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Abstract

This paper deals with the interconnections between finite weakly
superincreasing distributions, the Fibonacci sequence and Hessen-
berg matrices. A frequency distribution, to be called the Fibonacci
distribution, is introduced that expresses the core of the connections
among these three concepts. Using a Hessenberg representation of
finite weakly superincreasing distributions, it is shown that, among
all such n-string frequency distributions, the Fibonacci distribution
achieves the maximum expected codeword length.
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1 Introduction and Background

The Fibonacci sequence is defined by fo = 0, fi = 1 and f, = fau1 +
fa—2, 7 2 2. An n x n matrix 4 = (a;;) is called a (lower) Hessenberg
matrix if all entries above the superdiagonal are zero, that isif 7 > i +1
then a;; = 0. We refer to any Hessenberg matrix whose determinant is
expressed in terms of Fibonacci numbers as a Fibonacci-Hessenberg ma-
trix. As example let R be the one-by-one matrix with entry ¢t + 1 and
recursively define the n x n matrix R, given by (1).

Note that in the matrix R, every entry below the diagonal is 1. The
determinant of Ry, ; is denoted by r,, ;. Using induction and cofactor expan-
sion along the first row, one can easily show that 7, = tfoy1+ fn, n>1
and hence R, is a Fibonacci-Hessenberg matrix. It is worth mentioning
that 7y = tfny1 + fn implies 74t = Tn_1¢ + Tn—2,. The sequence , 3
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generates the Lucas numbers, while v, 0 < t < 2, generates the gener-
alised Fibonacci sequence starting at t+1. Interested readers to a literature
on Fibonacci-Hessenberg matrices are referred to [1][2](5](8][9].
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A sequence (a;)i>1 of numbers is called superincreasing if it satisfies
Z?=1 a; < any1, n > 1. We define (a;)i>1 to be a weakly superincreasing
(WS) sequence if 37, ai < @n42, n > 1. A frequency distribution (FD)
is a list of non-negative numbers. Probability distributions (PDs) are spe-
cial cases of FDs wherein the numbers add to 1. It is also obvious that
any FD results in a PD when the numbers are divided by their sum. A
source S = {51,582, -+,8n} With FD py > pa 2 -+ > py, is called a weakly
superincreasing source (WSS) if

Piv2 +Pits+ - +pn<pi, 1Zi<n-3. (2)
An infinite alphabet source S with FD p; > pa > - - is also called WS if
o0
Pi+2 +Pi4z + - = ZPkSPi, i1
k=i+2

Among the well known WS distributions we may refer to the Poisson and
geometric distributions([6][7]. A given distribution p; > p2 > --- introduc-
ing a WSS is referred to as a weakly superincreasing distribution (WSD). In
the rest of the paper, unless otherwise stated, by WSD we mean a weakly
superincreasing frequency distribution which obviously covers the class of
weakly superincreasing probability distributions. Given an infinite alpha-
bet WSD p; > pa > - - - and setting p), == Y e, Pk, at least one of the two
distributions (p1,**+,Pn-1,P,) and (p1, -+, Pn—2,Ph, Pn-1) is an n-symbol
WSD. We refer to the so obtained finite WSD from an infinite WSD as a
truncated WSD. In the rest of the paper by WSD we mean a finite WSD.
It follows from definition of WSDs, relation (2), that the frequency
distribution p; > p2 > - -+ > pn of any such distribution introduces a WS
_sequence a; := Pn_i+1- On the other hand, it is easily shown by induction
that, for each positive integer n, the Fibonacci sequence satisfies Y[, fi =
fn+2 — 1 and hence the sequence (fly fl’ f2a f31 et ,fn) = (1’ 1,1,2,.--, fn)
is a WSD. This results in the following WS probability distribution:

I R S (3)
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Due to an important property of distribution (f1, f1, fo, f3, -+, fn), to be
stated in Section 3, we refer to this as the Fibonacci distribution. An-
other WSD related to the Fibonacci sequence is obtained from equation
> iy f2i-1 = fon. The corresponding probability distribution is the fol-
lowing superincreasing distribution:

Let pp > p2 2 -+ > pp be a WSD and C = {cj,c2, *,¢n} be a
Huffman code for this distribution and assume that the length of the ith
codeword ¢; is l;, 1 < ¢ < n. As Huffman coding [4] is a bottom to top
procedure and ; is the number of times that the corresponding number p;
is amalgamated, one can easily verify that C can be constructed in a way
that I; =i for i < n and [, = n—1. Conversely, any optimal source code C
(that is a code with minimum expected codeword length) with codeword
lengths satisfying !, =n — 1 and l; = i, ¢ < n, represents a WSD.

This paper considers connections between WSDs and the Fibonacci-
Hessenberg matrices and the Fibonacci sequence. The relation between
Fibonacci-Hessenberg matrices and WSDs is given in Section 2. It is shown
in Section 3 that among all WSDs, the maximum expected codeword length
is achieved by the Fibonacci distribution defined above.

2 Hessenberg matrices and weakly superin-
creasing distributions

2.1 Weakly superincreasing distributions in terms of
Hessenberg matrices

In this part we characterise WSDs in terms of Fibonacci-Hessenberg ma-
trices.

Theorem 1 An (n — 2)-tuple (p1,p2," -, Pn-2) satisfying p; +p2 +--- +
Pn—2 <pand 0 < p,_9 < --- < py < p; form the first n — 2 components
of an n-symbol WSD with sum p if and only if it satisfies the system of
inequalities given by (5).

(201 +p2>p
p1+2p2+pazp

P1+p2+2p3+ps 2P

M +...+pn_4+2pn-3 +Pn22p
{ Pr+ -+ Pn-3+3pn_2>p.
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Proof Consider an n-symbol WSD 0 < p, < -+ < p2 < p1 with sum
p = Yo, pi. Considering (2), constraint pp + pn—1 + -+ +p3 < p1 is
equivalent to p — (p1 + p2) = Pn + Pn—1 + -+ + p3 < p1, and hence it
holds if and only if 2p; + p2 > p. Similarly, condition p — (p1 + p2 + p3) =
Pn+Pn—1+:--+p4 < p2 holds if and only if py +2p2+p3 > p. At the end of
this process, we have p— (p1+p2+-+ +Pn-2) = Pn+Pn-1 < pn-3 if and only
if p1+p2+-+-+2pn_3+Pn-2 2 p. Finally, condition 0 < pp < pn—1 < pn-2
is equivalent to p— (p1+- - -+ Pn-3) = Prn—2+Pn-1+Pn < 3pn-2, and hence
wehave 0 < pp, < pp—-1 < pn—zifandonlyifp1+:--+prn-3+3pn_2>p. ®

The following (n — 2) x (n — 2) Fibonacci-Hessenberg matrix @, which
is equal to the Fibonacci-Hessenberg matrix R,_22 given by (1), is the
coefficient matrix of the system given above. One can easily follow the
given proof process and show that the statement of this Theorem holds for
eachi<n-—2.

2 1 0 0
1 2 1

: . - -2 01
1 et eer <o 1 3

(n=-2)x(n-2)

The system of equations QX = 1, where 1 is the all one column vector,
has solution

fo f3 fn—l)

fri1 foe1’  fanr

(mn—2»xn—31"')ml) = ( (7)
This solution vector is the Fibonacci probability distribution with the first
two terms removed. Equivalently, (g("=2,q("=3) ... ¢@ (1) (1) 41} is
the n-symbol Fibonacci distribution where ¢(? is the determinant of Q(®,
the matrix obtained from Q by replacing its ith column with the all one
column vector 1.

2.2 'Weakly superincreasing distributions derived from
Hessenberg matrices

Fibonacci-Hessenberg matrices can be viewed as the origin of many WSDs.
Consider for instance the following n x n Fibonacci-Hessenberg matrix Cy, ¢.
Let C,(,’), be the matrix obtained from C, ; by replacing its ith column with

the all one column vector 1, and let ¢, and cff')t denote the determinants

of Cp: and ct) respectively.

n,t?
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Theorem 2 The equalities
nt—f2(n-—z)+l+tf2(n-1); 1<igm )
Cnt = t+ZJ= 51,)1 = fon + tfon-1;

hold for any number ¢ and any two positive integers n and 1 <7 < n.

Proof The proof is by induction.on n and computation of determinants
using cofactor expansion along the first row. =

Different WSDs can be obtained using relations in (9). Setting ¢t =0
we obtain the WSD

I R ( h f fz,._l)

cno’ Cao ' cno fon' fan' 7 fon
which is the distribution given by (4). For ¢t = 1, we obtain the following
(n + 1)-symbol WSD:

( S;n%acsﬂ, Cf::l_l)a B 0511)1) = (f21 f‘Za f4a T f2n) .
Similarly, the (n + 2)-symbol WSD

(f2) f2, fo, fo+ fa, fa+ Jo -+, fan-2+ fon)

corresponds to t = 2. The case t = 3, however, leads to the following two
WSDs

(f2, fa 2f2+ fay 2fa+ fo, -++ 2fon—2+ fou),
(f2a f29 f3y 2f2+f4a 2f4+f6) Tty 2f2n—2+f2n)y

where the first distribution introduces an (n + 1)-symbol WSD and the
second one refers to an (n + 2)-symbol source.
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3 Expected codeword length of the Fibonacci
distribution

Given a source S = {sy, 82, -+, s,} with distribution p; > p2 > -+ > pn,
Huffman coding algorithm [4] assigns a prefix optimal code C to S. Let ¢;
be a codeword of length [; assigned to the source symbol s; by the algorithm.
The code C is optimal in the sense that it has minimum expected codeword
length L = >}, pil; among all uniquely decodable codes representing S
where p} := p;/ ZJ_I p;. In this section we show that among all n-symbol
WSDs a distribution has maximum expected codeword length if and only
if it is a scalar multiple of the Fibonacci distribution (f1, f1, f2,* "+, fa=1).

Theorem 3 Denote (f1, f1, f2,* -+, fa—1), the n-symbol Fibonacci distri-
bution, by F,, and let P = (pn,pn-1,"-*,p1), satisfying pr 2 p2 > -+ 2
Pn-1 = Pn, be an n-symbol WSD. Then among all n-symbol WSDs the
given distribution P has the maximum expected codeword length if and
only if P = oF), for some positive number a. Moreover, the expected
codeword length of F,, is 1 + %‘ﬂ bits per symbol.

Proof Since we are concerned with the expected codeword length, without
loss of generality we may assume that the given WSD py > pp > --- 2>
Pn-1 = Pn add to 1, that is it is a probability distribution. The Huffman
code of this distribution has expected codeword length:

L =p1+2p2+"‘+(n_2)pn~2+(n_l)pn—1+(n_1)pn
=P1+2P2+"‘+(n—2)pn—2+(n"’l)(pn—l+pn)
=p1+2p2+ -+ (n=2)pp2+(n—-1){l-p1—p2— - —Pa-2}
=(n-1)—{(n-2)p1+ (n—3)p2+ -+ 2pn-3 + Pn—2}.

Thus to maximise L we precisely need to minimise L' := (n — 2)p; +
(n = 3)ps + -+ + 2pp—3 + pn—2 under the constraints given by (5) with
p = 1. Therefore, the problem is equivalent to the linear programming
(LP) problem

Minimise L'=(n-2)p1+(n—-3)p2+ -+ +2pn_3+ pPn_2
SubJect to

2p1+p2 21

n+2p2+p3 21

PL+p2+2p3+ps 21
) (10)

pr+pe+- -+ Pn-at+2pn-3+pn-221
pr+p2+- -+ Pp-3+3pn-221
prtpet+-+pa-2<l1

| P12p22> - 2 Pn-2.
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According to (6) and (7) the string (pn—2,Pn-3,*,p1) = f,.l+1 (fos fay-- -,
fn—1) is the solution of @X = 1 and hence a feasible solution for this LP
problem. We show that this is indeed the optimal solution.

Replacing the constraint p; + pa + -+ pp—2 < 1 withp; +p2 +--- +
Pn—2+ B = 1 we see that the dual LP problem [3] of this primal problem is

as follows: Maximise y; +y2 + - -+ + yn—2 + yn—1 subject to ( %1 ) Yt<

t
( B; ) and y; 20,1 <i<n-1, where Q' denotes the transpose of the

matrix Q given by (6), Q'1 is the augmented matrix obtained by adding
the all one column vector 1 to the right side of Q*, Y'* is the transpose of
Y = (y1,¥2,"* *,¥n—1), and B is the transpose of B = (n —2,n—3,-++,1).

It follows from y,_; > 0 and the inequality y,—; = [01]Y* < 0 that
Yn-1 = 0 and hence the dual problem may be thought as: Maximise
Y1 +y2 + - + yn—2 subject to Q(¥1,Y2,- -, yn-2)" < B It is easily
shown by induction and using cofactor expansion along the first column
that the system Q'(y1,y2,--,yn-2)! = B* has solution

fn2

Yn—2 =
" fn+

where f] is defined by f/ := f; — 1 if i is odd and f/ := f; + 1 if 4 is even.
This is a feasible solution for the dual problem.

Consider a primal problem: Minimise )., b;z; subject to Y ;v a:;T; >
cjand z; > 0,1 < j <n,1<1i< m, and its dual problem: Maximise
ZJ_ c;y; subject to ZJ 10y <biandy; 20,1<j<n,1<i<m
Let X* = (z},z3, --,x},) and Y* = (y},43, - ,y2) be feasible solutions for
these primal and dual problems, respectively. Then according to Theo-
rem 5.2 in [3], necessary and sufficient conditions for simultaneous opti-
mality of X* and Y* are

yi = (=13 (fi_si = fat1-iUn—-2), 1 <i<n-3;

Z ~1@ijTf =¢; or =5 =0 (orboth), 1<j<mn;
—1@iy] =b; or yl—O (or both), 1<i<m.

Applying this Theorem we conclude that the string
1
(pn—?;pn-f!) o ,Pl) =T (f'Zs faa T fn—l)
f n+l
is the optimal solution of the primal LP problem given by (10). Therefore,

the corresponding WSD with maximum expected codeword length is indeed
the Fibonacci distribution

1
(Pn,Pn—lyPn—2,Pn—3,”‘7271)= —_(flaflaf2: : 1fn l)—
fat1 fn+
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Corresponding to (—L— A I"—"—) we have

2 3,
Tat1? farr? ? fanr

L'=f1 (o +2fs+-+(n=2facr}.

n+1
It is easily shown by induction that
fo+2fst o+ (n=2fncr =M —1)fa41 — frsz +3.
This implies
(n=1)far1 = far3+3 _ foyz =3 _ 1 Sny2 =3
- = =1+ " »
fns1 fns1 Jnt1

Corollary 1 It follows from limn_m% = 1:_2:5 that

L=n-1

1

L=1+£’i"—2——3—<1+1+‘/g

~2618. m
Jat1 fan 2
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