L(f).

Let L(f) = {1,4,5} (the case L(f) = {2, 4 5} is similar). If 4 € L(a), the
result follows by Lemma 2. Let 4 ¢ L(a) and consider the following three
subcases.

Subcase 2.1. {5,6} C L(d) N L(e).
We define a new L-coloring ¢’ # ¢ by: ¢'(a) = ¢/(b) = 5, ¢'(d) = c/(e) = 6,
cd(f) =4and '(v) € {1,2,3} if v € {z,y, 2, t}.

Subcase 2.2. L(d) = {3,5,6} and {5,6} € L(e). (The case L(e) =
{3,5,6} and {5,6} € L(d) is similar.)

So we have L(e)N{1,2} # 0. If 1 € L{e), we define a new L-coloring ¢’ # ¢
by: c'(a) = ¢/(b) =5, ¢(d) = 6, /(e) = <(f) =1 and ¢'(v) € {2,3,4} if
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v € {z,y, 2,t}.

If1 ¢ L(e) then 2 € L(e) and L(e)N{5,6} # 0. If 6 € L(e) a new L-coloring
¢ # cis defined by: ¢'(a) = ¢'(b) =5, ¢(d) = ¢'(e) =6, ¢/(f) = 4 and
d(v) € {1,2,3} if v € {,v, 2,t}.

Now let 5 € L{e) and consider the following two subcases.

2.2.1. 6 € L(a) U L(D).

Let 6 € L(a) (the case 6 € L(b) is similar). Define a new L-coloring ¢’ # ¢
by: d(a) = 6, ¢'(b) = 2, ¢'(d) = c(e) = ¢(f) =5 and ¢ (v) € {1,3,4} if
v € {z,y,z,t}.

2.2.2. 6¢ L(a)UL()).

Then L(a) N {3,4} # 0 and L(b) N {3,4} # V. This forces L(a) = {1,3,5},
L(b) = {2,4,5}, L(d) = {3,5, 6} L(e) = {2,3,5} and L(f) = {1,4,5}. Now

one can apply Lemma 11 to find a new L-coloring ¢’ # ¢ for K23 4.

Subcase 2.3. |L(d)N{5,6}| <1 and |[L(e) N {5,6}| < 1.

If 6 ¢ L(a) U L(b) then L(v) N {3,4} # ¥ for v € {a,b}. Define a new L-
coloring ¢ # ¢ by: {c'(a),c'(b)} C {3,4}, {¢'(d),c(e),c'(f)} € {1,2} and
c'(uw) = c(u) for u € {z,y,2,t}.

Now assume 6 € L(a) (t,he case 6 € L(b) is similar). We leave for the reader
to find a new L-coloring ¢’ # c for K334 if L(z) N L{y) N L(z) N L(t) = 2.
Now let L(z) N L(y) N L(z) N L(t) # 2. By Lemma 11 there exist 2-subsets
F; € {1,2,3,4}, i = 1,2, such that L(v) N F; # 0 for v € {z,y,2,t}.
It is straightforward to define a new L-coloring ¢’ # ¢ for K534 when
F; = {1,2}, F; = {1,4}, F; = {2,4) or F; = {3,4} for some i € {1,2}.
Finally, let F; = {1,3} and F; = {2,3}. We consider two subcases.

2.3.1. 2¢€ L(d)n L(e).
Define a new L-coloring ¢ # ¢ by: ¢'(a) = ¢/(b) = 5, d(d) = '(e) = 2,
¢(f) = 4 and ¢/(v) € {1,3} for v € {z,y,2,t}.

2.3.2. 2¢ L(d) N L(e).

We can assume 2 € L(d) and 1 € L(e). (The case 1 € L(d) and 2 € L(e)

is similar.) If 6 € L(d) N L(e) we obtain a new L-coloring ¢’ # c as follows:

d(a) = c(b) = 5, d(d) = ¢(e) = 6, (f) = 4 and '(v) € {1,3} for

v € {z,v, 2, t}.

If 6 € L(d) and 5 € L(e), we define a new L-coloring ¢’ # ¢ by: ¢'(a) =
db) =5, ¢(d) =6, c'(e) =1, ¢(f) =4 and '(uv) € {2,3} for u €

{z,y,2,1t}.

If 6 € L(e) we obtain a new L-coloring ¢’ # c as follows: ¢'(a) = ¢'(b) =5,
d(d) =2, d(e) =6, d(f) =4 and ¢(v) € {1,3} for v € {z,y,2,t}.
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If 6 ¢ L(d) U L(e) then 5 € L(d) N L{e). Define a new L-coloring ¢ # ¢
by: ¢'(a) = 6, ¢(b) = 2, (d) = ¢(e) = (f) = 6 and ¢/(v) € {1,3} for
ve{z,y,2t}n

Lemma 16 If L(d) N L(e) N L(f) N {5,6} # O, then there exist a new
L-coloring ¢! # ¢ for Ka3.4.

Proof. Without loss of generality we assume 5 € L(d) N L(e) N L(f). If
L{a) N L(b) N {3,4,5,6} # 0, the result follows by Lemma 12, 13 or 15.
Otherwise, 6 € L{a) U L()). Let 6 € L(a) (the case 6 € L(b) is similar).
Define a new L-coloring ¢’ # ¢ by: ¢'(¢) =6, ¢(b) = 2, d(d) = d(e) =
c(f)=>5and (v) € {1,3,4} forv € {z,y,2,t}. m

Lemma 17 Let L(a) = {1,5,6} or L(b) = {2,5,6}. If L(a) N L(b) =  and
L(d)N L(e) N L(f) = 0 then there exists a new L-coloring ¢ # ¢ for Kz 3 4.

Proof. Let L(a) = {1,5,6} (the case L(b) = {2 ,6} is similar). By the
assumptions we have L(b) = {2,3,4}. If L L(e) or 2 € L(f), the result
follows by Lemma 2. Otherwise, L(d) # L(e) and L(f) N {5,6} # 0. Let
5 € L(f) (the case 6 € L(f) is similar). If color 1 appears in at least three
color lists of the vertices z,y, 2, t the result follows by Lemma 2. Otherwise,
the vertices z,y, z,t can be colored with at most two of the three colors 2,
3 and 4 and a remaining color is used for vertex b. In order to color the
other vertices we consider two cases:

Case 1. L(v)N{5,6} # 0 for v € {d,e}.
We use color 1 for vertex a and colors 5,6 for vertices d,e and f.

Case 2. Only one of the relations L(d) N {5,6} # @ or L(e) N {5,6} # 0
holds.

Let L(d)N{5,6} # @ (the other case is similar). This forces L{e) = {1,2, 3}.
If 5 € L(d), we color vertex a with 6, vertices d and f with 5 and vertex e
with 1. If 6 € L(d) since L(f) N {1,6} # @ we can use color 5 for vertex a
and colors 1 and 6 for vertices d,e and f. m

Lemma 18 Let |L(v)N{5,6}| =2 for somewv € {d,e, f}, L( a)nL(b)
and L(d) N L(e) N L(f) = 0. Then there exists a new L-coloring ¢ # ¢ for
K23,4.
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Proof. If L{a) = {1,5,6} or L(b) = {2,5, 6}, the result follows by Lemma
17. So let L(u) N {5,6} # ¥ and L(u) N {3,4} # 0 for u € {a,b}. Without
loss of generality we may assume L{a) = {1,3,5} and L(b) = {2,4,6}.
If L(d) = L(e) or 2 € L(f), the result follows by Lemma 2. Now let
L(d) # L{e) and 2 ¢ L(f). This forces L(f) N {5,6} # 0. Let 5 € L(f) (the
case 6 € L(f) is similar). By the assumptions we have L(d) = {3,5,6},
L(e) = {3,5,6} or L(f) = {4,5,6}. First let L(d) = {3,5,6} (the case
L(e) = {3,5,6} is similar). Since L(d) N L(e) N L(f) = # it follows that
5 ¢ L(e) and so L(e)N{1,2} # 0. Let 2 € L(e) (the case 1 € L(e) is similar).
Using Lemma 11 it is now straightforward to define a new L coloring ¢’ # ¢
for K2,3,4.

Finally, let L(f) = {4,5,6}. Since L(d) # L(e), we can assume L(d) N
{1,2} # 0 and L(e)N{5,6} # 0. Let 1 € L(d) and 5 € L(e) (the other cases
are similar). We leave for the reader to find a new L-coloring ¢’ # c for
Kaa,4 if L(z)NL(y)NL(z)NL(t) = 2. Now let L(z)NL(y)NL(z)NL(t) # 2.
By Lemma 11 there exist 2-subsets F; C {1,2,3,4}, i = 1,2, such that
L(v)NF; # § for v € {z,y,2,t}. It is straightforward to define a new L-
coloring ¢’ # ¢ for K234 when F; = {1,2}, F; = {1,4} or F; = {2,4} for
some i € {1,2}. Now let {F},F>} C {{1,3},{2,3},{3,4}}. We consider
two cases:

Case 1. L{d)NnL{e)N{1,2} #0.

If 1 € L(d) N L(e) the result follows by Lemma 2. So let 2 € L(d) N L(e).
If F; = {1,3} for some i = 1,2, we define a new L-coloring ¢’ # ¢ by:
da) =5, ¢(b) =6, c(d) = (e) =2, ¢(f) =4 and c'(u) € {1,3} for
u € {z,y, 2,t}.

If F; = {3,4} for some i = 1,2, we define a new L-coloring ¢’ # ¢ by:
d(a) =1, ¢(b) =6, d(d) = c(e) =2, ¢(f) =5 and c'(uv) € {3,4} for
u € {z,y,2,t}.

Case 2. L(d)NL(e)n{1,2} =§.

So L(d)n{5,6} # 0 and L(e)N{5,6} # 0. If F; = {2,3} for some i = 1,2, we
define a new L-coloring ¢/ # cby: ¢(a) = 1, ¢/(b) = 4, {¢'(d),(e),c(f)} €
{5,6} and ¢'(v) € {2,3} for v € {z,y,2,t}.

If F; = {3,4} for some i = 1,2, we define a new L-coloring ¢’ # c by:
da) = 1, d(b) = 2, {c(d),c(e),d(f)} € {5,6} and c'(v) € {3,4} for
v € {z,y,2,t}. m

We are now ready to prove the main result of this section.
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Theorem 19 The graph Ka 34 has the property M(3).

Proof. Let {a,b},{d, e, f} and {z,y,z,t} be the partite sets of the graph
G = Kj34. Let L be a 3-list assignment to the vertices of G such that an
L-coloring c¢ exists for G. By Lemma 1 we can assume L has Property 3.
Moreover, if z and y are two vertices in the same part such that c(z) # c(y)
and c(x) € L(y) then we define a new L-coloring ¢’ # ¢ by: ¢'(u) = ¢(u) if
u # y and ¢/(y) = ¢(z). Therefore, we can also assume L has Property 2.
Now we consider two cases.

Case 1. All vertices of a part of K534 have the same color ¢ in c.

If we remove the vertices of this part the remaining graph H is a complete
bipartite graph. Define L'(u) = L(u) \ {t} for u € V(H). Since the restric-
tion of ¢ on V(H) is an L'-coloring for H, by Theorem A there exists a new
L'-coloring ¢ for H. Obviously, ¢’ is extendible to K 3 4.

Case 2. Each part has at least two colors in c.

Let c(i, j,k) denote an L-coloring which has i colors in partite set {a, b},
J colors in partite set {d, e, f} and k colors in partite set {z,y,z2,t}. We
consider three subcases.

Subcase 2.1. The L-coloring is of the form ¢(2, 3,4), ¢(2, 3, 3) or ¢(2, 2, 4).
Add a new edge between any two vertices in the same partite set with
different colors in c¢. The resulting graph is Ky or Ky \ e. Since both Ky
and Kj \ e have the property M(3) (see [4]) we obtain a new L-coloring
c #cfor Koy,

Suncase 2.2. The L coloring is of the form ¢(2,2,2).

If L(a) N L(b) # # we apply Lemmas 12, 13 or 15. If L(d)N L{e) NL(f) # 0
we apply Lemmas 14 or 16. Otherwise, if |L(u) N {5,6}| = 2 for some
u € {a,b,d,e, f} we apply Lemma 17 or Lemma 18. Finally, let |L(u) N
{6,6}| <1 for v € {a,b,d,e, f}. Remove the vertices z,y, 2, from Ko 34
and remove colors 5,6 from L(v) for v € {a,b,d,e, f}. Then the resulting
graph is the complete bipartite graph K2 3. This graph has the property
M (2) by Theorem A. Obviously, this coloring is extendible to Ko34.

Subcase 2.3. The L-coloring is of the form ¢(2,3,2) or ¢(2,2, 3).

A method similar to that described in Case 2 can be applied for these cases.
n
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