A NECESSARY AND SUFFICIENT CONDITION FOR A 3-REGULAR GRAPH TO BE CORDIAL

Liu Zhishan

Yang-en University, Quanzhou, 362014, P.R.China Zhu Biwen

Inner Mongolia Agriculture University, Huhhot, 010019, P.R.China

abstract In this paper, we give a necessary and sufficient condition for a 3-regular graph to be cordial.

Keyword Regular graph, Cordial graph

1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). We define a 0-1 label f on V(G) by giving each $v \in V(G)$ a label f(v) = 0 or 1, and denote $V_0 = \{v | v \in V(G), f(v) = 0\}$, $V_1 = \{v | v \in V(G), f(v) = 1\}$. From a 0-1 label on V(G), we derive a 0-1 label on E(G) by giving each $uv \in E(G)$ a label f(u,v) = |f(u) - f(v)|, and denote

 $E_{00} = \{uv | uv \in E(G), f(u) = f(v) = 0\},\$

 $E_{11} = \{uv | uv \in E(G), f(u) = f(v) = 1\},\$

 $E_1 = \{uv | uv \in E(G), |f(u) - f(v)| = 1\}$ and $E_0 = E_{00} \cup E_{11}$. Let S be a set, we denote by |S| the number of elements of S. If there exists 0 - 1 label f on V(G) such that $||V_0| - |V_1|| \le 1$ and $||E_0| - |E_1|| \le 1$, then G is said to be Cordial [1] and f is said to be a Cordial label of G. The cordiality of some graphs have been discussed in some papers [2, 3, 4]. In this paper we give a necessary and sufficient condition for a 3-regular graph to be cordial.

2 Preliminaries

Lemma 1. Let R^k be a k-regular graph and f be a 0-1 label of R^k . If $|V_0| = |V_1|$, then $|E_{00}| = |E_{11}|$.

Proof. Since the edges incident with every vertex in V_0 belong to either E_{00} or E_1 , We have

$$k|V_0| == 2|E_{00}| + |E_1| \tag{1}$$

Similarly

$$k|V_1| == 2|E_{11}| + |E_1| \tag{2}$$

Combining (1), (2) and
$$|V_0| = |V_1|$$
, we have $|E_{00}| = |E_{11}|$.

Let $v \in V(G)$, denote by $d_G(v)$, or simply d(v), the degree of v. Denote by $\Delta(G) = \max_{v \in V(G)} d(v)$ and $\overline{d}(G) = \frac{\sum v \in V(G) d(v)}{|V(G)|} = \frac{2|E(G)|}{|V(G)|}$ the maximum degree and the mean degree of G, respectively.

Lemma 2. Let G be any graph. If

- (1) $\Delta(G) \leq 3$
- (2) $1.5 \leq \overline{d}(G) \leq 3$ and
- (3) G contains no 3-regular components, then there exist two vertices u and v such that $|E(G \{u, v\})| = |E(G)| 3$ where G V' is the subgraph obtained from G by deleting the vertices in the subset V' together with their incident edges.

Proof. We distinguish two cases.

Case 1. G contains no vertices of degree 3. Then contains two vertices u and v, of degree 2, adjacent to each other. Otherwise each component of G should be K_1 , K_2 , or a path of length 2, contradicting $\overline{d}(G) \geq \frac{3}{2}$. So u and v are two desired vertices.

Case 2. G contains vertices of degree 3.

Subcase 1. G contains isolated vertices. Let u be a vertex of degree 3, and v an isolated vertex. Then u and v are two desired vertices.

Subcase 2. G contains no isolated vertices and there is a vertex, u, of degree 1, that is adjacent to a vertex, v, of degree 3. Then u and v are two desired vertices.

Subcase 3. G contains no isolates vertices and any neighbor of each vertex of degree 3 has a degree greater that 1. Since G contains no 3-regular components, there exists a vertex of degree 3 that has at least one neighbor of degree 2. Let z be such a vertex of degree 3, and u, v, w, the neighbors of z. Without loss of generality, we suppose that the degree of u is 2. If z

has u as the only neighbor of degree 2, then d(v) = d(w) = d(z) = 3. Since $\overline{d}(G) \leq 2$, there are at least two vertex of degree 1, at least one of which, say x, is not a neighbor of u. So u and v are two desired vertices. If z has at least two neighbors of degree 2, say u and v, then since $\overline{d}(G) \leq 2$ and d(z) = 3, there is at least one vertex, say x, of degree 1. At most one of u and v is adjacent to x. We may suppose that u is not a neighbor of x. Then u and x are two desired vertices.

A subset S of V is called an independent set of G if no two vertices in S are adjacent in G.

Lemma 3. Let G be a graph of order n with $\Delta(G) \leq 3$ and S a maximal independent set of G. Then $|S| \geq \lceil \frac{n}{4} \rceil$.

Proof. Let S be an independent set of G and |S| = k. It suffices to show that if $k < \lceil \frac{n}{4} \rceil$, then S is not a maximal independent set of G. Since $\Delta(G) \leq 3$, it is clear that whenever $k < \lceil \frac{n}{4} \rceil$, V(G - S - N(S)) is not empty, where N(S) is the set of neighbor of vertices of S, and every vertex in G - S - N(S) is not adjacent to vertices in S.

Lemma 4. Let R^3 be a 3-regular graph of order n. If at least one component of R^3 is not K^4 , then R^3 contains an independent set S such that $(1) |S| \ge \lceil \frac{n}{4} \rceil$

(2) $R^3 - S$ contains either two vertices of degree 1 not adjacent to each other or a vertex of degree 1 adjacent to a vertex of degree 2.

Proof. Let G be a component of \mathbb{R}^3 which is not \mathbb{K}^4 . We distinguish four cases.

Case 1. G contains two 3-cycles, C_{xuv} and C_{yuv} , with an edge uv in common. Let z be the neighbor of x other than u and v, and z_1 and z_2 the neighbors of z other than x. Denote $G_1 = R^3 - \{x, y, u, v, z\} - \{z_1, z_2\}$. It is clear that $|G_1| \geq n - 7$. By Lemma 3, G_1 contains an independent set S_1 with $|S_1| = \lceil \frac{n}{4} \rceil - 2$. Then $S = S_1 \bigcup \{u, z\}$ is an independent set of R^3 with $|S| \geq \lceil \frac{n}{4} \rceil$, and x and v are two desired vertices.

Case 2. G contains 3-cycles and any two 3-cycles have no edges in common. Let C_{uvw} be a 3-cycle and x the neighbor of u other than v and w, y the neighbor of v other than u and w, z the neighbors of w other than u and v, respectively. Denote by x_1 and x_2 the neighbors of x other than u, and $G_1 = R^3 - \{u, v, w, x, y, z\} - \{x_1, x_2\}$. Since $|G_1| \ge n - 8$, by Lemma 3, G_1 contains an independent set G_1 with $|G_1| = \lceil \frac{n}{4} \rceil - 2$. Then $S = S_1 \bigcup \{x, v\}$ is an independent set of R^3 with $|S| \ge \lceil \frac{n}{4} \rceil$, and u and w are two desired vertices.

Case 3. G contains no 3-cycles but at least one 4-cycle. Let C_{xyuv}

be a 4-cycle in G. Let x_1 be the neighbor of x other than y and v, y_1 the neighbor of y other than u and x, u_1 the neighbor of u other than v and y, and v_1 the neighbor of v other than x and u. Denote $G_1 = R^3 - \{x, y, u, v, u_1, v_1\} - \{x_1, y_1\}$. Since $|G_1| \ge n - 8$, by Lemma 3, G_1 contains an independent set S_1 with $|S_1| = \lceil \frac{n}{4} \rceil - 2$. Then $S = S_1 \cup \{x, u\}$ is an independent set of R^3 with $|S| \ge \lceil \frac{n}{4} \rceil$, and y and v are two desired vertices.

Case 4. G contains neither 3-cycle nor 4-cycles. It follows $|G| \geq 10$. Let u be a vertex in G and x,y and v the neighbors of u. Denote by x_1,x_2 the neighbors of x other than u, and by y_1,y_2 the neighbors of y other than u, and by v_1,w the neighbors of v other than u, by w_1,w_2 the neighbors of v other than v, respectively. Since v contains neither 3-cycles nor 4-cycles, v and v are distinct and not adjacent to one another. Denote v contains 3, v contains an independent set v contains 3, v contains an independent set v with |v| = |v|

3 Main Results

Theorem 1. Every 3-regular of order 8n is cordial.

Proof. Let R_{8n}^3 be a 3-regular graph of order 8n.

Case 1. $R_{8n}^3 = \bigcup K_4$ Since $2K_4$ is cordial, then $2nK_4$ is also cordial. Case 2. R_{8n}^3 is not the union of K_4 . By Lemma 4 there is an independent set S of R_{8n}^3 with |S| = 2n. Since each component of R_{8n}^3 has at least four vertices and there are at most 2n components, we can choose an S such that S and each component have at least one vertex in common. Denote $G = R_{8n}^3 - S$, the graph obtained by deleting S from R_{8n}^3 . It is clear that G has exactly 6n vertices, 6n edges, and contains no 3-regular components. To verify the condition (2) of Lemma 2, we note that the deleting of pairs of vertices incident to 3k edges $(0 \le k \le n - 1)$ results in a graph which has exactly 6n - 2k vertices and 6n - 3k edges, and whose mean degree is

 $\overline{d}(G) = \frac{2(6n-3k)}{(6n-2k)} = 2 - k/(3n-k) \ge 2 - (n-1)/[3n-(n-1)] \ge \frac{3}{2}$

Thus by Lemma 2 the deleting of altogether n pairs of vertices incident to 3n edges results in a graph G^* , which has exactly 4n vertices and 3n edges. Label 0 to each vertex of $V(G^*)$, and 1 to the other vertices of R_{8n}^3 . Then $V_0 = V(G^*), V_1 = V(R_{8n}^3) - V(G^*), E_{00} = E(G^*)$, and $E_{11} = E(R_{8n}^3 - V_0)$. Clearly we have $|V_0| = |E_{00}| = 3n$. By Lemma 1, $|E_{11}| = |E_{00}| = 3n$. Thus we obtain a cordial labeling of R_{8n}^3 .

Theorem 2. Every 3-regular graph of order $8n + 2(n \ge 1)$ is cordial.

Proof. Let R_{8n+2}^3 be a 3-regular graph of order 8n+2. Clearly R_{8n+2}^3 has at least one component which is not K_4 . By Lemma 4 there is an independent set S with |S|=2n+1, containing a vertex in common with each component, whose deleting from R_{8n+2}^3 results in a graph with 6n+1 vertices and 6n edges that has either two vertices, x and y, of degree1, not adjacent to each other or a vertex, x, of degree 1, adjacent to a vertex, z, of degree 2. Deleting x and y, or x and z we obtain a graph, G, with 6n-1 vertices and 6n-2 edges. Note that for $k \le n-2, 2 \ge 2(6n-2-3k)/[6n-1-2k] \ge 3/2$. By Lemma 4 we can delete altogether n-1 pairs of vertices incident to 3n-3 edges and obtain a graph G^* with 4n+1 vertices and 3n+1 edges. By labeling 0 to each vertex of $V(G^*)$ and 1 to the other vertices of R_{8n}^3 , we obtain a cordial label, for we have $|V_0| = |V_1| = 4n+1, |E_0| = 2(3n+1) = 6n+2$, and $|E_1| = 12n+3-(6n+2) = 6n+1$.

Theorem 3. Every 3-regular graph of order 8n + 6 is cordial.

Proof. Let R_{8n+6}^3 be a 3-regular graph of order 8n+6, $(n \ge 0)$. By Lemma 4 there is an independent set S with |S|=2n+2, containing at least one vertex in common with each component, whose deleting from R_{8n+6}^3 results in a graph with 6n+4 vertices and 6n+3 edges that has a vertex, x, of degree 1. Deleting x we obtain a graph G, with 6n+3 vertices and 6n+2 edges. Note that for $0 \le k \le n-1$, $2(6n+2-3k)/(6n+3-2k) \ge 2-2n/(4n+5) \ge 3/2$.

By Lemma 2 we can delete altogether n pairs of vertices incident to 3n edges and obtain a graph, G^* , with 4n+3 vertices and 3n+2 edges. By labeling 0 to each vertex of $V(G^*)$ and 1 to the other vertices of R^3_{8n+6} , we obtain a cordial label, for we have $|V_0| = |V_1| = 4n+3$, $|E_0| = 2|E_{00}| = 6n+4$ and $|E_1| = (8n+6) \times (3/2) - (6n+4) = 6n+5$.

Theorem 4. Every 3-regular graph of order 8n + 4, $(n \ge 0)$ is not cordial.

Proof. Let R_{8n+4}^3 be a 3-regular graph of order 8n+4. Since $E(R_{8n+4}^3)=12n+6$, for any cordial label of R_{8n+4}^3 we have $|E_0|=|E_1|=6n+3$. On the other hand, however, by Lemma 1 E_0 should be an even number, a contradiction .

Combining Theorem 1, Theorem 2, Theorem 3 and Theorem 4 we obtain the following theorem.

Theorem 5. A 3-regular graph of order k is cordial if and only if $k \neq 8n+4$.

References

- [1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatorica 23, (1987), 201208.
- [2] W.W. Kirchherr, On the cordiality of some specific graphs, Ars Combin., 31, 1991, 127138.
- [3] S.C.Shee, The cordiality of the path-union of n copies of a graph, Discrete Math., 151, 1996, 13, 221229.
- [4] N.B.Limaye, Cordial Labelings of Some Wheel Related Graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, Vol.41 (2002).