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Abstract

A list (2,1)-labeling L of graph G is an assignment list L(v)
to each vertex v of G such that G has a (2,1)-labeling f satis-
fying f(v) € L(v) for all v of graph G. If |L(v)| = k + 1 for all
v of G, we say that G has a k-list (2,1)-labeling. The minimum
k taken over all k-list (2,1)-labelings of G, denoted A (G), is
called the list label-number of G. In this paper, we study the
upper bound of \;(G) of some planar graphs. It is proved that
M(G) £ A(G) + 6 if G is an outerplanar graph or h;-graph;
And A(G) < A(G) + 9 if G is an hp-graph or Halin graph.

1 Introduction

Our terminology and notation will be standard. The reader is referred to [1]
for the undefined terms. Graphs in this paper are simple, unless otherwise
stated, i.e., they have no loops or multiple edges. A graph is called planar
if it can be embedded in the plane. For a graph G, let V(G) , E(G), A(G)
and §(G) denote, respectively, its vertex set, edge set, maximum degree and
minimum degree. Let d(u,v) denote the distance of u and v. We use N(v)
to denote the neighborhood of v and N?(v) = {u € V(G)|d(u, v) = 2}. Let
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d(v) = |Ng(v)| be the degree of v in G. A vertex v is called a k-vertex if
d(v) = k, let Vi(G) = {v € V(G)|d(v) = k}. A (2,1)-labeling of graph G
is an assignment f of nonnegative integers to the vertices of G such that

(1) |f(u) = f(v)| 2 2 if u and v are adjacent,and
(2) |f(u) — f(v)] 21 if u and v are distance two apart.

Elements of the image of f are called labels, and the span of f, denoted
s(f), is the difference between the largest and smallest labels. The mini-
mum span taken over all (2, 1)-labelings of G, denoted A(G), is called the
label-number of G. Unless otherwise stated, we shall assume with no loss
of generality that the minimum label of (2, 1)-labelings of G is 0.

A list (2,1)-labeling L of graph G is an assignment label set L(v) to each
vertex v of G such that G has a (2,1)-labeling f satisfy f(v) € L(v) for all v
of graph G. If |[L(v)| = k+1 for all v of G, we say that G has a k-list (2,1)-
labeling. The minimum k taken over all k-list (2,1)-labelings of G, denoted
M(G), is called the list label-number of G. Clearly, if L(v) = {0,1,2,--- ,k}
for all v € V(G) yields a k-list (2,1)-labeling of G, then this labeling must
be a (2,1)-labeling of G, and we have A\(G) < M(G).

The problem of la:beling a graph with a condition at distance two, was
first investigated by Griggs and Yeh. They showed that A(G) < A%(G) +
2A(G) and conjectured that A(G) < A%(G) for A(G) > 2. In [3], Chang
and Kuo improved the the bound of Griggs and Yeh to A%(G)+ A(G). Jan
van den Heuvel and McGuinness [5] studied the label-number of planar
graph and obtained that A(G) < 2A + 34 for any planar graph. Zhou and
Wang [8] studied list (2,1)-labeling of trees and cycles and obtained the
following results.

Theorem 1.1.18 If G is a graph with mazimum degree A. Then
M(G) < A% +2A -2

Especially, for a tree T' and a cycle Cp, M(T) < A(T) + 3 and \(Cr) £ 7
hold.

In this paper, we study the upper bound of the A;-number of some
planar graphs and obtain some interesting results. Our main method of
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some proofs is the following: we induct on the number of vertices. We
find a vertex u that can be deleted leaving the induction hypothesis valid.
Then we calculate |Sg(u)|, the number of forbidden labels for w. In a list
(2,1)-labeling we always have |Sg(u)| < 3|N(u)| + |N?(u)|.

2 The List (2, 1)-labeling of outerplanar graphs

A planar graph is called outerplanar graph if there exists a face fp such
that V(G) C b(fo), where b(f) denote the boundary of f. The following
useful lemma can be found in [2].

Lemma 2.1.12) Let G be a 2-connected outerplanar graph of order at least
5. Then one of the following conditions holds:

(1) G has two adjacent 2-vertices u and v;
(2) G has a 2-verter u adjacent to a 3-vertez v such that N(u) C N(v);

(3) G has two nonadjacent 2-vertices u and v adjacent to a common 4-

vertez w such that (N(u)|JN(v)) \ {w} = N(w) \ {x,v}.

The following theorem is one of our main results, which estimates an
upper bound of the A;-number of outerplanar graphs.

Theorem 2.1. Let G be a 2-connected outerplanar graph. Then
M(G) £ A(G) + 6.

Proof. Suppose that L is a list of G with |L{v)] = A(G) + 7 for all
v € V(G). We shall prove the theorem by induction on the number of
vertices of graph G.
If [V(G)} < 4, since G is the subgraph of complete graph Ky4. It is
easy to prove that
M(G) < M(Ka) 9.

Let G ba an outerplanar graph such that for all outerplanar graphs
H with |V(H)| < |[V(G)| the theorem is true. We note first that we can
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assume that |V(G)| = 5. It suffices to produce a (A(G) + 6)-list (2,1)-
labeling of G. By Lemma 2.1, we consider the following three cases.

Case 1. G has two adjacent 2-vertices u and v.

Let H = G — u + wv, where w is the other adjacent vertex of u.
Obviously, H is an outerplanar graph with |V(H)| < |V(G)|. By the
induction hypothesis, H has a (A(H) + 6)-list (2, 1)-labeling. Now we label
vertex u in G. For every labeled vertex z € (N(u) = {v,w}), there are 3
consecutive labels f(z) — 1, f(z), f(z) + 1 that are forbidden for use on .
Similarly, for every labelled vertex y € (N(w)|J N(v) \ {u}), there are one
label f(y) that is forbidden for use on u. Then

1Sc(u)] < 3IN(u)|+IN*(w)| = 2x3+|N(w) | JN()|-1 = 6+A(G) < |L(u)!.

We can choose a label in list L(u) for vertex u and obtain a (A(G) + 6)-list
(2,1)-labeling of G.

Case 2. G has a 2-vertex u adjacent to a 3-vertex v such that N(u) =
{v,w} and N(u) C N(v).

Case 3. G has two nonadjacent 2-vertices u and v adjacent to a com-
mon 4-vertex w such that (N(u) U N(®)) \ {w} = N(w) \ {u,v}.

For case 2 and 3 let H = G —u. Then H is an outerplanar graph with
|V(H)| < |[V(G)]. Similarly to Case 1 we have

IS¢ (u)] < 6+ A(G) < |L(u)|-

We can choose a label in list L(u) for vertex u and obtain a (A(G) + 6)-list
(2,1)-labeling of G.

This completes the proof of the Theorem.

3 The List (2, 1)-labeling of planar graphs with
high degree

Let G be a planar graph, we denote its face set by F(G). For f € F(G),
we use d(f) to denote the number of vertices on the boundary of f. A face
f is called a k-face if d(f) = k. For k =1,2,---, we call G an hy-graph, if
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A(G) = |V(G)| — k. Next, we will study the list (2, 1)-labeling of h;-graphs
and ha-graphs.

3.1 The List (2,1)-labeling of h),-graphs

Wang|[6] studied the structure properties of h;-graphs and given the follow-
ing results.

Lemma 3.1.16] Let G be an hy-graph. Then [Va(G)] < §(G).

Lemma 3.2.6] Let G be an by -graph and d(u) = 6(G). Then G —u is also
an hy-graph.

Lemma 3.3.7 Let G be an hy-graph with [V(G)] > 2 and let w be a
A-vertex of G. Then at least one of the following cases is true for G:

(1) §(G) =1
(2) there is a 2-vertez u on a 3-face vwv;

(3) there is a 3-vertez u with N(u) = {w,v1,v2} such that uwv;, uwv, €
F(G).

The following theorem is one of our main results, which estimates an
upper bound of the \;-number of h;-graphs.

Theorem 3.1. Let G be an hy graph with |V(G)| > 2. Then N(G) <
A(G) +6.

Proof. Suppose that L is a list of G with |L(v)] = A(G) + 7 for all
v € V(G). We shall prove the theorem by induction on the number of
vertices of graph G.

By enumeration, we can prove the theorem holds for |V(G)| < 4.
Assume that it is true for all h;-graphs with fewer than |V (G)| = k vertices,
and let G be an h;-graph of order k. By Lemma 3.3, we consider the
following three cases.

Case 1. There is a 1-vertex u adjacent to a A-vertex w.
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Let H = G — u, by Lemma 3.2, H is also an h;-graph and |V (H)| =
k —1. By the induction hypothesis, H has a (A(H)+ 6)-list (2, 1)-labeling.
Now we label vertex u in G. It is easy to calculate that

|Se(u)] < 3+ A(G) — 1 < |L(u)].
Then we can choose a label in list L(u) for vertex u and obtain a (A(G)+6)-
list (2, 1)-labeling of G.

Case 2. There is a 2-vertex u on a 3-face vwv.

By case 1, we may assume that §(G) = 2. Let H = G — u, by Lemma
3.2, H is also an hy-graph and |V(H)| = k — 1. By the induction hypoth-
esis, H has a (A(H) + 6)-list (2,1)-labeling. Since |N(u)| = {w,v}| =2,
IN?(uw)| < A(G) — 2, we have

1S (u)| < 6+ A(G) — 2 < [L(u)].

We can choose a label in list L(u) for vertex v and obtain a (A(G) + 6)-list
(2,1)-labeling of G.

Case 3. There is a 3-vertex u with N(u) = {w,v;,v2} such that
uwvy, uwvg € F(G).

Since G is an h;-graph, by Case 1 and 2, we may assume that §(G) = 3.
Let H = G —u, by Lemma 3.2, H is also an h;-graph and |V(H)| =k -1.
Similarly to Case 2, we have

ISe(u)] < A(G) +6 < |L(u)].
We can also obtain a (A(G) + 6)-list (2, 1)-labeling of G.
This completes the proof of the Theorem.
3.2 The List (2,1)-labeling of he-graphs
Lemma 3.4.17) Let G be an hy-graph. Then [Va(@)] < 2.

Lemma 3.5.17) Let G be an hy-graph with |V(G)| > 8 and a unique A-
vertex w and let N°(w) = V(G) \ {N(w),w} = {z} with d(z) > 2. Then
at least one of the following cases is true for G:

(1) there is a vertez u such that d(u) =1;
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(2) there is a 2-vertez u on a 3-face vwv;

(3) there is a 3-vertez u with N(u) = {w,v1,v2} such that uwv;,uwv, €
F(G).

Lemma 3.6.L7) Let G be an hg-graph with |V(G)| > 9 and two adjacent
A-vertices wy, wo. Then at least one of the following cases holds for G:

(1) there is a 2-vertez u € N(wy) [ N(ws2) such that vww, € F(G);

(2) there is a 3-cycle vwywev such that its interior contains only a vertex
u and three edges uv,uw;,uws and d(v) < 6;

(3) there are three vertices u,v1,v2 € N(w1) () N(w2) such that d(u) < 4,
d(vy) £ 5, d(v2) < 5 and the interior of the 4-cycle vywvowovy
contains only u and the edges incident to u.

Lemma 3.7. Let G be an hy-graph with |V(G)| > 9 and two adjacent
A-vertices wy,wy. Then \(G) < A(G) + 9.

Proof. Suppose that L is a list of G with |L(v)] = A(G) + 10 for all
v € V(G). We shall prove the theorem by induction on the number of
vertices of graph G.

By enumeration, we can prove the theorem holds for |V(G)| < 9.
Assume that it is true for all ho-graphs with fewer than |V (G)| = k vertices
and with two adjacent A-vertices. Let G be an hg-graph of order k with
two adjacent A-vertex wy,ws. By Lemma 3.6, we consider the following
three cases.

Case 1. There is a 2-vertex u € N(w;) () N(ws), such that vwyw; €
F(G).

Let H = G—u, then A(H) = |V(H)|-2, and |V(H)] = |V(G)|-1 > 9.
We know that H is also an hp-graph with two adjacent A(H)-vertex. By
the induction hypothesis, H has a (A(H) + 9)-list (2, 1)-labeling. Since
IN(u)] = {w1, w2} =2, |N?(u)| < A(G) - 1, then

IS¢ (u)] < A(G) +5 < |L(u)].
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We can obtain a (A(G) + 9)-list (2, 1)-labeling of G.

Case 2. There is a 3-cycle vw;wov such that its interior contains only
a 3-vertex u and three edges uv, uw;, uws.

Let H = G —u. Then H is also an hy-graph with two adjacent A(H)-
vertices. By the induction hypothesis, H has a (A(H) + 9)-list (2,1)-
labeling. For |N(u)| = |{v, w1, w2}| = 3, |N?(u)| < A(G) — 2, we have

1Se(u)] < A(G) +7 < |L(u)].

We obtain a (A(G) + 9)-list (2, 1)-labeling of G.

Case 3. There are three vertices u,v;,v2 € N(w;) () N(w) such that
d(u) < 4, d(v1) <5, d(vz) < 5 and the interior of the 4-cycle viwvowavy
contains only u and the edges incident to u.

Let H = G — u. By the induction hypothesis, H has a (A(H) + 9)-list
(2,1)-labeling. We consider three subcases and label the vertex u in G.

Case 3.3.1. uvy,uve ¢ E(G), same as Case 1.

Case 3.3.2. u is adjacent to only one of two vertices vy, vs. Similar to
case 2.

Case 3.3.3. uvy,uvz € E(G), since |[N(u)| = 4, |[N?(u)| < A(G) -3,
then |Sg(u)| < A(G) + 9 < |L(u)|.

This completes the proof of the Theorem.

Let C = vyvg---vg—2u; be a cycle of length k — 2(> 5). Add a new
vertex w; to the interior of C and another wy to the exterior respectively,
and then join both w; and ws to each v; for i =1,2,--- ,k—2. Denote the
resulting graph by W.

It is easy to see that Wk is an hp-graph with two nonadjacent A-
vertices. Moreover, every ha-graph G containing two nonadjacent A-vertices

can be induced from W) by removing some edges in E(C), where k =
|[V(G)|. Clearly, Wy has a (k + 7)-list (2, 1)-labeling.

Lemma 3.8. Let G be an hy-graph with |V(G)| > 5 and two nonadjacent
A-vertices wy,wp. Then N(G) < A(G) +9.

Proof. Since G can be induced from W;, by removing some edges in E(C),
where k = |V(G)|, and A(G) = A(Wi) = k — 2. Then A\(G) < M(W) <
A(G) +09.

The Lemma holds.
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Theorem 3.2. Let G be an ho-graph with |V(G)| > 9. Then N(G) <
A(G) +9.
Proof. Suppose that L is a list of G with |L(v)| = A(G) + 10 for all
v € V(G). We shall prove the theorem by induction on the number of
vertices of graph G.

By enumeration, we can prove the theorem holds for |[V(G)| < 9.
Assume that it is true for all hy-graphs with fewer than |V (G)| = k vertices.
Let G be an hy-graph of order k, we consider the following two cases.

Case 1. If |Va(G)| = 2, by Lemma 3.7 and 3.8, the theorem holds.

Case 2. If [VA(G)| = 1, let w be the vertex with maximum degree and
let z € N°(w).

If d(z) > 2, by Lemma 3.5, we obtain a vertex u and let H = G — u.
Clearly, H is an ho-graph. By Lemma 3.4, we know that |VA(G)| < 2. By
the induction hypothesis and Lemma 3.7 and 3.8, H has a (A(H) + 9)-
list (2, 1)-labeling. Similarly to the proof of Theorem 3.1, we can obtain a
(A(G) + 9)-list (2, 1)-labeling of G.

If dg(z) = 1, then H = G — z is an hy-graph. By Theorem 3.1,
M(H) < A(H) +6 < A(G) +9. Since |[N(z)| = 1, |[N3(z)| < A(G) -1,
then

|Sa(z)| < A(G) +2 < |L(=)],

we can choose a label in list L(z) for vertex = and obtain a (A(G) + 9)-list
(2, 1)-labeling of G.
This completes the proof of the Theorem.

4 The List (2,1)-labeling of Halin graphs

For any 3-connected planar graph G with A(G) > 3, if the boundary edges
of face fo which is adjacent to the others are removed, it becomes a tree,
and the degree of each vertex of V(fo) is 3, then G is called a Halin graph.
fo is called the outer face of G, and the others called interior faces. The
vertices on face fy are called outer vertices, the others are called the interior
vertices[4]. Clearly, a wheel G = [vp; vy, - - va] is a Halin graph with only
one interior vertex vg.
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By the definition of Halin graph, the following lemma is true.

Lemma 4.1. Let G be a Halin graph. Then

(1) The degree of all outer vertices is 3;

(2) If G is not a wheel, there are at least two interior vertices of G, aend
there always exists an interior vertex w which is only adjacent to one
interior, and N(w) = {u,u1,---ux}, wivy,uxv2 € E(G), v1 # ug,
vy # up—1, 2 < k < A(G) — 1, where u is the interior vertex adjacent
to w, and uy,- - -uy aere outer vertices adjacent to w.

The following theorem estimates an upper bound of the );-number of
Halin graphs.

Theorem 4.1. Let G be a Halin graph with mazimum degree A. Then
M(G) A+,

Proof. Suppose that L is a list of G with |L(v)] = A(G) + 10 for all
v € V(G). We shall prove the theorem by induction on |V7(G)|, the number
of interior vertices of G.

If |V1(G)| = 1, then G is a wheel. It is also an h;-graph, by Theorem
3.1, the theorem holds.

Let G ba a Halin graph and for all Halin graphs G’ with |V;(G’)| <
|Vi(G)|, the theorem is true and |V;(G)| > 2.

Let G' = G—{u1, - - - ug }+{v1w, vow}, by Lemma 4.1 and the definition
of Halin graph, G’ is a Halin graph and |V;(G’)| = |Vi(G)| — 1. By the
induction hypothesis, G’ has a (A(G') + 9)-list (2, 1)-labeling.

Now we label vertices u;, - - - ux in order of ascending subscripts. First
label the vertex u;. Since N(u;) = {w,v;,u2} and uz has no label, then
|Sg(u1)| < 8. For 2 < i < k, we note that u;,- - - ux have not been labelled
and wuy,---u;—1 have been labelled. It suffices to prove that |Sg(uk)| <
A+9. In fact, since N(ux) = {w,v2,ux—1}, |[N(v2)| = 3 and d(w) < A(G),
then

[Se(ur)] 9+ (A(G) -2)+2=A(G) +9.
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We can choose a label in list L(uy) for vertex uy, then we obtain a (A(G) +
9)-list (2, 1)-labeling. This prove the Theorem.
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