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ABSTRACT

Let G be a connected graph. For § C V(G), the geodetic closure Ig[S]
of S is the set of all vertices on geodesics (shortest paths) between two
vertices of S. We select vertices of G sequentially as follows: Select a vertex
vy and let §1 = {v1}. Select a vertex vy # v; and let S = {v;,v2}. Then
successively select vertex v; ¢ Ig[Si—1] and let S; = {v;,v2,...,v;}. We
define the closed geodetic number (resp. upper closed geodetic number) of G,
denoted ¢gn(G) (resp. ucgn(G)), to be the smallest (resp. largest) & whose
selection of vy in the given manner yields Ig[Sk] = V(G). In this paper,
we show that for every pair a,b of positive integers with 2 < a < b, there
always exists a connected graph G such that cgn(G) = a and ucgn(G) = b,
and if ¢ < b, the minimum order of such graph G is b. We characterize
those connected graphs G with the property: If cgn(G) < k < ucgn(G) = b,
then there is a selection of vertices vy, vs, ..., v as in the above manner
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such that I¢[Sk] = V(G). We also determine the closed and upper closed
geodetic numbers of some special graphs and the joins of connected graphs.

1 Introduction

Let G be a connected graph. A u — v geodesic, for vertices u and v in G,
is any shortest path in G joining u and ». The length of a u — v geodesic
is called the distance dg(u,v) between u and v. For a vertex v of G, the
eccentricity ec(v) is the distance between v and a vertex farthest from v.
The minimum eccentricity among the vertices of G is the radius rad(G)
and the maximum eccentricity is its diameter diam(G). We denote by
Ig[u,v] the set of all vertices lying on any of the w — v geodesics. The
set of vertices in the interior of a u — v geodesic is a geodetic interior.
If S C V(G), we define the closure of S to be the set Ig[S] given by
Ig[S] = U{Ig[u,v] : u,v € S}. By a geodetic cover of G we mean a subset
S of V(G) such that the geodetic closure I[S] is V(G), i.e., I¢[S] = V(G).
The number gn(G) given by gn(G) = min{{S| : I¢[S] = V(G)} is called
the geodetic number of G. Such geodetic cover of G that determines the
number gn(G) is called minimum geodetic cover or basis of G. We refer to
[2] - [7] for concepts and results on geodetic numbers.

Let G be a connected graph. A subset S of V(G) is a closed geodetic
subset if S = 0 or there is a positive integer k£ and a sequence of sets
S1 = {wn1}, S2 = {v1,v2}, ..., Sk = {v1,v2,...,v} such that S; = S and
v; ¢ Ig[Si—1) for all i = 2,3,4,...,k. A closed geodetic subset S of V(G)
is a closed geodetic cover of G if V(G) is a geodetic closure of S. If S
is a closed geodetic cover of G and Sy, Sz, ..., Sk are the sets described
above, then we refer to the set Sy = S as a canonical representation of S.
We denote by C*(G) the set of all closed geodetic covers of G. The closed
geodetic number of G, denoted cgn(G), is defined to be

cgn(G) = min{|S|: S € C*(G)}.

The upper closed geodetic number of G, denoted ucgn(G), is defined as
ucgn(G) = maz{|S|: S € C*(G)}.

A set S € C*(G) with |S| = cgn(G) is called a closed geodetic basis of G.

A set S € C*(G) with |S] = ucgn(G) is called a mazimum closed geodetic
cover of G.

The idea of closed geodetic number comes from two classes of graphical
games called achievement and evoidance games presented by Harary in
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[10]. These games were examined for the geodetic number by Buckley and
Harary, and by Necaskova in {11]. A study on closed geodetic numbers is
done in [1]. Among the results obtained in [1] is the characterization of
connected graphs G for which ¢gn(G) = p,p -1, 2 or 3. It is also shown
that for any positive integers k& and n for which 4 < k < |_§J, there always
exists a connected graph G where |V(G)| = n, gn(G) = 4 and cgn(G) = k.
And for integers n,m and k with 5 < m < k and 2k—m+4 < n, there exists
a (connected) graph G such that |[V(G)| = n, gn(G) = m and cgn(G) = .

In this paper, the authors consider the upper closed geodetic number of
a graph. The reader can easily check that ucgn(K,) = p, ucgn(P,) = n,
ucgn(C,) = [’2—‘] + 1, and if G = K + |Jm; K, where 2 < )" m,;, then
ucgn(G) = |V(G)|. It is worth noting that cgn(G) < ucgn(G) < [V(G)| for
any connected graph G.

2 Connected Graphs

Theorem 2.1 Let G be a connected graph. Then cgn(G) = ucgn(G) if
and only if G = K.

Proof. It is known (see [1]) that if G = K,,, then cgn(G) = p. Thus
cgn(G) = ucgn(G). Conversely, suppose that G # K,. Then there exist
vertices u and v in V(G) such that dg(u,v) = 2. Let w be an interior
vertex in a u — v-geodesic. Let v; = u, and let v, = v. Put $; = {v1}, and
So = {v1,v2}. For i > 3, we choose v; € V(G) \ Ig[Si-1] such that

dg(w,v;) = min{dg(w,z) : z € V(G)\ Ig[Si-1]}-

Let k be that positive integer with vi € Ic[Sk—1] and Ig[Sk] = V(G). Then
cgn(G) < k.

Define a new sequence S| = {u;}, S5 = {u1,u2}, ..., Sppq = {w1,u0,
... Ukt1}, where u; = v, up = w, and u¥; = v;_y for i = 3,...,k + 1.
Suppose that there exist 7,7, and [ with 1 < i < j < I € k+ 1 such
that uw, € Igfuij,u;]. Then u; = w, u; = v;_, and ¥ = v_;, and
de(w,vj—1) = dg(w,v—1) + dg(vi-1,vj—1). However, by the above con-
struction, dg(w,v;j-1) < dg(w,v;-1), a contradiction. Thus, u; ¢ Ig[S!_,]
foralli=1,2,...,k+1, and S, € C*(G). Thus, cgn(G) <k <k+1<
ucgn(G). |

It is known (see [1]) for a connected graph G of order p that, cgn(G) = p
if and only if G = K, {1]. If |[V(G)| = p > 3, then ucgn(G) = p if and only
if G = K, or G = P,. Our first attempt in this paper is to characterize
connected graphs G of order p > 4 with ucgn(G) = p.
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Theorem 2.2 Let G be a connected graph of order n > 4. If there exists
A C V(G) such that the induced subgraph (A) is a cycle of order k > 4,
then ucgn(G) < n.

Proof. Suppose that there exists A C V(G) with {A) = Ci where k > 4.
Let S € C*(G) with a canonical representation S = {vy,v2, ..., Un}.
Suppose that A C S. Let j = maz{i : v; € A}. Since {A) is a cycle, there
exist vertices u,w € A such that dg(u,w) = 2 and v; € Ig[u, w]. However,
for some integers r and 5, 1 < 7,5 <m, u = v, and w = v;. By definition
of j, we have r,s < j. This means that v; € Ig[S;_1], a contradiction.
Therefore, |A N S| < k, and by the arbitrary nature of S, ucgn(G) <n. B

A vertex v in a connected graph G is an eztreme vertez if the neighbor-
hood N(v) = {u € V(G) : dg(u,v) = 1} of v induces a complete subgraph
of G. The set of all extreme vertices in G is denoted by Ezt(G).

Accordingly, every minimum geodetic cover of a connected graph con-
tains its extreme vertices [6]. This is, in fact, true for non-minimum geodetic
covers, and follows directly from the fact that an extreme vertex v is either
an initial or terminal vertex of any geodesic containing v.

Theorem 2.3 (7] Every geodetic cover of a connected graph G contains all
its extreme vertices.

Let G be a connected graph. The symbol G’ denotes the resulting
subgraph of G after removing all extreme vertices of G. For & > 2, the
symbol G*) denotes the resulting subgraph of G(*~1) after removing all
extreme vertices of G*~1), For convenience, we also write G® = G. We
remark that there exists a nonnegative integer k such that either G*) = K,,
or Ext(G®¥) = §. Note that if Ext(G*)) = @, then G*) = G for all
n > k. Let p(G) = min{k: G® = K, or Ezt(G®)) = 0}. We call p(G)
the extremity number of G.

Lemma 2.4 Let G be a connected graph, and let u € Ext(G®) and v €
Ezt(GY) for some nonnegative integers i and j. If w is an interior vertez
in Ig[u,v], then w € V(G®)), for some k > i,j.

Theorem 2.5 Let G be a connected graph of ordern > 4. Then ucgn(G) =
n if and only if GP(C)) is complete.

Proof. Suppose that G(?(G)) is complete. If p(G) = 0, then G is com-
plete; hence, ucgn(G) = n. Suppose that p(G) > 0. Then the sets
Ezt(G°), Ext(G'), Ezt(G"), ..., Ext(G®(G)) are pairwise disjoint. In
fact, U2S) Ext(GW) = V(G). Put S = {v1,v,...,vs}, where the first
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|Ezt(G"(CD)| are exactly the vertices in Ezt(G(S)); the next
E:z:t(G(”(G)‘l))| vertices in S are exactly the vertices in Ezt(G#(G)-1);
and so ou, and finally, the last |Exzt(G®)| vertices in S are exactly the
vertices in Ext(GY). By Lemma 2.4, § € C*(G). Thus ucgn(G) = n.
Conversely, suppose that G®(©) is not a complete graph.
Then Ezt(G(C)) = §. Thus, G(S), and consequently the graph G,
contains an induced cycle C,,, m > 4. By Theorem 2.2, ucgn(G) <n. R

A graph G is an extreme geodesic graph if every vertex of G lies on some
u—v geodesic in G where u and v are extreme vertices of G. More precisely,
G is an extreme geodesic graph if and only if Ext(G) is a geodetic basis of
G.

In view of the last statement in Lemma 2.4, if G is extreme geodesic,
then Ezt(G) is a closed geodetic cover of G.

Theorem 2.6 Let G be a noncomplete extreme geodesic graph and S
V(G). Then S € C*(G) if and only if S = Ext(G) U AU B, where A
U= Ext(GY)) and B is a closed geodetic subset of V(GP(G)),

c
c

Proof. Suppose that S € C*(G). By Lemma 2.3, Ext(G) C S. Since G
is noncomplete, V(G) \ Ext(G) # 0. We write S\ Ezt(G) = AU B, where
AC Uf;ll Ezt(G®™) and B a subset of V(G{()). Since S € C*(G), B is
a closed geodetic subset of V(G¥).
Conversely, suppose that S = Ezt(G)U AU B, where A C
fg)_] Ezt(G®) and B is a closed geodetic subset of V(G(P(G))). By
an extreme geodesic graph, we have V(G) = Ig|Ezt(G)] € Ig[S], and
hence V(G) = Ig[S]. To proceed on, we may assume that both A and
B are nonempty. We note that a geodesic in G(?(%)) is also a geodesic in
G, and conversely. Thus, B is a closed geodetic subset of V(G). Write
B = {wy,ws,...,w;} so that w; ¢ Ig[w;,wy] for all 4,9’ < I for all
I =3,4,...,5. Let ky < k2 < --- < k, < k — 1 be the sequence of
all positive integers such that A N Ext(G*)) #£ 9, i = 1,2,...,n. Put
S = {v,v2,...,u}, where the first j vertices are exactly the vertices
w1, W, ..., w; in B; the next |A N Ext(G%n-1))| vertices being the vertices
in AN Ezt(G%*»-1)); and so on. And finally, after considering all vertices
in Uj_, (A N Ext(G™*7)), we complete S with the vertices in Ext(G). By
Lemma 2.4, S € C*(G). |

Corollary 2.7 Let G be a noncomplete extreme geodesic graph. Then
cgn(G) = |Ezt(G)| ; ucgn(G) = &)1 |Ezt(GD)| + ucgn(G(EN). I

1=

particular, if G¥(4)) is o complete graph, then ucgn(G) = |V(G)).
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Corollary 2.8 If T is a tree and S C V(T), then S € C*(T) if and only
if S = Ext(T)U A for some A C V(T)\ Ext(T). Consequently, cgn(T) =
|Ext(T)| and ucgn(T) = |V(T)).

Proof. Let T be a tree, and S C V(T). The statement is trivial if T = P,
or P,. Otherwise there exists a positive number k£ such that T¢) = K,
or K», and the subgraphs T°, T, T”, ..., T*) are distinct. By Theorem
2.6, S € C*(T) if and only if S = Ext(T)U A, A C V(T)\ Ext(T). Since
ucgn(T®)) = |V(T™®)|, Corollary 2.7 implies that ucgn(T) = [V(T)|. ®

Let Kp,, Kp,, ..., ICp, be complete graphs, each containing a complete
subgraph K, (r > 1). The graph G obtained from the union of these n
complete graphs by identifying the K,’s (one from each complete graph) in
an arbitrary way is called the K, -gluing of K, Kp,,...,and K, . If G is
a K,-gluing of K,,,, K,,, ..., and K,,,, then V(G) is the disjoint union of
E1t(G) and V(K,).

Lemma 2.9 [4] IfG is a K,-gluing of K,,,, Kp,, - .., and K, , then Ext(G)
is a geodetic cover of G.

In view of Lemma 2.9, a K,-gluing of K, ,K,,,..., and K, is an
extreme geodesic graph.

Corollary 2.10 Let r, p1, p2, ..., Pn be positive integers with r < p; <
p2y... < pn. Let G be a Kr-gluing of K,,, Kp,,..., and Kp,, and let
S C V(G). Then S € C*(G) if and only if S = Ext(G) U A for some
A C V(K,). Consequently, cgn(G) = |Ezt(G)| and ucgn(G) = |V(G)|.

Proof. Let G be a K,-gluing of K, K},,..., and K, , and § C V(G).
Then G' = K. By Theorem 2.6, S € C*(G) if and only if S = Ezt(G)U A
for some A C V(K,). By Corollary 2.7, cgn(G) = |Ext(G)| and ucgn(G) =
V(G)I. u

Lemma 2.11 Let G be a connected graph with |V(G)| > 4, and let S C
V(G). If S € C*(G), then no distinct vertices u,v,w, z in S satisfy u,v €
Ig[w, 2| and w, z € Ig[u,v].

Let K, be a complete graph of order p > 3 and 2 a family of complete
proper subgraphs of K,. We say that Q is an independent family if no two
distinct subgraphs in © have a common vertex. If Q is an independent
family of complete proper subgraphs of K, each of order at least 2, the
graph G obtained from K, by deleting the edges in Q is denoted by

K, \ E(),
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and is the graph of order p with the property: zy € E(G) if and only if zy
is not an edge in any subgraph in Q.

Lemma 2.12 Let K, be a complete graph of order p > 3 and Q an inde-
pendent family of complete proper subgraphs of K, each of order at least
2. Let G=Kp,\ E(Q). If K, € Q and u,v € V(K,), then w € Ig[u,v] for
alw e V(G)\ V(K,).

Theorem 2.13 Let K, be a complete graph of order p > 3 and Q an
independent family of complete proper subgraphs of K,, each of order at
least 2. Let G = K, \ E(?) and let S C V(G). Then S € C*(G) if and
only if either S = V(K,) for some K, € Q or S = V(K,) UV(Ky,) for
some K, € Q and some subgraph K,, of G with V(K,)NV(K,,) = 0.

Proof. Let S € C*(G). Since G is not complete, there exists a vertex
u,v € § such that dg(u,v) = 2. This means that, in particular, v is a
vertex of some subgraph K. in ). Let A, = {u € S :dg(u,v) = 2}. Then
Ay # 0. We claim that A, U {v} = V(K,). Since dg(v,z) = 1 for all
z € V(G)\ V(K,), it follows that A, U {v} C V(K,). On the other hand,
suppose that © € V(XK,)\{v}. Then dg(u,v) = 2. We will show that u € S.
Suppose that u ¢ S. Then there exist =,y € S such that dg(z,y) = 2 and
u € Iglz,y]. Since zu and uy are edges of G, we have =,y ¢ V(K,).
Consequently, z and y are vertices of some complete subgraph of G in
other than K,. By Lemma 2.12, in fact, 4, U {v} C V(K,) C Ig|z,y].
However, Lemma 2.12 also implies that z,y € Ig[A4, U {v}]. By Lemma
2.11, this is a contradiction. Thus u € S. This implies that © € A,.
Therefore, V(K;) = A, U {v}.

If § =V{,)orS = V(K,)UV(K;), then the desired conclusion
already holds. Suppose that Sp = S\V(XK,) is at least a doubleton. Let z,y
be distinct vertices in Sp. By Lemma 2.12, for each v € A,, z,y € Ig[u,v].
Now, if dg(z,y) = 2, then v,u € Ig(z,y] for all u € A,. By Lemma 2.11,
this is impossible since S € C*(G). Thus, dg(z,y) = 1. The arbitrary
nature of z and y implies that Sy = V(XK,,,) for some subgraph K,, of G.

Conversely, suppose that S = V(X,) UV(K,,) for some K, € € and
some subgraph K, of G with V(K,) NV (K,,) = . We first claim that
V(K;) € C*(G). Let w € V(G) \ V(X,). Since no two distinct subgraphs
in @ have a common vertex, wv is not a edge of any subgraph other than
K., for all v € V(XK;). Thus wv is an edge of G, for all v € V(K,). Conse-
quently, w € Ig[V(K;)]. This means that V(G) = I¢|V(K,)]. Moreover,
since the distance in G between any two distinct vertices in V(X,) is 2, it is
impossible to have w € Ig(u, v] for distinct vertices w,u,v € V(K,.). There-
fore, any way of enumerating the vertices in V(K,) yields V(K,) € C*(G).

Finally, write V(K;) = {u1,u2,...,us} and V(K,,) = {w1,wo, ...,
wy}. Put S = {v1,v2,...,vm41}, where v; = w; for i = 1,2,...,l and
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vi4i = u; for i =1,2,...,n. Then S € C*(G). [ |

Corollary 2.14 Let K, be a complete graph of order p > 3 and Q an in-
dependent family of complete proper subgraphs of K, each of order at least
2. Let G = K, \ E(Q). Then cgn(G) = min{r : K, € Q} and uegn(G) =
maz{r + m(r) : K, € Q}, where m(r) = maz{n: K,, is subgraph of G
with V(K,,)NV(K;)=0}.

Corollary 2.15 cgn(K,, ) = min{m,n} and ucgn(Km ) = l4+maz{m,n}
form,n > 2.

Proof. Suppose that m,n > 2. Let G = Kp4n \ E(R2), where 2 =
{Km, Kn}. Then G = K p. By Corollary 2.14, cgn(Km n) = min{m, n}
and ucgn(K,, ») = 1 + maz{m,n}.

Theorem 2.16 For any pair of positive integers m and n with2 < m < n,
there exists a connected graph G such that cgn(G) = m and ucgn(G) = n.
Such graph G can be chosen such that |V(G)| = n or |V(G)| > n.

Proof. If m = n, then, by Theorem 2.1, K, is the desired graph G.
Suppose that m < n. We consider the graph G which is the K,,_,,-gluing
of the m copies of the complete graph K,,_,,+1, or we take G being a tree
T with n vertices and with m endvertices. In any case, |V(G)| = n and, by
Corollary 2.10 or Corollary 2.8, cgn(G) = m and ucgn(G) = n.

We may also consider G = K, ,—1. In this case, |[V(G)|=m+n -1,
and by Corollary 2.15, cgn(G) = m and ucgn(G) = n. |

Corollary 2.17 For any pair of positive integers m andn with2 < m < n,
the smallest order of a graph G with cgn(G) = m and ucgn(G) =n is n.

In Corollary 2.8 and Corollary 2.10, we find that if G is a tree or is a
K- gluing of some complete graphs and if k is a positive integer such that
cgn(G) < k < ucgn(G), then there is an S € C*(G) such that |S| = k. Any
such property is being referred to as Intermediate Value Property. However,
not all connected graphs possess such property. In particular, we consider
G = K7\ E(Q), where = {K3, K5}. From Theorem 2.13, we know that
cgn(G) = 2 and ucgn(G) = 6, and no closed geodetic closure S of G with
15| =

Theorem 2.18 (Intermediate Value Theorem) Let G be a connected
noncomplete graph. Then G possesses the Intermediate Value Property if
and only if for each nonmazimum closed geodetic cover S of G there exists
S’ € C*(G) such that |S'| =1+]S|.
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Proof. Suppose that G has the Intermediate Value Property. Let S be a
nonmaximum closed geodetic cover of G with |S| = k. Then cgn(G) < k <
ucgn(G) — 1. If k < ucgn(G) - 1, then by the Intermediate Value Property,
there exists S’ € C*(G) such that |S'| = k+ 1. If k = ucgn(G) - 1, then
we take a maximum closed geodetic cover S’ of G.

Conversely, suppose that cgn(G) < k < ucgn(G). Let m = maz{|S| <
k: S € C*(G)}. By the hypothesis, there exists $ € C*(G) such that
|8’ = m + 1. By the definition of m, m +1 > k. Consequently, m = k,
and the conclusion follows. |

We note that, in general, K, . (7, n > 2) does not satisfy the condition
in Theorem 2.18.

Corollary 2.19 Let 2 < m < n. Then K,,, possesses the Intermediate
Value Property if and only if n —m < 2.

3 Join of Graphs

In [1], the closed geodetic number of the join of two graphs were determined.
In this present note, we characterize all closed geodetic covers of a join.

Let G be a connected graph. Let S C V(G). The 2-path closure
P3[S]g of S is that set P[S]g = SU{w € V(G) : w € Ig[u,v] for some
u,v € SNN(w)}. A set S is called 2-path closure absorbing if P»[S)¢ =
V(G).

It is worth noting that a 2-path closure absorbing subset of the vertex
set of a connected graph is a geodetic cover of the graph. In [1], the closed
geodetic numbers of the join of graphs were determined.

Lemma 3.1 IfG is a connected graph and diam(G) = 2, then every geode-
tic cover of G is a 2-path closure absorbing set in G.

Theorem 3.2 Let H be a connected noncomplete graph, and G = H + K.
Let S C V(G). If S € C*(@), then SNV(H) € C*(G) and is a 2-path
closure absorbing set in H.

Proof. Let § € C*(G). If (S) is complete, then I¢[S] = § # V(G),
a contradiction. Thus, there exist at least two distinct vertices u and v
in S such that dg(u,v) = 2. Clearly, u,v € V(H). Let A = SNV(H).
Then V(K,) C Ig[A]. We claim that A is a 2-path closure absorbing in
H. In view of Lemma 3.1, S is a 2-path closure absorbing set in G. Let
w € V(H)\ A. Then w € V(G)\ S. Thus, there exist u,v € S such that
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dg(u,v) = 2 and w € I¢[u,v]. Incidentally, u,v € A. If [u,w,v] isa v —v
geodesic in G, then it is a u — v geodesic also in H. That is, w € Iy[u,v]
and dy(u,v) = 2. Hence, V(H) = P[A]y.

Finally, suppose that, in canonical form, S = {v;,vs,...,v,}. Sup-
pose further that m = |A|. Accordingly, m > 2. Now, let ¢; = min{k :
v, € V(H)}, and for j = 2,3,...,m, let i; = min{k : v, € V(H)\
{viy, vig, .., vi;_, }}. Put uj =, for j = 1,2,...,m. Then A = {uy,u,,

..U} € CH(Q). ]

Corollary 3.3 Let H be a connected noncomplete graph, and G = H+ K,,.
If S is a closed geodetic basis of G, then S C V(H) and S is a 2-path closure
absorbing set in H.

Corollary 3.4 Let H is a connected noncomplete graph, and G = H+ K.
Then

egn(H + K,)) = min{|S|: S C V(H),5 € C*(G)
and Py[S|y =V(H)}.

Theorem 3.5 (1] Let H be a connected noncomplete graph, and let G =
H+ K,. Let S C V(H). If S is a 2-path closure absorbing set in H and
S € C*(H), then S € C*(G).

Theorem 3.6 Let H be a connected noncomplete graph, and let G = H +
K,. Let S C V(H). If S € C*(H) and is 2-path closure absorbing set in
H, then SU B € C*(G) for every B C V(K,).

Proof. Let S C V(H), and suppose S € C*(H) and is a 2-path clo-
sure absorbing in H. By Theorem 3.5, S € C*(G). Suppose that S, in
canonical form, is given by S = {uj,u2,...,un}. We may write B =
{wi,wa,...,wm}. Put v; = w; for i = 1,2,...,m, and vp4i = u; for
i=1,2,...,n. Then S = {v1,v2,...,Umyn} € C*(G). |

Corollary 3.7 Let H is a connected noncomplete graph, and G = H+ K.
Then

ucgn(H + Kp) =p + maz{|S|: S C V(H),S € C*(G)
and P,[Sly =V (H)}.

Corollary 3.8 If H is a connected noncomplete graph and diam(H) = 2,
then ucgn(H + K,) = p+ ucgn(H).

Example 3.9 ucgn(P, + Kp) =p+n.

Example 3.10 ucgn(C,, + K;) =p+n-1,n>3.
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Example 3.11 ucgn(K,n + K;,) =p+ 1 + maz{m,n}, for all m,n > 2.

Theorem 3.12 Let G = H + K, where H and K are connected noncom-
plete graphs. Let S C V(G). If S € C*(G), then S is one of the following:

(1) SC V(H) and is a 2-path closure absorbing set in H;

(2) S=AUV(K,), where A C V(H) is a 2-path closure absorbing set
in H and K, is a subgraph of I;

(3) S € V(K) and is a 2-path closure absorbing in K;

(4) S =V(K,)U B, where B C V(K) is a 2-path closure absorbing set
in K and K, is a subgraph of H.

Proof. Let G = H+K, where H and K are connected noncomplete graphs,
and let § C V(G). Suppose that S € C*(G). If (S) is a complete subgraph
of G, then (S) = G, a contradiction. Thus, there exist vertices u,v € §
such that dg(u,v) = 2. Either both u,v € V(H) or both u,v € V(KX).
Suppose u,v € V(H). Let A = SNV(H). Then V(K) C Ig[4]. If
A =S5, then § C V(H). Suppose A # S. We claim that § = AU V(K,),
where K, is a subgraph of K. To this end, we write S = AU (S \ A). If
S\ A is a singleton, then we are done. Suppose that S\ A is at least a
doubleton, and let z,y € S\ A. If dg(z,y) = 2, then V(H) C Ig[z,y)-
This is impossible since S € C*(G). Thus, d¢(z,y) = 1. Since z and y are
arbitrary, (S'\ A) is a complete subgraph of K. Write K, = (S\ A), and
the claim is established.

Let w € V(H)\ A. Since w ¢ V(K), w € V(G)\ S. By Lemma 3.1,
there exist vertices u and v in S such that w € Ig[u,v] and dg(u,v) = 2.
In this, we note that whether S = A or § = ANV(K},) we have u,v € A.
Then [u,w,v] is a u — v geodesic in H, and so dy(u,v) = 2. This means
that A is a 2-path closure absorbing set in H.

Similarly, if u,v € V(K), then either S C V(K), which is a 2-path
closure absorbing set in K, or § = V(X,) U B, where B C V(K) which is
closure absorbing in K and K, is a subgraph of H. n

Theorem 3.13 (1] Let G = H + K, where H and K are connected non-
complete graphs. If either

(1) S C V(H), S is a 2-path closure absorbing set in H and S € C*(H)
or

(2) S C V(K), S is a 2-path closure absorbing set in K and S € C*(K),
then S € C*(G).

Theorem 3.14 Let G = H + K, where H and K are connected noncom-
plete graphs. If either

(1) S = ANV(K,) for some 2-path closure absorbing set A C V(H) in
H with A€ C*(H) and some subgraph K, of K; or
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(2) S = V(Kp)N B for some 2-path closure absorbing set B C V(K) in
K with B € C*(K) and some subgraph K, of H,
then S € C*(G).

The proof of Theorem 3.14 is parallel to the proof of Theorem 3.6. In
this case, we use Theorem 3.13.

Corollary 3.15 Let G = H + K, where H end K are connected and non-
complete graphs. Then

ucgn(G) = maz{p1 + 1, p2 + &},
where
n=maz{|S|: S C V(H),S € C*(G) and P[S|y = V(H)},
x =maz{|S]: § C V(K),S € C*(G) and Py[S)x = V(K)},

p1 =maz{p: K, is a subgraph of K},

and
p2 = maz{p: K, is a subgraph of H}.

Example 3.16 ucgn(P, + P,) = 2 + maz{m,n}.

Example 3.17 ucgn(P,, + Cp) = 2 + maz{m,n — 1}.
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