Colouring walls may help
to make good schedules

Andrea Vietri*

Abstract

We present some applications of wall colouring to scheduling
issues. In particular, we show that the chromatic number of walls
has a very clear meaning when related to certain real-life situations.

1 Introduction

Walls and their brick colourings were initially employed to rephrase, in
terms of adjacency matrices, a notion of arc colouring for directed hyper-
graphs [1, 4, 7]. Some further research on walls was carried out in [5] and,
more recently, in [6]. In the former paper, among other things, a connec-
tion with latin squares was outlined for possible future investigation. In
the latter, the chromatic classification problem for a certain subclass of
walls was shown to be seemingly as tough and compelling as the similar
problem of the edge colouring for graphs [3]. In the following pages we
investigate a more applicative aspect of wall theory, namely by interpret-
ing certain scheduling problems as brick colouring problems. In particular,
in each example we show that a precise, practical meaning can be given
to the least number of colours needed. Some basic theoretical results are
applied, along the way, to the various contexts. The formal definition of
wall, and all related notions, will be provided right after managing the first
scheduling problem.

2 Scheduling problems and walls

Scheduling Problem 1. An educational project involving some research
institutes provides that every such structure hosts a number of students,
each one in a separate period of time. For any fixed institute periods
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are continuative, although they may have different durations and may be
separated by spells of inactivity, in keeping with the institute regulations.
During a fixed period the involved student will carry out a monothematic
project, with the help of the local staff. Different institutes may award
different numbers of periods. Although the research areas of any two insti-
tutes are assumed to be essentially distinct, they are all part of a unique,
more general research area (e.g. extremal graphs, generating functions,
permutation groups, and some other branches of Combinatorics). Figure 1
represents a 12-month educational project involving 7 institutes. The la-
belling provides a feasible solution to the assignment of students (numbers)
to periods (rectangles and squares).
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Figure 1: Scheduling an educational project

QUESTION l.a. What is the smallest number of students that can be
involved in the project schematised in Figure 19

[A] In Figure 1 we have actually succeeded in involving the least pos-
sible number of students, namely 6 (this might be regarded as a good
achievement if, for example, we were interested in maximising the overall
activity of any single student). We could not do better; indeed, a quick look
to the diagram shows that in February, as well as in July and September,
there are precisely 6 positions to hold. Furthermore, even without those
constraints, the fifth institute should receive 6 different students.

QUESTION 1.b. Could we have answered “6” to the first question after
simply looking at the February column, or at the fifth row, or at both, thus
without embarking on the entire labelling?

[A] Certainly not. For it is enough to replace the second institute
schedule with a unique 12-month period, which would increase by 1 the
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number of students needed.

QUESTION 1l.c. Using the only hypothesis that no more than 6 distinct
periods appear in any row or column, is il possible to evaluate the least
number of required students?

[A] In the worst case 11 students will be needed (the reader is not
supposed to check this answer in real time. At the moment, he/she should
in any case trust wall theory and carry on until Proposition 2.2).

As mentioned at the beginning, scheduling problems like the one above
can be effectively formalised in terms of walls. This is exactly what we are
going to do in the following lines. Reasoning in the wall environment will
enable us — among other things — to give a fully justified answer to the third
question, as well as to successfully manage other scheduling problems.

Definition 2.1. A wall is a partial chessboard whose squares have been
labelled under the condition that no label occurs in more than one row.
Maximal set of equally labelled squares are termed bricks. A wall whose
bricks are all connected is termed coherent. The degree of a wall W, in
symbols §(W), is the largest number of different labels in any row or column
of W. A brick colouring of W is a map which assigns numbers (colours) to
bricks in such a way that no colour occurs in two or more bricks of some
row, nor it occurs in two or more squares in some column. The chromatic
number of W, in symbols p(W), is the least number of colours needed for a
brick colouring of W.

It is then clear that Figure 1 shows a 6-colour brick colouring of a wall.
Let us now look at the above scheduling problem from the wall-theoretic
viewpoint. The three questions and answers can be rephrased as follows.

QUESTION 1'.a. Let W denote the coherent wall representing the over-
all offer of the institutes. Evaluate p(W).

[A] p(W) =6.
QUESTION 1'.b. In the present example, p(W) = §(W). Does this
equality hold for every coherent wall?

[A] By replacing the bricks in row 6 with a unique brick of maximal
length, we increase p by 1 while keeping d equal to 6. Thus, the answer is
negative. Notice, however, that in any case p(W) > §(W). Such inequality
holds for every wall W (not necessarily coherent) and is an elementary
consequence of the above definitions.

QUESTION 1'.c. Is there any upper bound for p(W) when §(W) = 62
[A] We appeal to the basic

Proposition 2.2. [4] p(W) < 26(W) — 1 for every coherent wall W, the
upper bound being tight for every fixed degree.
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Such result, which was obtained with few difficulties using induction on
the wall length, explains why 11 colours are enough for any coherent wall
of degree 6. In Figure 2 we exhibit one trivial and three nontrivial coherent
walls whose chromatic numbers are the largest possible, subject to constant
degree. In particular, the wall on the right side is one of the “worst cases”
mentioned in the answer to Question 1.c. The three examples are part of
an infinite family {W;:¢ > 2} which can be easily described, and whose
generic element satisfies p(W;) = 28(W;) — 1. Proving the correctness of
such equalities might be a fairly pleasant exercise.
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Figure 2: Walls with largest chromatic number

We invite the reader to do his best for producing new examples of coher-
ent walls having p = 26 — 1 and, more generally, for constructing coherent
walls of prescribed degree and chromatic number. Still we observe that this
kind of problem reminds us of the well-known, and unsettled, classification
problem for the chromatic index of graphs, namely, the problem of charac-
terising all graphs of degree d that are edge-colourable in d colours. Such a
problem traces back to Vizing’s theorem (see e.g. [3]). It is then conceiv-
able that a full understanding of the interplay between & and p is currently
beyond reach — similarly to what happens on the graph-theoretical side.
Finally, we remark that the coherence hypothesis is essential for the exis-
tence of an upper bound when the degree is fixed. In fact, it is not hard
to construct a generic wall of degree d and chromatic number r for any
positive integers r > d > 2. In particular, concerning the above sched-
ule, there would be no hope of eflectively upper bounding the number of
students if each period was allowed to split into disconnected sub-periods,
thus with possible “intertwinings” between sub-periods of distinct students
in the same institute. On the other hand, using Kénig’s theorem on bi-
partite graphs it can be shown [4] that p(W) = §(W) whenever W has
all square bricks. Therefore, 6 students are enough if none of the periods
intersects two or more other periods, regardless of whether or not some
periods are continuative. Indeed, under that condition, by suitably per-
muting columns and possibly shortening some bricks one can easily obtain
square bricks only, without affecting the incidence between bricks.
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The educational project scheduling has motivated the introduction of
walls in the present context. The definitions and results so far pointed out
pave the way for managing two other scheduling problems, which can be
likewise interpreted as colouring problems for certain coherent walls. We
just state them, in the following lines.

Scheduling Problem 2. A food factory produces some species of veg-
etables. Each species requires a characteristic treatment and, therefore, a
prescribed sequence of working periods during all its growth process (for
example, the first three periods might be ploughing, sowing and first thin-
ning). The number of workers on a fixed species during a certain period
is assumed to be the same (say n) for all species and periods. The factory
employees are heterogeneous in their origin, education, and experience. For
this reason, the management policy is that of involving as many employees
as possible in treating the same species. By doing so, the overall product
of the factory is expected to be homogeneous enough, while, on the other
hand, continuing the work done by others will increase the workers’ ex-
pertise as times goes on. It is then clear that the coherent wall model is
a natural candidate for scheduling the factory activity over a fixed, possi-
bly long, period. In this case rows correspond to species, while the bricks
in each row determine the prescribed sequence of working periods. Once
the staff has been partitioned into stable teams of n workers, any correct
brick colouring shows how many working teams (colours) will be needed
and which species will be cured by a given team at a certain time. The
chromatic number p is strongly related to the overall productivity, for if p
teams suffice and there are w workers, then the same schedule can be car-
ried out parallely in |w/(np)| different agricultural grounds (the symbol
lg] denotes the largest integer z < q).

Scheduling Problem 3. The art directors of some important theaters
meet together for scheduling the activity in each theater for the coming
year. Every theater has to be assigned some performances which will take
place during one of the available periods. Such periods had been estab-
lished before the meeting, by each director, independently. They may have

~ different lengths, and their number may vary from theater to theater. In
fact, during the meeting every director shows his own schedule, which looks
like a row of a coherent wall, thus with connected bricks (to fill with per-
formances) and possibly empty spaces. In this case, every colouring of the
wall provides a consistent assignment of performances, while the chromatic
number is the tight lower bound for the number of art companies required
(assuming that distinct performances will be held by distinct companies).
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3 Schedules manageable with regular walls

In all the above examples periods were conceivably allowed to vary. As
a consequence, the resulting walls turned out to be as much general as
possible. In particular, they had no regularity property nor symmetry.
Admittedly, the rather commonplace structure the word wall reminds us
was never referred to in the previous lines. It would be discouraging not
to succeed in finding a schedule which corresponds to a real wall, namely
a wall with no empty spaces and all bricks of the same length — except the
extreme ones, possibly — suitably shifted in each row. The formal definition
of this kind of coherent wall can be given as follows [5}.

Definition 3.1. Let m, n, k be positive integers. The (m, n, k)-regular wall,
in symbols W,’ﬁw, is a complete chessboard with m rows and n columns,
which we regard as a matrix (m;;,1 < i < m,1 < j < n), and whose
(4,)-square is labelled by (i, | 22*]) .

In the next two figures we have depicted W33s and W§, 5, the latter
wall having been optimally coloured. Actually, the four lower extremal
bricks of the former wall should be properly shortened and both figures
should be rescaled, so as to yield the required chessboards. However, what
really counts is that the incidence relationship among bricks is not com-
promised. The additional symbology in the figures will be clarified in due
course. Incidentally, we observe that every W,lh,, optimally coloured is just
an m x n latin rectangle.
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Figure 3: W33, “untrimmed”

Leaving aside the - probably questionable - aesthetic viewpoint, sched-
ules yielding regular walls would be heartily welcome because of the easiness
of computing the related chromatic numbers. Indeed, the following holds.
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Figure 4: An optimal colouring of W, ¢,

Theorem 3.2. 5] Ifm >k > 1 and k fm, then

m if n<m-k
p(W,’,‘m): m+1 if m-k+1<n<km+1 ,

["T”l]+l if n>km+2

where [q| denotes the smallest integer z > q. If k|m, the upper bound in the
first condition is changed to m — k + 1 and the lower bound in the second
condition becomes m — k + 2; the rest is unchanged. If 1 < m < k, the first
condition is changed to n = 1 and the lower bound in the second condition
becomes 2; the rest is unchanged. Finally,

o = 3]

Notice that if the first condition holds, then ~ roughly speaking — the
related wall is comparatively high, whence the number of colours is condi-
tioned by the number of rows only; similarly, if the third condition holds,
then every row contains a large number of bricks which make the wall rather
long and account for the chromatic number by themselves. Therefore, in
both cases the chromatic number is not difficult to anticipate. Instead, the
second condition is more delicate in that it describes what happens when
passing from one trivial case to the other. During such “crossing”, the
chromatic number stands still while the length of the wall increases (see,
for instance, the optimal colouring in Figure 4; every optimal colouring of
Wﬁ,'n with 5 < n < 59 does require 11 colours, and can be obtained by
simply removing the last 60 — n columns of W160,50)~
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Luckily enough, there exists a great amount of scheduling problems
which lead to regular walls. We are going to describe the first of two
examples.

Scheduling Problem 4. In order to collect some feedback data (com-
ments, suggestions, etc.) about the 3-month initial training courses held in
a factory from November 1999 to February 2003, all employees have been
partitioned according to the month and year of their engagement (engage-
ments are assumed to take place every month). Due to obvious overlap-
pings, courses had been held parallely by 3 trainers, as shown in Figure
3. Rows correspond to trainers, while each brick covers the 3 months of
course for some fixed group. Each group will now be administered a ques-
tionnaire, two questionnaires being different for any two groups which had
the same trainer or whose training periods overlapped (while the former
condition will result in a great variety of data for each trainer, the latter
condition prevents questionnaires to be affected by events not strictly re-
lated to some fixed trainer, e.g. an influenza epidemy, a factory closing
period, a fast sequence of strikes, etc.). In the present context, Theorem
3.2 quickly provides the least number of questionnaires needed to carry out
such a test. More precisely, we have m = 3,n = 36, k = 3, whence p = 13.
As remarked earlier, such a number could have been easily guessed without
using the above theorem. Indeed, while the lowest row clearly requires 13
distinct colours, it is rather elementary to obtain a total colouring with no
further colour, once that row has been coloured.

Before proceeding to the second example, we observe that in the so
far employed walls distinct rows have never been associated to distinct
periods of time. In fact, in all cases the time variable was precisely the
column index. However, due to the typically recursive placement of bricks
in regular walls, such structures lend themselves to represent partitions
of objects which evolve over time, this variable being represented by the
row index. A typical situation occurs, for example, when a new regulation
provides that the staff in some office be divided into groups, according to the
date of engagement (such a division might be related to pension schemes,
task force formations, etc.). If the groups so formed are supposed to stay
unchanged for the coming years, then the future engagements will result
in new groups to form, whereas some old groups will reduce or disappear
because of retirements. The evolution of all these groups over the years
is easily representable by means of a regular wall, as shown in the next
example.

Scheduling Problem 5. In accordance with a far reaching project,
the marketing staff of a big firm has been partitioned into 10 task forces
{T:}1<i<10 with respect to the duration of the working period of each em-
ployee. In details, w € T; if and only if w has been working in that firm
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for a years with a € R and [a/3] = 7 (e.g. workers engaged from 18 + ¢
to 21 years ago — with ¢ arbitrarily small - are all grouped together in
T%). Because most retirements in that firm occur before the 30th working
year, such a partition seems sensible enough. The members of any fixed
task force will meet once a semester, for 5 years running, and discuss each
time a different topic (equipment maintenance, productivity, wages, and
so forth). At the end of each meeting they will draft a document, which
is expected to contain important suggestions for future developments. In
order to optimise the overall outcome, some further task forces will be
formed from the newly engaged workers as times passes. Therefore, at the
end of the 5-year period two new groups will be present, while Ty will
be disappeared (leaving aside some exceptions) and Ty will be reasonably
smaller than at the beginning. The regular wall in Figure 4 represents the
evolution of groups during the 5 years. In order to make clear the meaning
of the brick colouring it still remains to say that, according to the above
project, no two groups arc allowed to discuss the same topic in the same
semester, and a given topic can be discussed in distinct meetings as long
as the working periods of the related groups are disjoint. Whereas the
former constraint may sound quite natural, the latter has perhaps a more
concealed meaning, as it ensures that each topic is discussed at most once
by people with the same working experience. Notice that this constraint
does not prevent any group to discuss the same argument twice (e.g. in the
1st and 8th meeting). In conclusion, every correct brick colouring provides
a number of topics (colours) to assign to all groups over the whole period,
while the chromatic number (11, by Theorem 3.2) returns the least number
of topics to assign in compliance with the above constraints. In other words,
choosing 11 topics is the best one can do in order to concentrate upon the
least number of topics without causing the mentioned redundancies.

4 An urbanistic problem

At this point we hope that wall colourings have gained the reader’s sympa-
thy as valuable tools for managing scheduling problems. In the last example
we try to extend the scope of wall colourings by pointing to architects as to
possible further users of wall theory (although, as we optimistically expect
it, some architects may have already enjoyed the previous examples). For
our purposes, both the wall dimensions are now regarded as space measures,
thus with no use of time variables.

Scheduling Problem 6. The left side of Figure 5 represents a very
essential top view of a housing estate. Clearly, a few changes could turn it
into a wall whose bricks correspond to the blocks of the residential complex.
For advertising purposes, it would be now desirable to create a poster in
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which the estate view is first taken from the West and, subsequently, from
the South — in both cases from ground level. However, using a simple ax-
onometry is not recommended for either views, because some blocks would
turn out to be partly or totally hidden; alternatively, in order to avoid any
data loss, some drawings should overlap (see the right side of Figure 5).
It is then decided to sort blocks into disjoint groups, in such a way that
any group admits an axonometry with no overlaps, both from the South
and from the West. All the resulting pairs of axonometries (one pair for
each group) will then show up together in a single poster. As it can be
quickly realised, every correct brick colouring of the top view wall provides
a suitable partition of blocks. In particular, according to the chromatic
number, at least 3 pairs of axonometries will be needed.

H
oo Ha0E

View from the South,
§=2,p=3 with overlaps

Figure 5: Top view, and ground level view, of a housing estate

Actually, the above schedule was chosen with more general purposes
than the ones mentioned at the beginning. In fact, the top view wall is
part of an infinite class of coherent walls which, up to suitable permuta-
tions of rows and columns, and to proper removals of inessential bricks and
shortenings of other bricks, represent the entire class of coherent walls of
degree 2 and chromatic number 3. Such representative walls are the ana-
logue of the odd-length circuits in graph theory. The relevant result has
been established in [6]. In Figure 6 we limit ourselves to present four fur-
ther walls of the above mentioned class. The sequence of ones and zeroes,
appearing as a subscript, uniquely determines every representative wall, up
to circular permutations of the digits. The number of ones must be odd
and refers to the number of longer bricks making up the “stair”. In plain
-words, every classifying wall of height n corresponds to a necklace with n
beads of two colours, where at least one monochromatic set consists of an
odd number of beads.
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Figure 6: The walls Wm, WOOlll, WOOIOO, and WOOlllll

References

[1]

(2l
(3]

[4]

[5]

[6]
[7]

G. Ausiello, P.G. Franciosa and D. Frigioni, Directed Hypergraphs:
Problems, Algorithmic Results, and @ Novel Decremental Approach,
Lecture Notes in Theor. Comp. Sci. 2202 (2001), pp. 312-327.

V.W. Bryant, Aspects of Combinatorics, a Wide-Ranging Introduction,
Cambridge University Press, Cambridge, 1993.

S. Fiorini and R.J. Wilson, Edge-colourings of graphs, Research Notes
in Math., vol. 16, Pitman, London, 1977.

A. Vietri, Arc colouring of directed hypergraphs and chromatic num-
ber of walis, preprint of the MeMoMat department, Rome, 2005,
http://www.dmmm.uniromal.it/preprints.it.php?tipopubb=p.

A. Vietri, Chromatic number of regular walls, Ars Comb. 76 (2005),
pp. 97-111.

A. Vietri, Coherent walls of mazimal class, submitted.

A. Vietri, The complezity of arc-colourings for directed hypergraphs,
Discr. Appl. Math. 143 (2004), pp. 266-271.

215



