On List (2,1)-Labeling of Some Planar Graphs*

Sumei Zhang , Qiaoling Ma[†]
School of Science, University of Jinan, Jinan, Shandong 250022, P.R.China

Abstract

A list (2,1)-labeling L of graph G is an assignment list L(v) to each vertex v of G such that G has a (2,1)-labeling f satisfying $f(v) \in L(v)$ for all v of graph G. If |L(v)| = k+1 for all v of G, we say that G has a k-list (2,1)-labeling. The minimum k taken over all k-list (2,1)-labelings of G, denoted $\lambda_l(G)$, is called the list label-number of G. In this paper, we study the upper bound of $\lambda_l(G)$ of some planar graphs. It is proved that $\lambda_l(G) \leq \Delta(G) + 6$ if G is an outerplanar graph or h_1 -graph; And $\lambda_l(G) \leq \Delta(G) + 9$ if G is an h_2 -graph or Halin graph.

1 Introduction

Our terminology and notation will be standard. The reader is referred to [1] for the undefined terms. Graphs in this paper are simple, unless otherwise stated, i.e., they have no loops or multiple edges. A graph is called *planar* if it can be embedded in the plane. For a graph G, let V(G), E(G), $\Delta(G)$ and $\delta(G)$ denote, respectively, its vertex set, edge set, maximum degree and minimum degree. Let d(u, v) denote the distance of u and v. We use N(v) to denote the neighborhood of v and $N^2(v) = \{u \in V(G) | d(u, v) = 2\}$. Let

^{*}This work is supported by the Nature Science Foundation of Shandong Province of China(Y2003A01) and the Doctoral Foundation of University of Jinan(B0615, Y0625).

[†]The corresponding author: Qiaoling Ma, E-mail: ss_maql@ujn.edu.cn

 $d(v) = |N_G(v)|$ be the degree of v in G. A vertex v is called a k-vertex if d(v) = k, let $V_k(G) = \{v \in V(G) | d(v) = k\}$. A (2,1)-labeling of graph G is an assignment f of nonnegative integers to the vertices of G such that

- (1) $|f(u) f(v)| \ge 2$ if u and v are adjacent, and
- (2) $|f(u) f(v)| \ge 1$ if u and v are distance two apart.

Elements of the image of f are called labels, and the span of f, denoted s(f), is the difference between the largest and smallest labels. The minimum span taken over all (2,1)-labelings of G, denoted $\lambda(G)$, is called the label-number of G. Unless otherwise stated, we shall assume with no loss of generality that the minimum label of (2,1)-labelings of G is 0.

A list (2,1)-labeling L of graph G is an assignment label set L(v) to each vertex v of G such that G has a (2,1)-labeling f satisfy $f(v) \in L(v)$ for all v of graph G. If |L(v)| = k+1 for all v of G, we say that G has a k-list (2,1)-labeling. The minimum k taken over all k-list (2,1)-labelings of G, denoted $\lambda_l(G)$, is called the list label-number of G. Clearly, if $L(v) = \{0, 1, 2, \cdots, k\}$ for all $v \in V(G)$ yields a k-list (2,1)-labeling of G, then this labeling must be a (2,1)-labeling of G, and we have $\lambda(G) \leq \lambda_l(G)$.

The problem of labeling a graph with a condition at distance two, was first investigated by Griggs and Yeh. They showed that $\lambda(G) \leq \Delta^2(G) + 2\Delta(G)$ and conjectured that $\lambda(G) \leq \Delta^2(G)$ for $\Delta(G) \geq 2$. In [3], Chang and Kuo improved the the bound of Griggs and Yeh to $\Delta^2(G) + \Delta(G)$. Jan van den Heuvel and McGuinness [5] studied the label-number of planar graph and obtained that $\lambda(G) \leq 2\Delta + 34$ for any planar graph. Zhou and Wang [8] studied list (2,1)-labeling of trees and cycles and obtained the following results.

Theorem 1.1.^[8] If G is a graph with maximum degree Δ . Then

$$\lambda_l(G) \le \Delta^2 + 2\Delta - 2.$$

Especially, for a tree T and a cycle C_n , $\lambda_l(T) \leq \Delta(T) + 3$ and $\lambda_l(C_n) \leq 7$ hold.

In this paper, we study the upper bound of the λ_l -number of some planar graphs and obtain some interesting results. Our main method of

some proofs is the following: we induct on the number of vertices. We find a vertex u that can be deleted leaving the induction hypothesis valid. Then we calculate $|S_G(u)|$, the number of forbidden labels for u. In a list (2,1)-labeling we always have $|S_G(u)| \leq 3|N(u)| + |N^2(u)|$.

2 The List (2,1)-labeling of outerplanar graphs

A planar graph is called *outerplanar* graph if there exists a face f_0 such that $V(G) \subseteq b(f_0)$, where b(f) denote the boundary of f. The following useful lemma can be found in [2].

Lemma 2.1. $^{[2]}$ Let G be a 2-connected outerplanar graph of order at least 5. Then one of the following conditions holds:

- (1) G has two adjacent 2-vertices u and v;
- (2) G has a 2-vertex u adjacent to a 3-vertex v such that $N(u) \subset N(v)$;
- (3) G has two nonadjacent 2-vertices u and v adjacent to a common 4-vertex w such that $(N(u) \bigcup N(v)) \setminus \{w\} = N(w) \setminus \{u,v\}$.

The following theorem is one of our main results, which estimates an upper bound of the λ_l -number of outerplanar graphs.

Theorem 2.1. Let G be a 2-connected outerplanar graph. Then

$$\lambda_l(G) \leq \Delta(G) + 6.$$

Proof. Suppose that L is a list of G with $|L(v)| = \Delta(G) + 7$ for all $v \in V(G)$. We shall prove the theorem by induction on the number of vertices of graph G.

If $|V(G)| \leq 4$, since G is the subgraph of complete graph K_4 . It is easy to prove that

$$\lambda_l(G) \leq \lambda_l(K_4) \leq 9.$$

Let G be an outerplanar graph such that for all outerplanar graphs H with |V(H)| < |V(G)| the theorem is true. We note first that we can

assume that $|V(G)| \geq 5$. It suffices to produce a $(\Delta(G) + 6)$ -list (2,1)-labeling of G. By Lemma 2.1, we consider the following three cases.

Case 1. G has two adjacent 2-vertices u and v.

Let H=G-u+wv, where w is the other adjacent vertex of u. Obviously, H is an outerplanar graph with |V(H)|<|V(G)|. By the induction hypothesis, H has a $(\Delta(H)+6)$ -list (2,1)-labeling. Now we label vertex u in G. For every labeled vertex $x\in (N(u)=\{v,w\})$, there are 3 consecutive labels f(x)-1, f(x), f(x)+1 that are forbidden for use on u. Similarly, for every labelled vertex $y\in (N(w)\bigcup N(v)\setminus \{u\})$, there are one label f(y) that is forbidden for use on u. Then

$$|S_G(u)| \le 3|N(u)| + |N^2(u)| = 2 \times 3 + |N(w)| \int |N(v)| - 1 = 6 + \Delta(G) < |L(u)|.$$

We can choose a label in list L(u) for vertex u and obtain a $(\Delta(G) + 6)$ -list (2,1)-labeling of G.

Case 2. G has a 2-vertex u adjacent to a 3-vertex v such that $N(u) = \{v, w\}$ and $N(u) \subset N(v)$.

Case 3. G has two nonadjacent 2-vertices u and v adjacent to a common 4-vertex w such that $(N(u) \cup N(v)) \setminus \{w\} = N(w) \setminus \{u, v\}$.

For case 2 and 3 let H = G - u. Then H is an outerplanar graph with |V(H)| < |V(G)|. Similarly to Case 1 we have

$$|S_G(u)| \le 6 + \Delta(G) < |L(u)|.$$

We can choose a label in list L(u) for vertex u and obtain a $(\Delta(G) + 6)$ -list (2,1)-labeling of G.

This completes the proof of the Theorem.

3 The List (2,1)-labeling of planar graphs with high degree

Let G be a planar graph, we denote its face set by F(G). For $f \in F(G)$, we use d(f) to denote the number of vertices on the boundary of f. A face f is called a k-face if d(f) = k. For $k = 1, 2, \dots$, we call G an h_k -graph, if

 $\Delta(G) = |V(G)| - k$. Next, we will study the list (2,1)-labeling of h_1 -graphs and h_2 -graphs.

3.1 The List (2,1)-labeling of h_1 -graphs

Wang[6] studied the structure properties of h_1 -graphs and given the following results.

Lemma 3.1.^[6] Let G be an h_1 -graph. Then $|V_{\Delta}(G)| \leq \delta(G)$.

Lemma 3.2.^[6] Let G be an h_1 -graph and $d(u) = \delta(G)$. Then G - u is also an h_1 -graph.

Lemma 3.3.^[7] Let G be an h_1 -graph with $|V(G)| \ge 2$ and let w be a Δ -vertex of G. Then at least one of the following cases is true for G:

- (1) $\delta(G) = 1$;
- (2) there is a 2-vertex u on a 3-face uwv;
- (3) there is a 3-vertex u with $N(u) = \{w, v_1, v_2\}$ such that $uwv_1, uwv_2 \in F(G)$.

The following theorem is one of our main results, which estimates an upper bound of the λ_l -number of h_1 -graphs.

Theorem 3.1. Let G be an h_1 graph with $|V(G)| \geq 2$. Then $\lambda_l(G) \leq \Delta(G) + 6$.

Proof. Suppose that L is a list of G with $|L(v)| = \Delta(G) + 7$ for all $v \in V(G)$. We shall prove the theorem by induction on the number of vertices of graph G.

By enumeration, we can prove the theorem holds for $|V(G)| \leq 4$. Assume that it is true for all h_1 -graphs with fewer than |V(G)| = k vertices, and let G be an h_1 -graph of order k. By Lemma 3.3, we consider the following three cases.

Case 1. There is a 1-vertex u adjacent to a Δ -vertex w.

Let H = G - u, by Lemma 3.2, H is also an h_1 -graph and |V(H)| = k - 1. By the induction hypothesis, H has a $(\Delta(H) + 6)$ -list (2, 1)-labeling. Now we label vertex u in G. It is easy to calculate that

$$|S_G(u)| \le 3 + \Delta(G) - 1 < |L(u)|.$$

Then we can choose a label in list L(u) for vertex u and obtain a $(\Delta(G)+6)$ -list (2,1)-labeling of G.

Case 2. There is a 2-vertex u on a 3-face uwv.

By case 1, we may assume that $\delta(G)=2$. Let H=G-u, by Lemma 3.2, H is also an h_1 -graph and |V(H)|=k-1. By the induction hypothesis, H has a $(\Delta(H)+6)$ -list (2,1)-labeling. Since $|N(u)|=|\{w,v\}|=2$, $|N^2(u)| \leq \Delta(G)-2$, we have

$$|S_G(u)| \le 6 + \Delta(G) - 2 < |L(u)|.$$

We can choose a label in list L(u) for vertex u and obtain a $(\Delta(G) + 6)$ -list (2,1)-labeling of G.

Case 3. There is a 3-vertex u with $N(u) = \{w, v_1, v_2\}$ such that $uwv_1, uwv_2 \in F(G)$.

Since G is an h_1 -graph, by Case 1 and 2, we may assume that $\delta(G) = 3$. Let H = G - u, by Lemma 3.2, H is also an h_1 -graph and |V(H)| = k - 1. Similarly to Case 2, we have

$$|S_G(u)| \le \Delta(G) + 6 < |L(u)|.$$

We can also obtain a $(\Delta(G) + 6)$ -list (2, 1)-labeling of G.

This completes the proof of the Theorem.

3.2 The List (2,1)-labeling of h_2 -graphs

Lemma 3.4.^[7] Let G be an h_2 -graph. Then $|V_{\Delta}(G)| \leq 2$.

Lemma 3.5.^[7] Let G be an h_2 -graph with $|V(G)| \ge 8$ and a unique Δ -vertex w and let $N^c(w) = V(G) \setminus \{N(w), w\} = \{x\}$ with $d(x) \ge 2$. Then at least one of the following cases is true for G:

(1) there is a vertex u such that d(u) = 1;

- (2) there is a 2-vertex u on a 3-face uwv;
- (3) there is a 3-vertex u with $N(u) = \{w, v_1, v_2\}$ such that $uwv_1, uwv_2 \in F(G)$.

Lemma 3.6.^[7] Let G be an h_2 -graph with $|V(G)| \ge 9$ and two adjacent Δ -vertices w_1, w_2 . Then at least one of the following cases holds for G:

- (1) there is a 2-vertex $u \in N(w_1) \cap N(w_2)$ such that $uw_1w_2 \in F(G)$;
- (2) there is a 3-cycle vw_1w_2v such that its interior contains only a vertex u and three edges uv, uw_1 , uw_2 and $d(v) \leq 6$;
- (3) there are three vertices $u, v_1, v_2 \in N(w_1) \cap N(w_2)$ such that $d(u) \leq 4$, $d(v_1) \leq 5$, $d(v_2) \leq 5$ and the interior of the 4-cycle $v_1w_1v_2w_2v_1$ contains only u and the edges incident to u.

Lemma 3.7. Let G be an h_2 -graph with $|V(G)| \geq 9$ and two adjacent Δ -vertices w_1, w_2 . Then $\lambda_l(G) \leq \Delta(G) + 9$.

Proof. Suppose that L is a list of G with $|L(v)| = \Delta(G) + 10$ for all $v \in V(G)$. We shall prove the theorem by induction on the number of vertices of graph G.

By enumeration, we can prove the theorem holds for $|V(G)| \leq 9$. Assume that it is true for all h_2 -graphs with fewer than |V(G)| = k vertices and with two adjacent Δ -vertices. Let G be an h_2 -graph of order k with two adjacent Δ -vertex w_1, w_2 . By Lemma 3.6, we consider the following three cases.

Case 1. There is a 2-vertex $u \in N(w_1) \cap N(w_2)$, such that $uw_1w_2 \in F(G)$.

Let H = G - u, then $\Delta(H) = |V(H)| - 2$, and $|V(H)| = |V(G)| - 1 \ge 9$. We know that H is also an h_2 -graph with two adjacent $\Delta(H)$ -vertex. By the induction hypothesis, H has a $(\Delta(H) + 9)$ -list (2, 1)-labeling. Since $|N(u)| = |\{w_1, w_2\}| = 2$, $|N^2(u)| \le \Delta(G) - 1$, then

$$|S_G(u)| \le \Delta(G) + 5 < |L(u)|.$$

We can obtain a $(\Delta(G) + 9)$ -list (2, 1)-labeling of G.

Case 2. There is a 3-cycle vw_1w_2v such that its interior contains only a 3-vertex u and three edges uv, uw_1, uw_2 .

Let H = G - u. Then H is also an h_2 -graph with two adjacent $\Delta(H)$ -vertices. By the induction hypothesis, H has a $(\Delta(H) + 9)$ -list (2, 1)-labeling. For $|N(u)| = |\{v, w_1, w_2\}| = 3$, $|N^2(u)| \leq \Delta(G) - 2$, we have

$$|S_G(u)| \le \Delta(G) + 7 < |L(u)|.$$

We obtain a $(\Delta(G) + 9)$ -list (2, 1)-labeling of G.

Case 3. There are three vertices $u, v_1, v_2 \in N(w_1) \cap N(w_2)$ such that $d(u) \leq 4$, $d(v_1) \leq 5$, $d(v_2) \leq 5$ and the interior of the 4-cycle $v_1w_1v_2w_2v_1$ contains only u and the edges incident to u.

Let H = G - u. By the induction hypothesis, H has a $(\Delta(H) + 9)$ -list (2,1)-labeling. We consider three subcases and label the vertex u in G.

Case 3.3.1. $uv_1, uv_2 \notin E(G)$, same as Case 1.

Case 3.3.2. u is adjacent to only one of two vertices v_1, v_2 . Similar to case 2.

Case 3.3.3. $uv_1, uv_2 \in E(G)$, since |N(u)| = 4, $|N^2(u)| \le \Delta(G) - 3$, then $|S_G(u)| \le \Delta(G) + 9 < |L(u)|$.

This completes the proof of the Theorem.

Let $C = v_1 v_2 \cdots v_{k-2} v_1$ be a cycle of length $k-2 (\geq 5)$. Add a new vertex w_1 to the interior of C and another w_2 to the exterior respectively, and then join both w_1 and w_2 to each v_i for $i = 1, 2, \dots, k-2$. Denote the resulting graph by \widetilde{W}_k .

It is easy to see that \widetilde{W}_k is an h_2 -graph with two nonadjacent Δ -vertices. Moreover, every h_2 -graph G containing two nonadjacent Δ -vertices can be induced from \widetilde{W}_k by removing some edges in E(C), where k = |V(G)|. Clearly, \widetilde{W}_k has a (k+7)-list (2,1)-labeling.

Lemma 3.8. Let G be an h_2 -graph with $|V(G)| \ge 5$ and two nonadjacent Δ -vertices w_1, w_2 . Then $\lambda_l(G) \le \Delta(G) + 9$.

Proof. Since G can be induced from \widetilde{W}_k by removing some edges in E(C), where k = |V(G)|, and $\Delta(G) = \Delta(\widetilde{W}_k) = k - 2$. Then $\lambda_l(G) \leq \lambda_l(\widetilde{W}_k) \leq \Delta(G) + 9$.

The Lemma holds.

Theorem 3.2. Let G be an h_2 -graph with $|V(G)| \ge 9$. Then $\lambda_l(G) \le \Delta(G) + 9$.

Proof. Suppose that L is a list of G with $|L(v)| = \Delta(G) + 10$ for all $v \in V(G)$. We shall prove the theorem by induction on the number of vertices of graph G.

By enumeration, we can prove the theorem holds for $|V(G)| \leq 9$. Assume that it is true for all h_2 -graphs with fewer than |V(G)| = k vertices. Let G be an h_2 -graph of order k, we consider the following two cases.

Case 1. If $|V_{\Delta}(G)| = 2$, by Lemma 3.7 and 3.8, the theorem holds.

Case 2. If $|V_{\Delta}(G)| = 1$, let w be the vertex with maximum degree and let $x \in N^{c}(w)$.

If $d(x) \geq 2$, by Lemma 3.5, we obtain a vertex u and let H = G - u. Clearly, H is an h_2 -graph. By Lemma 3.4, we know that $|V_{\Delta}(G)| \leq 2$. By the induction hypothesis and Lemma 3.7 and 3.8, H has a $(\Delta(H) + 9)$ -list (2,1)-labeling. Similarly to the proof of Theorem 3.1, we can obtain a $(\Delta(G) + 9)$ -list (2,1)-labeling of G.

If $d_G(x)=1$, then H=G-x is an h_1 -graph. By Theorem 3.1, $\lambda_l(H) \leq \Delta(H)+6 < \Delta(G)+9$. Since |N(x)|=1, $|N^2(x)| \leq \Delta(G)-1$, then

$$|S_G(x)| \le \Delta(G) + 2 < |L(x)|,$$

we can choose a label in list L(x) for vertex x and obtain a $(\Delta(G) + 9)$ -list (2, 1)-labeling of G.

This completes the proof of the Theorem.

4 The List (2,1)-labeling of Halin graphs

For any 3-connected planar graph G with $\Delta(G) \geq 3$, if the boundary edges of face f_0 which is adjacent to the others are removed, it becomes a tree, and the degree of each vertex of $V(f_0)$ is 3, then G is called a Halin graph. f_0 is called the outer face of G, and the others called interior faces. The vertices on face f_0 are called outer vertices, the others are called the interior vertices[4]. Clearly, a wheel $G = [v_0; v_1, \dots v_{\Delta}]$ is a Halin graph with only one interior vertex v_0 .

By the definition of Halin graph, the following lemma is true.

Lemma 4.1. Let G be a Halin graph. Then

- (1) The degree of all outer vertices is 3;
- (2) If G is not a wheel, there are at least two interior vertices of G, and there always exists an interior vertex w which is only adjacent to one interior, and $N(w) = \{u, u_1, \dots u_k\}, u_1v_1, u_kv_2 \in E(G), v_1 \neq u_2, v_2 \neq u_{k-1}, 2 \leq k \leq \Delta(G) 1$, where u is the interior vertex adjacent to w, and $u_1, \dots u_k$ are outer vertices adjacent to w.

The following theorem estimates an upper bound of the λ_l -number of Halin graphs.

Theorem 4.1. Let G be a Halin graph with maximum degree Δ . Then

$$\lambda_l(G) \leq \Delta + 9.$$

Proof. Suppose that L is a list of G with $|L(v)| = \Delta(G) + 10$ for all $v \in V(G)$. We shall prove the theorem by induction on $|V_I(G)|$, the number of interior vertices of G.

If $|V_I(G)| = 1$, then G is a wheel. It is also an h_1 -graph, by Theorem 3.1, the theorem holds.

Let G ba a Halin graph and for all Halin graphs G' with $|V_I(G')| < |V_I(G)|$, the theorem is true and $|V_I(G)| \ge 2$.

Let $G' = G - \{u_1, \dots u_k\} + \{v_1 w, v_2 w\}$, by Lemma 4.1 and the definition of Halin graph, G' is a Halin graph and $|V_I(G')| = |V_I(G)| - 1$. By the induction hypothesis, G' has a $(\Delta(G') + 9)$ -list (2, 1)-labeling.

Now we label vertices $u_1, \dots u_k$ in order of ascending subscripts. First label the vertex u_1 . Since $N(u_1) = \{w, v_1, u_2\}$ and u_2 has no label, then $|S_G(u_1)| \leq 8$. For $2 \leq i \leq k$, we note that $u_i, \dots u_k$ have not been labelled and $u_1, \dots u_{i-1}$ have been labelled. It suffices to prove that $|S_G(u_k)| \leq \Delta + 9$. In fact, since $N(u_k) = \{w, v_2, u_{k-1}\}, |N(v_2)| = 3$ and $d(w) \leq \Delta(G)$, then

$$|S_G(u_k)| \le 9 + (\Delta(G) - 2) + 2 = \Delta(G) + 9.$$

We can choose a label in list $L(u_k)$ for vertex u_k , then we obtain a $(\Delta(G) + 9)$ -list (2, 1)-labeling. This prove the Theorem.

Acknowledgments The authors are indebted to the anonymous referees for their constructive suggestions.

References

- [1] J.A.Bondy and U.S.R.Murty, Graph theory with applications, [M] MacMillan, London (1976).
- [2] O.V.Borodin and D.R.Woodall, Thirteen colouring numbers for outerplane graphs, [J] Bul. Inst. Combin. and Appl. 14 (1995),87-100.
- [3] G.J.Chang and D.Kuo, The L(2,1)-labeling problem on graphs, [J] SIAM J. Discrete Math. 9 (1996), 309-316.
- [4] R.Halin, Studies an minimally n-connected graph, In Comb. Math. and Its Applications (Proc. Conf. Oxford,1969), Academic Press, London, (1971),129-136.
- [5] J.V.D.Heuvel and S.McGuinness, Coloring the square of a planar graph, [J] J.Graph Theory. 42(2003), 110-124.
- [6] W.F.Wang, A characterization of the entire chromatic number of plane graphs with high maximum degree., [J] Acta Math. Scientia (in chinese). 20 (2000),644-649.
- [7] W.F.Wang and K.M.Zhang Edge-face chromatic number of plane graphs with high maximum degree., [J] Australa. J. Combin. 18 (1998),235-244.
- [8] Z.F.Zhou and W.F.Wang, The L(2,1)-labeling of mycielski graphs., [J]
 J. Zhejiang Normal university (in chinese). 5 (1992),586-595.