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Abstract. For a simple and finite graph G = (V| E) let wmax(G) be the
maximum total weight w(E) = ).z w(e) of G over all weight functions
w: E — {—1,1} such that G that has no positive cut, i.e. all cuts C satisfy
w(C) <0.

For r > 1 we prove that wnw (G) < —%1 if G is (2r — 1)-regular and

Wmax(G) < —{TL if G is 2r-regular. We conjecture the existence of a

constant ¢ such that wnax(G) < -ﬂsﬂ + ¢ if G is a connected cubic graph
and prove a special case of this conjecture. Furthermore, as a weakened
version of this conjecture we prove that wmex(G) < —Zlaﬂ + % ifGisa
connected cubic graph.

Keywords. cut; negative weights

1 Introduction

We use standard graph-theoretical terminology and consider simple and
finite graphs G = (V, E) together with a weight function w: E — {-1,1}
that assigns weights of —1 or +1 to the edges. The pair (G, w) is called a
weighted graph.

For a weighted graph (G,w) let E* = {e € E | w(e) = 1}, E~ =
{e€ E|w(e) = -1}, G* = (V,E*) and G~ = (V,E~). We denote the
neighbourhood (verter degree) of v € V in the graphs G, Gt and G~ as
N(v), N*(v) and N~ (v) (d(v), d*(v) and d~(v)), respectively. A graph
G = (V,E) is r-regular, if d(v) = r for all v € V. Let K, and K, ,,
denote the complete graph of order n and the complete bipartite graph
with partite sets of cardinality n, and ng, respectively. A cut of a graph
G = (V,E) defined by some set U C V of vertices consists of the set of
edges of G with exactly one endpoint in U and is denoted by dg(U). A cut
0g(U) of a weighted graph (G, w) is positive, if

wéa(U) = Y wle) =0a(U)NE*| ~6c(U)NE"| > 0.
e€dg(U)
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Cuts in graphs whose edges have only non-negative weights are among the
most relevant and well-studied objects in graph theory. Whereas minimum
cuts are fundamental - and easy to determine - because of their natural rela-
tion to flows in graphs [1, 2] the approximation of the maximum cut problem
received tremendous attention (cf. (3, 4] and the references therein). Most
of the arguments developed for cuts in graphs with non-negative weights
fail if negative weights are allowed. The typical problems considered for the
so-called signed graphs whose edges are labeled with a positive or negative
sign do not include cuts and their weight (cf. the references in [6]).

Nevertheless, positive cuts in graphs with +1 weights have algorith-
mical relevance. To give just one simple example consider the number of
not-gates in a boolean circuit [5] using just nand-, nor- and not-gates. Ex-
changing a single nand-gate with a nor-gate a not-gate has to be inserted
or removed on all incident arcs (see Figure 1). This observation easily im-
plies that the number of not-gates can not be reduced by exchanging some
nand- with nor-gates if and only if the corresponding weighted graph has
no positive cut.

Figure 1

Now let (G, w) be a weighted graph that has no positive cut. A standard
exchange argument easily implies that (G, w) has a cut of weight at least
iw(E). Hence (G,w) must satisfy w(E) < 0. The motivation for the
results presented here is the observation that this last conclusion is not
best-possible. In fact, one easily sees that w(E) has to be strictly negative
in order to avoid positive cuts.

In the present paper we will investigate this effect for regular graphs. In
Section 2 we prove best-possible results for regular graph. In Section 3 we
consider cubic (= 3-regular) graphs in more detail. We pose a conjecture
for cubic graphs and prove some related results.
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2 Regular graphs
We first consider regular graphs of odd degree.

Proposition 1 For some r > 1 let G = (V,E) be a connected (2r — 1)-
regular graph of order n. If w : E — {1} is such that (G,w) has no
positive cut, then w(E) < —% with equality if and only if G* = K, U K,
and G- =2 K, ,.

Proof: Let (G, w) be as in the statement of the proposition. If d*(u) > r for
some u € V, then ég({u}) is a positive cut which is a contradiction. Hence
d*(u) < r—1forallu € V and therefore w(E) = 3 ¥y (d* (u)—d ™~ (u)) <
n
2Now let w(E) = —%. This immediately implies that d*(u) = r — 1 for
allu € V. Let u; € V and let N~ (u) = {v1,v2,...,05}.

I vv; ¢ E* for some 1 < i < j < r, then dg({u1,vi,v;}) is a pos-
itive cut which is a contradiction. Hence N~ (u,) is a clique in G*. Let
N~ (v) = {u1,ua, ...,u,}. By symmetry, N~(v;) is a clique in G*.

If for some 2 < ¢ < 7 —1 there is a vertex w € N~ (u;) \ N~ (u;), then
as above vyw € E* which implies the contradiction d*(v,) > (JN~(u)| -
1)+1=r. Hence N~ (u;) = N~ (1) for 2<i < r —1 and (G, w) has the
described structure.

It remains to prove that (G, w) with G+ = K, UK, and G~ = K, has
no positive cut. Let V) and V5 denote the partite sets of G—. Let U C V.
Ifn;=|UNV]fori=1,2, then

w(idg(U)) = (r—m)n +(r —n2)n2 — (r —ny)ne — (r —n2)m
= —(n1-n2)*<0

and the proof is complete. O

For regular graphs of even degree the following similar result holds.

Theorem 1 For some r > 1 let G = (V,E) be a connected 2r-regular
graph of order n. If w: E — {£1} is such that (G, w) has no positive cut,
then w(E) < —5I% with equality if and only if G* = K,_, U K;41 and
G~ =K, 1r41-

Proof: Let (G,w) be as in the statement of the theorem. For i > 0 let
n; =|{v € V| d*(v) =i}|. If n; > 0 for some i > 7 + 1, then dg({v})
is a positive cut for some v € V with d*(v) = ¢ which is a contradiction.
Hence n; =0 fori >r+1.

If there are vertices u,v € V with d*(u) = d*(v) = r and wv € E™,
then dg({u,v}) is a positive cut which is a contradiction. Hence the set
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of vertices v € V with d*(v) = r is an independent set in G~ and thus
ra, < Y i, (r + i)n,_; which implies

r r
™m=rn,+ Z Te—; < 2(27' + )i

i=1 i=1

Since w(E) = —Y_._; inr—i, the optimum value of the following linear
program is an upper bound on w(E)

r
max —E 1Ty
=1

,
st. ™m< 2(21' +1)Zroi (1)
i=1

Zr_;20for1<i<r

Let zg, 21, ..., Zr—1 be an optimum solution. Clearly, (1) is satisfied with
equality. If there is some 2 < i < r with z,_; > 0, then decreasing z,—;
by 5% and increasing z,_; by 5757 for some small € > 0 would improve
the solution. Hence z,_; =0 for 2 < i < r which implies z,_; = 5735 and

thus w(E) < -3

Now let w(E) = —335-

2< i< N = g M = 1;%)—,:1" and all edges uv € E~ satisfy
{d*(uw),d* ()} = {r-1,r}.

Let u; € V with d*(u;) =7 —1 and let N~ (v;) = {v1,v2, .., Vpa }. If
viv; € E* for some 1 < i < j < 7+1, then dg({u1,v:,v;}) is a positive
cut which is a contradiction. Hence N~ (u;) is a clique in G*.

Let N~ (v1) = {u1,u2,...,ur—1}. If for some 2 < i <r—1thereisa
vertex w € N~ (u;) \ N~ (), then as above vyw € E* which implies the
contradiction d* (vy) > ([N~ (u1)|-1)+1=r+1. Hence N~ (u;) = N~ (w)
for2<i<r-1

If for some 1 < i < r —1 we have N*(u;) # {u1,u2,...,ur—1} \ {ui},
then dg(N~(u1)UN~(v1)) is a positive cut which is a contradiction. Hence
Nt(u;) = {ur,u2,yur—1} \ {ui} for 1 < i <7 -1 and (G,w) has the
described structure.

Again it remains to prove that (G,w) with G* = K,_; U K41 and
G~ = K,_y,r+1 has no positive cut. This can be done as in the proof of
Proposition 1 and we leave it to the reader which completes the proof. O

In view of the above this implies n,_; = 0 for
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3 Improvements for cubic graphs

We pose the following conjecture.

Conjecture 1 There is some constant ¢ such that the following holds.
If G = (V,E) is a connected cubic graph of order n and w : E — {%1}
is such that (G, w) has no positive cut, then w(E) < —2n +c.

The graphs in Figure 2 are examples of graphs that satisfy the assumptions
of Conjecture 1 and have w(E) = —#n (the dotted edges are those of weight
1). Since it is obvious how to generalize these graphs to arbitrarily large
orders, Conjecture 1 would be best possible.

N/ N
I BAS

Figure 2

The graphs in Figure 3 are examples of graphs which imply that ¢ must be
positive.

Figure 3
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With the following lemma we prove Conjecture 1 for weighted graphs (G, w)
whose vertex set can be covered by a bounded number of paths in G~.

Lemma 1 Let G = (V,E) be a connected cubic graph of order n and let
w: E = {£1} be such that (G, w) has no positive cut. Let V* = {ve V|
dtw)=1}and V- =V \V*.

If P: 2911 Z223...71 is a path in G~, then

[V* N {zo,z1, i} £ 2|V N {zo,21,..., 21 }| + 8.

Proof: Let (G,w) and P : zoZ1%2%3...7; be as in the statement of the
lemma. Clearly, d*(v) is either 1 or 0 forevery v € V,ie. V™ = {v €
V| dtw) = 0}). For 0 < i < llet nf = |V* N {zo,21,-,2%:}| and
n; =|V™nN {zo, 21, ..., T3 }|-

We may assume without loss of generality that nf > 2n; for all 0 <
i < 1. (Otherwise, we consider an appropriate subpath of P.)

First, we assume that there are five consecutive vertices i, Zit1, .-,
zip4 € V. Since dg({zi, i1, Tit2}) is not a positive cut, z;Tiy2 € Et,
Since §g({Zis1, Tit2, Ti+3}) is not a positive cut, zip1Tiv3 € E*.

Now 8G({Zi+2, Ti+3, Ti+4}) is a positive cut which is a contradiction.
Hence no more than four consecutive vertices on P belong to V+ and we
may assume that [ > 8.

Let 0 < i < l. We call i an indez of type I, if zi_3,2i_1,2: € V¥, 2, 2 €
V-, n} = 2n] + 3 and either z;_3z;; € E* or z;_37; € E*. Similarly,
we call i an indez of type II, if T;—q,Ti—3,2i1,Z; € VY, 2 2 €V, n;" =
2n; +3, either z;_4z:_1 € E* or z;_42; € E™ and neither z; 3z, € E*
nor z;_3x; € Et.

Our proof will proceed as follows. Firstly, we prove the existence of an
index of type I or II. Secondly, we prove that if ¢ is an index of type I or II
and [ — % > 6, then there is an index j of type I or II such that j > . It is
clear, that these two steps imply the desired result.

Claim 1 There is an index of type I or IL

Proof of Claim 1: Since ny > 2n;, we have zo,z1,Z2 € V+*. Since
8¢ ({zo, x1,22}) is not a positive cut, zoz2 € E*.

Firstly, we assume that z3 € V+. Since dg({z1,22,23}) is not a positive
cut, ;73 € E*. Since ég({z2,23,z4}) is not a positive cut, z4 € V~. Since
ng > 2n;, wehave z5 € V*. Since 6¢({z2, T3, %4, s, T6}) is not a positive
cut, zg € V~. Since n} > 2n;, wehave z7 € V*+. Since ng > 2ng, we have
zg € V*. Since ég({z2, z3, ..., z8}) is not a positive cut, either zsz7 € Bt
or z5z5 € ET. This implies that 8 is an index of type L
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Secondly, we assume that 23 € V~. Since n} > 2n;, we have 4, € V*.
Since n§ > 2n;, we have z5 € V*+. Since dg({z1,22,...,25}) is not a
positive cut, either ;24 € E* or z;25 € E*. Clearly, neither zoz4 € E*
nor z2z5 € E*. This implies that 5 is an index of type II and the proof of
the claim is complete. O

Claim 2 If 7 is an index of type I and { —7 > 6, then there is an index j of
type I or II such that j > <.

Proof of Claim 2: Let i be an index of type [ and let { —¢ > 6.

Firstly, we assume that z;,; € V*. Since dq({zi-1,Zi, Zi4+1}) is not
a positive cut, z;-1z;4y € Et. Since i is of type I, z;_32; € E*. Since
6c({:, Tit1, Tira}) is not a positive cut, z;12 € V™. Since nj,; > 2n,,
we have z;43 € V*. Since dg({zi,Zit1,---,Zi+4}) is not a positive cut,
Zi+q4 € V™. Since nf_',_s > 2n;, 5, we have z;45 € V*. Since n}';s > 20,
we have z;46 € V*. Since dg({zi, Zit1, -, Zire}) is not a positive cut,
either z;43%;45 € ET or z;437i1.¢ € E*. This implies that i +6 is an index
of type L

Hence we may assume that z;.; € V~. Since n}';_z > 2ng,, we
have z;,2 € V*. Since n},; > 2n75, we have z;43 € V*. Since
da({zi-1,Zi, ..., Tiy3}) is not a positive cut, either z;_,z;1» € E* or
z;1%i43 € E* or z;2;42 € E* or z;zi43 € EY. If z;_32;_, € ET,
then i + 3 is an index of type L

Hence we may assume that z;_3z; € E* and either z;_;z;4.2 € Et or
Z;—1Zi4+3 € Et. This implies that 7 + 3 is an index of type IT and the proof
of the claim is complete. O

Claim 3 If i is an index of type II and I — i > 6, then there is an index j
of type I or II such that j > i.

Proof of Claim 3: Let i be an index of type Il and let I —i > 6.

First, we assume that z;1; € V*. Since 8g({Zi—1,Zi,Zit1}) is not a
positive cut, z;_12;4; € Et. Since i is of type II, z;_4z; € E*. Since
0c({Zi, Tiy1, Tiy2}) is not a positive cut, z;42 € V. Since nfﬁrs > 2ng,,,
we have z;,3 € V*t. Since dc({zi, Zit1,--., 2i+a}) is not a positive cut,
Ziya € V7. Since nf 5 > 2n7,;, we have 2445 € V*. Since n} g > 2nj,,,
we have z;.6 € V*. Since d¢({zi,Zi+1,...,Zit6}) is not a positive cut,
either z;132;15 € E* or 243246 € E*. This implies that i +6 is an index
of type L.

Hence we may assume that zi4; € V™. Since n},, > 2n},,, we have
Zip2 € VT, Since n;';_3 > 2n, 5, we have z;43 € V+.

Next, we assume that z;_4z;—; € E*. Since dg({2i-1,%i, ..., Tit3}) is
not a positive cut, either z;z;,2 € E* or z;z;43 € E*. This implies that
i+ 3 is an index of type I.
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Hence we may assume that z;_4z; € E¥. Since 8g({i-1,%i, ..., Zi+3})
is not a positive cut, either z;_z;42 € E* or z;_12i43 € ET. This implies
that i + 3 is an index of type II and the proof of the claim is complete. O

Claims 1, 2 and 3 complete the proof. O

Theorem 2 Let ¢’ be some fized integer. Let G = (V, E) be a connected
cubic graph of order n and let w : E — {1} be such that (G, w) has no
positive cul. :

If there is a collection P of at most ¢' disjoint paths of G~ such that
every vertez of V belongs to one path in P, then w(E) < —2n+ %c’ .

Proof: Let (G,w) and P = {P, P,,..., Px} with k < ¢’ be as in the state-
ment of the theorem.

Let V¥ ={veV|d*(w) =1}, V- ={veV|dr(v) =0} =V \V*
and n* = |V%|. For 1 <i < k let n¥ denote the number of vertices in V
that belong to P;.

By Lemma 1, n} < 2n; +8 for 1 < i < k. This implies n* < 2n~ +8¢'
and hence n < 3n~ + 8¢'. We obtain

nt  3n” n n n-—8c 5n 8¢

wEk) = ——FJ/F/-—-——7—=—F5-n <-7--— =-—+

2 2 2 - 2 3 6 3

and the proof is complete. O

We close this section with a weakened version of Conjecture 1.

Theorem 3 If G = (V,E) is a connected cubic graph of order n and w :
E — {1} is such that (G,w) has no positive cut, then w(E) < —%n + %

Proof: Let (G,w) be as in the statement of the theorem. As before, let
Vt={weV|d'w) =1}, V- ={veV |dt(w) =0} =V\V* and
n* = [VE|.

If G~ is not connected and U is the vertex set of a component of G~, then
8g(U) is a positive cut which is a contradiction. Hence G~ is connected.
Let Ty = (Vp, Eo) be a spanning tree of G~ i.e. Vo = V. We will prove the
existence of trees Ty, T4, ..., Tt with T; = (V;, E;) for 1 < i <1 such that

(i) T:is a subtree of Tj_; for 1 <i <1,
(i) [(Visaa \ Vi) NV <5|(Vima \ V)NV ™| for 1 <i <l and
(iii) either [NV <5VinV ™| or V| £ 4.
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Therefore, we assume that for some ¢ > 0 the tree T; with |V;| > 5 has
already been constructed and explain how to construct T;,; or how to
terminate the sequence.

Let d;(v) denote the degree of v € V; in the tree T;. Let T; be rooted
at some vertex 7 with d;(r) = 1 and let v; be a vertex of T; at maximum
distance from r. Clearly, di(v1) = 1. Let v1v2v3...v; = r be the path from
v to r in T;. Note that s > 4. We consider different cases.

Case 1 No vertex at distance at most 4 from v; has two children.

Clearly, this implies s > 5. As in the proof of Lemma 1 not all five con-
secutive vertices vy, vs,...,vs belong to V*. If vs = r, then let / = i and
terminate the sequence, otherwise let Ti;1 = T;\ {v1,v2,v3,v4,vs}. Hence,
we may assume from now on that the assumption of this case is false.

Case 2 Either v, or vz has two children.

Let U denote the set containing v; and all descendants of v3. It is easy to
check that |[UNV*| < 5\[UNV ~|. Let Tiy1 = T;\U. Hence we may assume
from now on that the assumption of this case is false.

Case 3 v4 has two children.

Clearly, vq4 # r. Let U denote the set containing v4 and all descendants of
vg. B |[UNVH| < 5\UNV |, then let T;41 = T;\ U. Hence, we may assume
that [UNV*| > 5UNV-|.

This implies that there are vertices u;,us,us € V; such that U =
{v1,v2,v3,v4,u1, U2, u3}, uruo, usus, usvs € E; and vy, vo,vs,u;, U, U3 €
v+,

Since ¢ ({v1,v2,v3}) is not a positive cut, vju3 € Et.

Since 8 ({u1,u2,u3}) is not a positive cut, ujuz € Et.

Since g ({ve,v3,u2,u3,v4}) is not a positive cut, vous € E*.

Since dg({va,v3,v4,vs,u3}) is not a positive cut, vs € V.

If vs = r, then let | = 7 and terminate the sequence. Hence, we may
assume that vs # r. If vs has just one child, then let T;y, = T;\ (UU {vs}).
Hence, we may assume that v has two children.

Let U’ denote the set containing vs and all descendants of vs. It is
tedious but simple to check that (U’ N V*| < 5(U’ NV ~|. Therefore, let
Tiy1 = T;\ U' and we may assume from now on that the assumption of
this case is false.
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Case 4 vy has two children.

Clearly, vs # r. Let U denote the set containing v; and all descendants of
vs. If |[UNV*| < 5\UNV |, then let Tiyy = T;\ U. Hence, we may assume
[Unv* >sU0nV-|.

In view of the above cases, we can assume without loss of generality that
there are 2 < j < 4 vertices uy,us,...,u; € V; such that wyu,,...uj_1u;,
ujvs € E;, v1,v2,v3,v4,u1, U2, ..., U5 € V+ and VU3, V2U4 € E+.

Now 8¢ ({vs,va,uj—1,uj,vs}) is a positive cut, which is a contradiction.

From the above cases the existence of the trees Ty, T}, ..., T} is obvious. The
properties (i), (i) and (iii) imply nt < 52~ +4 and thus w(E) < —2n + £
which completes the proof. O

Note that the left graph in Figure 3 satisfies w(E) = —%n + £. Finally, we
want to mention that a quite tedious extension of the arguments used in
the proof of Theorem 3 yields a bound of the form w(E) < —2n + O(1).
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SUMS OF GENERALIZED FIBONACCI NUMBERS BY
MATRIX METHODS

EMRAH KILIC

ABSTRACT. In this paper, we consider a certain second order linear
recurrence and then give generating matrices for the sums of posi-
tively and negatively subscripted terms of this recurrence. Further,
we use matrix methods and derive explicit formulas for these sums.

1. INTRODUCTION

The Fibonacci sequence is defined by the following equation for n > 1
Fop1 =Fo 4+ Fa,

where Fy = 0 and Fy = 1. The Fibonacci numbers have many interesting
properties. For example, the sums of the Fibonacci numbers subscripted
from 1 to n can be expressed by a formula including Fibonacci numbers.
The sums formula is given by

n
Y Fi=Fnpo— F.
i=1
Matrix methods many times have played an important role stemming from
the number theory [1-5]. For instance, let B be an 2 x 2 companion matrix

as follows
11
B= [ 10 ] :
Then it is well known that
F, F,
n __ n+1 n
B = [ Fn Fn—-l ]

Now we consider a generalization of the Fibonacci numbers. Let A be
nonzero integer satisfying A% + 4 # 0. The generalized Fibonacci sequence
{un} is defined by the recurrence relation for n > 1

Up41 = Au, + Un-1, (11)
where ug = 0 and u; = 1. For later use, note that us = A4, uz = A2 +1
and ug = A% + 2A. When A = 2, then u, = P, (nth Pell number).

2000 Mathematics Subject Classification. 11339, 11C20.
Key words and phrases. Reenrrence, sum, matrix method, companion matrix.
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Let  and B be the roots of the equation 22 — Az — 1 = 0, then the Binet

formula of the sequence {u,} has the form
n _ n
v, = 828"
a-p

Using the recurrence relation of sequence {u, }, we can obtain the negatively
subscripted terms and these terms satisfy

ot — g
Since aff = —1, then we have

e = (=1 u, and u—n = Au_(np1) + U—(nt2)- (1.2)
Thus for later use u_; = 1, u_s = —A, u_3 = A2+ 1 and u_y =

- (A% +24).
Furthermore, by the inductive argument, one can easily verify that the
generating matrix for the sequence {u, } is given by

wn=[i1 (1)] =[“n+1 Un ] (1.3)

Un Un-1

In this paper, we construct certain matrices, then we compute the nth
powers of these matrices which are the generating matrices for the sums of
the positively and negatively subscripted terms of the sequence {u,} from
1 to n.

2. GENERATING MATRIX FOR THE SUMS OF THE POSITIVELY
SUBSCRIPTED TERMS OF THE SEQUENCE {uy}

In this section we consider the positively subscripted terms of the se-
quence {u, } and then define a 3 x 3 matrix C. Further, we compute the
nth power of the matrix C and use matrix methods for the explicit formula
for the sums of the terms of the sequence {u,}.

Define the 3 x 3 matrix C as follows

100
c=[141 (2.1)
010

and define the 3 x 3 matrix E,, as follows

1 0 0
E,= S: Un41 Un » (2.2)
STy tun upo
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where S;' denote the sums of the positively subscripted terms of the se-
quence {u,} from 1 to n, that is

1

Then we have the following Lemma.

Lemma 1. Let the matrices C and E, have the forms (2.1) and (2.2),
respectively. Then forn, n >0

E,=C". (2.4)

Proof. We will use the induction method for the proof of Lemma. If n = 1,
then, by ug = A, u; =1 and ug = 0, we obtain

1 0 0 1 0 0
C] = 1 A1 = Silh Uy Uy = El.
010 S¢ w wo
If n = 2, then
1 0 0
C?’=| A+1 A’+1 A
1 A 1

Since S = A+1 and u3 = A% + 1, E = C?. Suppose that the claim is
true for n. Then we will show that the equation holds for n + 1. Thus, by
our assumption, we write

C™t! = C"C=E.C

1 0 0 1 00
= S upy un 1 A1
St un un— 0 10
which, by a matrix multiplication, satisfies
1 0 0
cntl = S,-: + Un41 Aun+] +Un Up4 = En+l-

St i +u, Auptu_;  u,

By the recurrence relation of the sequence {u,} and since S} + up4 =
S+

~+1» we have the conclusion. O

Consequently, we obtain a generating matrix for the sums of the terms
of the sequence {u,} from 1 to n.
Also we write the Eq. (2.4) as shown

En41 = E,E| = E\E,. (2.5)

In other words, the matrix E; is commutative under matrix muitiplication.
Then we have the Corollary.
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Corollary 1. Let the sum S} have the form (2.3). Then the sum S}
satisfies the following nonhomogeneous recurrence relation forn > 0

S:—I-l =AS;:. +S: 1+1.

Proof. From (2.5) and since an element of E,,,; is the product of a row E;
and a column of E,, :

Siy1 = AS+87 1 +1,

which is desired. O

Now we are going to derive an explicit formula for the sum S7. Let
K¢ ()) be the characteristic polynomial of the matrix C. Thus,

1-2 0 0
KcW)=| 1 A=) 1 |=Q=-1)(=-N+4Ax+1).
0

Also it is easily seen that the characteristic polynomial of the matrix W
given by (1.3) is —A2 + AX + 1. Therefore the eigenvalues of the matrix C

are
A+ VAZ+4 A— VA2 +4
M=—F =g —

Since A # 0 and A% + 4 # 0, we have that the eigenvalues of the matrix C
are distinct.
Let V be the 3 x 3 matrix defined as follows:

and A3 = 1.

1 0 0
v=| 3 M x|, (2.6)
2 11

where A\; and Ag are the eigenvalues of C. Note that detV = A — X2 # 0.
Then we have the following Theorem.

Theorem 1. Let S} denote the sums of the terms of the sequence {u,} .

Then
Upsl +Un — 1

+ _
Sn - A
Proof. One can easily verify that

CV =VD,,

where C and V are as before, and D, is the diagonal matrix such that
D, = diag (X3, A1, A2) . Since det V # 0, the matrix V is invertible. So we
write that V-1CV = D,. Hence, the matrix C is similar to the diagonal
matrix D;. Thus we obtain C*V = V D%.Since C" = E,,

E,V = VD}.
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So by a matrix multiplication, we have the conclusion. a

For example, if we take A = 2, then the sequence {u,} is reduced to the
usual Pell numbers and by Theorem 1, we have

ZP n+1+P_1

which is well known from [10].
Now we give a formula for the sum S; by using a matrix method with
the following Corollary.

Corollary 2. Let S}t denote the sums of the terms u; from 1 to n. Then
for all positive integers n and m

St im = Un41SH +unSE_ + S
where u,, given by (1.1).
Proof. From (2.4), we can write, for all positive integers n and m
Eptm = EpnEq.
Clearly

+l 0 0 1 0 0 1 0 0
ﬁn+m Ungm+] Ungm = S,t Uy Uy S,-:., Um4) U .

n+m—1 Untm Ungin—-1 S:_ ] Uy Up—| S,T. -1 Wy U1
By a matrix multiplication, the proof is easily seen. ]

Note that taking by n = 1 in Corollary 2, we can obtain the result of
Corollary 1.

3. GENERATING MATRIX FOR THE SUMS OF THE NEGATIVELY
SUBSCRIPTED TERMS u_,

In this section, we consider the negatively subscripted terms of the se-
quence {u,}. First, we give a generating matrix for the negatively sub-
scripted terms. Second, we give a generating matrix for the sums of these
terms.

Let the 2 x 2 matrix T be as follows:

-A 1
e[ 4] -
and the 2 x 2 matrix H,, be as follows:
_ u—(n+1) U_p
H, = [ o e ] (3.2)

where u_,, is the nth negatively subscripted term of the sequence {u,} .
We start with the following Lemma.
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Lemma 2. Let the matrices T and H, have the form (3.1) and (3.2),
respectiwely. Then forn >0

H,=T".

Proof. (Induction on n) If n = 1, then, by the identity (1.2), we have
-A 1 U_g U
1 _ — 2 U
SR I el

A24+1 -A

2 _

= [ “A 1 ] '

Since by (1.2), we have u_3 = ug3 = A2+1, u_p = —up = —Aand u_, =1,
we have

If n =2, then

A24+1 -A
2 —
T_[ h ]—Hz-

We suppose that the equation holds for n. Then we show that the equation
holds for n + 1. Thus, by our assumption,

Tn+l — TnTl
U_(n41) Uy -A 1
U_g U_(n-1) 1 0|
Since the negatively subscripted terms of the sequence {u,} satisfy the re-

currence relation u_, = At_(n41)+U_(n42), Wehave u_(n49) = —AuU_(ny)+
U_p, and T"! = H,,,,. So the proof is complete.

Let S; denote the sums of the negatively subscripted terms of the se-
quence {u,}, that is

S,: = iu_i. (33)
1

Now we give a matrix method to generate the sum S;;. Define the 3 x 3
matrices R and @, as shown

1 0 0 1 0 0
R=|1 -A 1| and @, = So U_(ng1) U_p . (3.4)
0 1 0 S;—l Up U_ (n—1)

Then we have the following Theorem.

Theorem 2. Let the matrices R and @, have the form (8.4). Then for
n>0

R" =Q,. (3.5)

28



Proof. (Induction on n) If n = 1, then we know that ST =u_; =1, §; =0
forn < 1, u_y = —up = —A, ug = 0. Thus we obtain R = Q;. If n = 2,

then we have S5 = u_; +u_p = ~A+ 1, u_3 = u3 and by a matrix
multiplication
‘ 1 0 0
T?’=|1-A4 A’+1 -A | =H,.
1 —A 1

Suppose that the equation holds for n. Then we show that the equation
holds for n + 1. Thus, by our assumption, we write

Rn+1 = R'R= QnR

1 0 0 1 0 O
= S,: U_(n+1) U_y, 1 -A 1
n-1  U-n  U—(n-1) 0 1 0

Since S;,; = S +u_(n41) and by Lemma 2, we obtain T"*! = Q4. So
we have the Theorem. (]

In the following Theorem, we give a nonhomogeneous recurrence relation
for the sum S .

Theorem 3. Let S;; denote the sums of the terms u_; for 1 <i < n. Then
forn>0
Sip1=—AS; + S +1.

Proof. Considering (3.5), we write Qny1 = QnQi = Q1Q, and say that
the matrix @; is commutative under matrix multiplication. By a matrix
multiplication, the proof is easy. O

Generalizing R" = Q,,, for all positive integers n and m, we can write
that Qpym = QnQm = Qm@rn. Thus we obtain the following Corollary
without proof as a generalization of the result of Theorem 3.

Corollary 3. Let S;; denote the sums of the terms u_; for 1 < i < n.
Then for alln,m > 0

mm = Sn FU_(n41)Sm +Uu_nS, ;-

Now we derive an explicit formula for the sums of the negatively sub-
scripted terms u_; for 1 < i < n. For this purpose, we give some results.
First, we consider the characteristic polynomial of the matrix 7. The char-
acteristic equation of T is K- (A) = —(A-1) (/\2 + AX=1). Thus the
eigenvalues of matrix T are

-A+VA? +4 VA? +

= ﬂz—_——alldﬂa—l
Note that A # 0 and A2 + 4 # 0, the eigenvalues of T are distinct.
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Let A be a matrix as follows

1 0 0
A= % B Ko

1

7 1 1

Then we have the following Theorem.

Theorem 4. Let S;; denote the sums of the negatively subscripted terms
u_; for1<i<n. Then forn>1

1- u_(n+1) — Un
A .

Proof. By the characteristic equation of the negatively subscripted terms
u_;, we can readily verify that

RA = AD,,

where Dj is the 3 x3 diagonal matrix such that D, = diag (u3, py, pt3) - Since
det A = p, — pp # 0, the matrix A is invertible. Thus we write A'RA =
D, and so the matrix is similar to the matrix D,. Therefore, we write
A~1R"™A = D} or R"A = AD3. Since R® = Qy, we have QnA = ADZ . Then
we have the conclusion from Q,A = AD3 by a matrix multiplication. 0O

S, =

Considering the identity (1.2), we have the following Corollary without
proof.

Corollary 4. Let S;; denote the sums of the negatively subscripted terms
u_; for1 <i<mn. Then forn>1

S- = (un — uny1 +1) /A if n is even,
T ) (Ung1 —Un+1) /A if nds odd.

For example, if take A = 1, then the sequence {u,} is reduced to the
usual Fibonacci sequence and by Corollary 4, we have the sums of the
negatively subscripted terms of the Fibonacci sequence for n is even number

S Fi=F-FB+F—..+F-F=1-Fu,
1
and for n is odd number

S Fi=FR-F+FB—...—Fa+F=F_i+1
1
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