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1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). We
define a 0—1 label f on V(G) by giving each v € V(G) a label f(v) =0o0r1,
and denote Vp = {v| v € V(G), f(v) = 0}, Vi = {v| v € V(G), f(v) = 1}.
From a 0—1 label on V(G), we derive a 0—1 label on E(G) by giving each
wv € E(G) a label f(u,v) =|f(u) — f(v)|, and denote
Ego = {uwv| wv € E(G), f(u) = f(v) =0},

Ey = {wv| w € E(G), f(u) = f(v) =1},

E, = {uwv| wv € E(G),|f(u) — f(v)| = 1} and Ey = Eg U E1;. Let S be
a set, we denote by |S| the number of elements of S. If there exists 0 — 1
label f on V(G) such that ||Vo| — |Vi|| £ 1 and ||Ey| — |E1|| £ 1, then
G is said to be Cordial [1] and f is said to be a Cordial label of G. The
cordiality of some graphs have been discussed in some papers [2, 3, 4]. In
this paper we give a necessary and sufficient condition for a 3-regular graph
to be cordial.
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2 Preliminaries

Lemma 1. Let R* be a k-regular graph and f be a 0 — 1 label of R. If
[Vo| = [VAl, then |Eqo| = |En1|-

Proof. Since the edges incident with every vertex in V belong to
either Eqg or E1, We have

k|Vo| == 2|Eoo| + | E| 1)
Similarly

k|Vi| == 2|En| + | B4 (2
Combining (1), (2) and |Vp| = |Vi|, we have |Ego| = |En1|- D

Let v € V(G), denote by dg(v), or simply d(v), the degree of v. Denote
_ = vEV(G)d(v 2 E G
by A(G) = vgba(aé ) d(v) and d(G) = “pay the maximum
degree and the mean degree of G, respectively.

Lemma 2. Let G be any graph. If

(1) A(G) 3

(2) 1.5 < d(G) < 3 and

(3) G contains no 3-regular components, then there exist two vertices u
and v such that |E(G — {u,v})| = |E(G)| — 3 where G — Vi is the subgraph
obtained from G by deleting the vertices in the subset V' together with
their incident edges.

Proof. We distinguish two cases.

Case 1. G contains no vertices of degree 3. Then contains two vertices
u and v, of degree 2, adjacent to each other. Otherwise each component of
G should be K;, K, or a path of length 2, contradicting d(G) > 2. So u
and v are two desired vertices.

Case 2. G contains vertices of degree 3.

Subcase 1. G contains isolated vertices. Let u be a vertex of degree
3, and v an isolated vertex. Then u and v are two desired vertices.

Subcase 2. G contains no isolated vertices and there is a vertex, u,
of degree 1, that is adjacent to a vertex, v, of degree3. Then u and v are
two desired vertices.

Subcase 3. G contains no isolates vertices and any neighbor of each
vertex of degree 3 has a degree greater that 1. Since G contains no 3-regular
components, there exists a vertex of degree 3 that has at least one neighbor
of degree 2. Let z be such a vertex of degree 3, and u, v, w, the neighbors
of z. Without loss of generality, we suppose that the degree of u is 2. If z
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has u as the only neighbor of degree 2, then d(v) = d(w) = d(z) = 3. Since
d(G) < 2, there are at least two vertex of degree 1, at least one of which,
say z, is not a neighbor of u. So u and v are two desired vertices. If z has
at least two neighbors of degree 2, say u and v, then since Z(G) < 2 and
d(z) = 3, there is at least one vertex, say z, of degree 1. At most one of
u and v is adjacent to z. We may suppose that u is not a neighbor of z.
Then u and z are two desired vertices. O

A subset S of V is called an independent set of G if no two vertices in
S are adjacent in G.

Lemma 3. Let G be a graph of order n with A(G) < 3 and S a maximal
independent set of G. Then |S| > [%].

Proof. Let S be an independent set of G and |S| = k. It suffices
to show that if £ < [2], then S is not a maximal independent set of G.
Since A(G) < 3, it is clear that whenever k < [2], V(G —S — N(S)) is not
empty, where N(S) is the set of neighbor of vertices of S, and every vertex
in G — S — N(S) is not adjacent to vertices in S. O

Lemma 4. Let R be a 3-regular graph of order n. If at least one compo-
nent of R3 is not K*, then R3 contains an independent set S such that
(1) 18] > 2]

(2) R3® — S contains either two vertices of degree 1 not adjacent to each
other or a vertex of degree 1 adjacent to a vertex of degree 2.

Proof. Let G be a component of R which is not K. We distinguish
four cases.

Case 1. G contains two 3-cycles, Czyuy and Cyuy, With an edge uv in
common. Let z be the neighbor of z other than u and v, and 2; and 23 the
neighbors of z other than z. Denote G1 = R3 — {z,y,u,v, 2} — {z1,22}. It
is clear that |G| > n — 7. By Lemma 3, G contains an independent set
Sy with |S;] = [2] — 2. Then S = S; U{u, 2} is an independent set of R®
with |[S| > [2], and z and v are two desired vertices.

Case 2. G contains 3-cycles and any two 3-cycles have no edges in
common . Let Cyyy be a 3-cycle and x the neighbor of u other than v
and w,y the neighbor of v other than « and w, z the neighbor of w other
than u and v, respectively. Denote by z; and z; the neighbors of z other
than u, and G; = R3 — {u,v,w, z,y, 2} — {Z1,22}. Since |G1| > n -8, by
Lemma 3, G contains an independent set S; with |S;| = [§] — 2. Then
S = 81 U{z,v} is an independent set of R® with |S| > [2], and u and w
are two desired vertices.

Case 3. G contains no 3-cycles but at least one 4-cycle. Let Cpyyy
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be a 4-cycle in G. Let z; be the neighbor of = other than y and v, 3
the neighbor of y other than u and «, u; the neighbor of u other than
v and y, and v; the neighbor of v other than z and u. Denote G; =
R® — {z,y,4,v,u1,v1} — {z1,51}. Since |G1| > n — 8, by Lemma 3, G,
contains an independent set Sy with |S;| = [}] — 2. Then § = 8 U{z, u}
is an independent set of R® with |S| > [2], and y and v are two desired
vertices.

Case 4. G contains neither 3-cycle nor 4-cycles. It follows |G| > 10.
Let u be a vertex in G and z,y and v the neighbors of u. Denote by z,,z2
the neighbors of = other than u, and by 71, y2 the neighbors of y other than
u, and by v;, w the neighbors of v other than u, by w,;,w, the neighbors
of w other than v, respectively. Since G contains neither 3-cycles nor 4-
cycles, z,y and w are distinct and not adjacent to one another. Denote
G:1 = R®—{u,v,w,z1,Z2, 1, Y2, v1 }—{w1, we}.Since |G1| > maz{n—12,0},
by Lemma 3, G; contains an independent set S; with |S1| = [n/4] -3 .
Then S = S, U{x,y,w} is an independent set of R® with |S| > [n/4] , and
u and v are two desired vertices. o]

3 Main Results

Theorem 1. Every 3-regular of order 8n is cordial.

Proof. Let R}, be a 3-regular graph of order 8n.

Case 1. R},, = UK, Since 2K} is cordial, then 2nKj is also cordial.

Case 2. R3, is not the union of K;. By Lemma 4 there is an inde-
pendent set S of R3, with |S| = 2n. Since each component of R}, has at
least four vertices and there are at most 2n components, we can choose an
S such that S and each component have at least one vertex in common.
Denote G = R}, — S, the graph obtained by deleting S from R3,. It is
clear that G has exactly 6n vertices, 6n edges, and contains no 3-regular
components. To verify the condition (2) of Lemma 2, we note that the
deleting of pairs of vertices incident to 3k edges (0 < k < n — 1) results in
a graph which has exactly 6n — 2k vertices and 6n — 3k edges, and whose
mean degree is
dG) =23 — 9 k/Bn-k) 22— (n—1)/Bn~(n—1)] > }
Thus by Lemma 2 the deleting of altogether n pairs of vertices incident to
3n edges results in a graph G*, which has exactly 4n vertices and 3n edges.
Label 0 to each vertex of V(G*), and 1 to the other vertices of R3,. Then
Vo = V(G*),Vi = V(R3,) - V(G*), Eeo = E(G*), and En = E(R§, - V).
Clearly we have |Vp| = | Ego| = 3n. By Lemma 1, |Eyy| = |Ego| = 3n. Thus
we obtain a cordial labeling of R3,,. m]
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Theorem 2. Every 3-regular graph of order 8n + 2(n > 1) is cordial.

Proof. Let R}, , be a 3-regular graph of order 8n + 2. Clearly
R}, .. has at least one component which is not K4. By Lemma 4 there
is an independent set S with |S| = 2n + 1, containing a vertex in com-
mon with each component, whose deleting from Rg,,+2 results in a graph
with 6n + 1 vertices and 6n edges that has either two vertices, z and y,
of degreel, not adjacent to each other or a vertex, z, of degree 1, adja-
cent to a vertex, z, of degree 2. Deleting = and y, or z and z we ob-
tain a graph, G, with 6n — 1 vertices and 6n — 2 edges. Note that for
k<n-222>2(6n-2-3k)/[6n — 1 — 2k] > 3/2. By Lemma 4 we can
delete altogether n — 1 pairs of vertices incident to 3n — 3 edges and obtain
a graph G* with 4n 4 1 vertices and 3n + 1 edges. By labeling 0 to each
vertex of V(G*) and 1 to the other vertices of R3,, we obtain a cordial
label, for we have |Vg| = |Vi| = 4n + 1,|Ep| = 2(3n + 1) = 6n + 2, and
|Er]=12n 43 — (6n +2) = 6n + 1. O

Theorem 3. Every 3-regular graph of order 8n + 6 is cordial.

Proof. Let R}, ¢ be a 3-regular graph of order 8n + 6,(n > 0). By
Lemma 4 there is an independent set S with |S| = 2n+2, containing at least
one vertex in common with each component, whose deleting from R3¢
results in a graph with 6n + 4 vertices and 6n + 3 edges that has a vertex,
z, of degree 1. Deleting = we obtain a graph G, with 6n + 3 vertices and
6n + 2 edges. Note that for 0 < k<n -1, 2(6n+2—3k)/(6n+3 —2k) >
2—-2n/(4n +5) > 3/2.

By Lemma 2 we can delete altogether n pairs of vertices incident to 3n edges
and obtain a graph, G*, with 4n + 3 vertices and 3n + 2 edges. By labeling
0 to each vertex of V(G*) and 1 to the other vertices of R, we obtain
a cordial label, for we have |Vp| = |Vi| = 4n+3, |Eo| = 2|Egg| = 6n+4 and
|Ey| = (8n +6) x (3/2) — (6n +4) = 6n + 5. : g

Theorem 4. Every 3-regular graph of order 8n + 4, (n > 0) is not cordial.

Proof. Let R},,, be a 3-regular graph of order 8n + 4. Since
E(R,.4) = 12n + 6 , for any cordial label of R}, , we have |Eo| =
|E1] = 6n + 3. On the other hand, however, by Lemma 1 Ej should be an

even number, a contradiction . (]

Combining Theorem 1, Theorem 2, Theorem 3 and Theorem 4 we ob-
tain the following theorem.
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Theorem 5. A 3-regular graph of order k is cordial if and only if k # 8n+4.
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